ggplot(diamonds, aes(cut,price)) + geom_boxplot()
ggplot(diamonds, aes(color,price)) + geom_boxplot()
ggplot(diamonds, aes(clarity,price)) + geom_boxplot()
ggplot(diamonds, aes(carat, price)) +
geom_hex(bins=50)
diamonds2 <- diamonds %>%
filter(carat <= 2.5) %>%
mutate(lprice = log2(price), lcarat = log2(carat))
ggplot(diamonds2, aes(lcarat, lprice)) +
geom_hex(bins=50)
mod_diamond <- lm(lprice ~ lcarat, data = diamonds2, na.action = na.warn)
grid <- diamonds2 %>%
data_grid(carat = seq_range(carat, 20)) %>%
mutate(lcarat = log2(carat)) %>%
add_predictions(mod_diamond, "lprice") %>%
mutate(price = 2 ^ lprice)
ggplot(diamonds2, aes(carat, price)) +
geom_hex(bins = 50) +
geom_line(data = grid, color = "green", size = 1)
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond, "lresid")
ggplot(diamonds2, aes(lcarat, lresid)) +
geom_hex(bins = 50)
ggplot(diamonds2, aes(cut,lresid)) + geom_boxplot()
ggplot(diamonds2, aes(color,lresid)) + geom_boxplot()
ggplot(diamonds2, aes(clarity,lresid)) + geom_boxplot()
mod_diamond2 <- lm(
lprice ~ lcarat + color + cut + clarity, diamonds2, na.action = na.warn
)
grid <- diamonds2 %>%
data_grid(cut, .model = mod_diamond2) %>%
add_predictions(mod_diamond2)
grid
## # A tibble: 5 x 5
## cut lcarat color clarity pred
## <ord> <dbl> <chr> <chr> <dbl>
## 1 Fair -0.515 G VS2 11.2
## 2 Good -0.515 G VS2 11.3
## 3 Very Good -0.515 G VS2 11.4
## 4 Premium -0.515 G VS2 11.4
## 5 Ideal -0.515 G VS2 11.4
ggplot(grid, aes(cut, pred)) +
geom_point()
diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond2, "lresid2")
ggplot(diamonds2, aes(lcarat, lresid2)) +
geom_hex(bins = 50)
diamonds2 %>%
filter(abs(lresid2) > 1) %>%
add_predictions(mod_diamond2) %>%
mutate(pred = round(2^pred)) %>%
select(price, pred, carat:table, x:z) %>%
arrange(price)
## # A tibble: 16 x 11
## price pred carat cut color clarity depth table x y z
## <int> <dbl> <dbl> <ord> <ord> <ord> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1013 264 0.25 Fair F SI2 54.4 64 4.3 4.23 2.32
## 2 1186 284 0.25 Premium G SI2 59 60 5.33 5.28 3.12
## 3 1186 284 0.25 Premium G SI2 58.8 60 5.33 5.28 3.12
## 4 1262 2644 1.03 Fair E I1 78.2 54 5.72 5.59 4.42
## 5 1415 639 0.35 Fair G VS2 65.9 54 5.57 5.53 3.66
## 6 1415 639 0.35 Fair G VS2 65.9 54 5.57 5.53 3.66
## 7 1715 576 0.32 Fair F VS2 59.6 60 4.42 4.34 2.61
## 8 1776 412 0.290 Fair F SI1 55.8 60 4.48 4.41 2.48
## 9 2160 314 0.34 Fair F I1 55.8 62 4.72 4.6 2.6
## 10 2366 774 0.3 Very Good D VVS2 60.6 58 4.33 4.35 2.63
## 11 3360 1373 0.51 Premium F SI1 62.7 62 5.09 4.96 3.15
## 12 3807 1540 0.61 Good F SI2 62.5 65 5.36 5.29 3.33
## 13 3920 1705 0.51 Fair F VVS2 65.4 60 4.98 4.9 3.23
## 14 4368 1705 0.51 Fair F VVS2 60.7 66 5.21 5.11 3.13
## 15 10011 4048 1.01 Fair D SI2 64.6 58 6.25 6.2 4.02
## 16 10470 23622 2.46 Premium E SI2 59.7 59 8.82 8.76 5.25
In the plot of lcarat vs. lprice, there are some bright vertical strips. What do they represent?
# Use this chunk to answer question 1
# The bright blue vertical strips indicate the counts. This indicates that there is a higher count of diamonds, the same weight(carat) but a wide range of prices.
If log(price) = a_0 + a_1 * log(carat), what does that say about the relationship between price and carat?
# Use this chunk to answer question 2
# From the above equation, we can say that there exists a linear relationship between carat and price. With every 1% increase/decrease in the carat, there is a respective 1% increase/decrease in the price.
Extract the diamonds that have very high and very low residuals. Is there anything unusual about these diamonds? Are they particularly bad or good, or do you think these are pricing errors?
# Use this chunk to place your code for extracting the high and low residuals and answer question 3
mod_di <- lm(
lprice ~ lcarat + color + cut + clarity, diamonds2
)
bottom <-
diamonds2 %>%
add_residuals(mod_diamond2) %>%
arrange(resid) %>%
slice(1:10)
top <-
diamonds2 %>%
add_residuals(mod_diamond2) %>%
arrange(-resid) %>%
slice(1:10)
bind_rows(bottom, top) %>%
select(price, carat, resid)
## # A tibble: 20 x 3
## price carat resid
## <int> <dbl> <dbl>
## 1 10470 2.46 -1.17
## 2 1262 1.03 -1.07
## 3 2845 1.27 -0.971
## 4 3105 1.52 -0.942
## 5 3105 1.52 -0.942
## 6 7862 1.8 -0.847
## 7 6010 1.59 -0.787
## 8 3780 1.5 -0.787
## 9 7226 2.3 -0.783
## 10 12071 2.5 -0.729
## 11 2160 0.34 2.78
## 12 1776 0.290 2.11
## 13 1186 0.25 2.06
## 14 1186 0.25 2.06
## 15 1013 0.25 1.94
## 16 2366 0.3 1.61
## 17 1715 0.32 1.57
## 18 4368 0.51 1.36
## 19 10011 1.01 1.31
## 20 3807 0.61 1.31
From the above code, we can see that there is no abnormality between the residue and the price. The diamonds with low residue have a higher purity and higher prices except for a couple of residues, the prices are outliered.
Does the final model, mod_diamonds2, do a good job of predicting diamond prices? Would you trust it to tell you how much to spend if you were buying a diamond and why?
# Use this chunk to place your code for assessing how well the model predicts diamond prices and answer question 4
d2 <- diamonds2 %>%
add_predictions(mod_diamond) %>%
mutate(pred = round(2 ^ pred),
err = pred - price)
d2 %>%
add_residuals(mod_diamond) %>%
mutate(resid = 2 ^ abs(resid)) %>%
ggplot(aes(resid)) +
geom_histogram(color="lightblue",fill="darkblue")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
par(mfrow=c(2,2))
plot(mod_diamond2)
This model does a fairly good job at predicting the diamond prices but it does not look very reliable with some of the data points on the graph. I would not completely rely on the model to buy diamonds.