##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
##
## Attaching package: 'tidyr'
## The following object is masked from 'package:magrittr':
##
## extract
## -- Attaching packages --------------------------------------- tidyverse 1.2.1 --
## v tibble 2.1.3 v purrr 0.3.2
## v readr 1.3.1 v stringr 1.4.0
## v tibble 2.1.3 v forcats 0.4.0
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x readr::col_factor() masks scales::col_factor()
## x purrr::discard() masks scales::discard()
## x tidyr::extract() masks magrittr::extract()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x purrr::set_names() masks magrittr::set_names()
## # A tibble: 6 x 7
## PAIS `Sum of Export` `Sum of Import` `Sum of Product~ Population
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Unit~ 594271 4814494 3992 325147121
## 2 Russ~ 59768 1544057 NA 144496740
## 3 Germ~ 346692 1418261 NA 82657002
## 4 Belg~ 1290049 1409333 NA 11375158
## 5 Unit~ 43238 1162617 NA 66058859
## 6 China 15781 1039142 22592956 1386395000
## # ... with 2 more variables: Consumption <dbl>, PerCapita <dbl>
MODELO BANANO
La industria bananera contribuye con el 0.5% al PIB del Ecuador y genere aproximadamente 1 millon de empleos al año.

##
## Call:
## lm(formula = Consumption ~ PerCapita, data = bananaConsumption)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7232 -2.2316 -0.3243 2.1282 4.9047
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.222e+01 1.139e+00 10.727 3.08e-11 ***
## PerCapita 5.919e-05 2.911e-05 2.033 0.052 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.772 on 27 degrees of freedom
## Multiple R-squared: 0.1328, Adjusted R-squared: 0.1006
## F-statistic: 4.133 on 1 and 27 DF, p-value: 0.052
## (Intercept) PerCapita
## 1.221612e+01 5.918586e-05
