Loading Data

who <- read.csv('who.csv')
head(who)
##               Country LifeExp InfantSurvival Under5Survival  TBFree
## 1         Afghanistan      42          0.835          0.743 0.99769
## 2             Albania      71          0.985          0.983 0.99974
## 3             Algeria      71          0.967          0.962 0.99944
## 4             Andorra      82          0.997          0.996 0.99983
## 5              Angola      41          0.846          0.740 0.99656
## 6 Antigua and Barbuda      73          0.990          0.989 0.99991
##        PropMD      PropRN PersExp GovtExp TotExp
## 1 0.000228841 0.000572294      20      92    112
## 2 0.001143127 0.004614439     169    3128   3297
## 3 0.001060478 0.002091362     108    5184   5292
## 4 0.003297297 0.003500000    2589  169725 172314
## 5 0.000070400 0.001146162      36    1620   1656
## 6 0.000142857 0.002773810     503   12543  13046

Exporling Data

summary(who)
##                 Country       LifeExp      InfantSurvival  
##  Afghanistan        :  1   Min.   :40.00   Min.   :0.8350  
##  Albania            :  1   1st Qu.:61.25   1st Qu.:0.9433  
##  Algeria            :  1   Median :70.00   Median :0.9785  
##  Andorra            :  1   Mean   :67.38   Mean   :0.9624  
##  Angola             :  1   3rd Qu.:75.00   3rd Qu.:0.9910  
##  Antigua and Barbuda:  1   Max.   :83.00   Max.   :0.9980  
##  (Other)            :184                                   
##  Under5Survival       TBFree           PropMD              PropRN         
##  Min.   :0.7310   Min.   :0.9870   Min.   :0.0000196   Min.   :0.0000883  
##  1st Qu.:0.9253   1st Qu.:0.9969   1st Qu.:0.0002444   1st Qu.:0.0008455  
##  Median :0.9745   Median :0.9992   Median :0.0010474   Median :0.0027584  
##  Mean   :0.9459   Mean   :0.9980   Mean   :0.0017954   Mean   :0.0041336  
##  3rd Qu.:0.9900   3rd Qu.:0.9998   3rd Qu.:0.0024584   3rd Qu.:0.0057164  
##  Max.   :0.9970   Max.   :1.0000   Max.   :0.0351290   Max.   :0.0708387  
##                                                                           
##     PersExp           GovtExp             TotExp      
##  Min.   :   3.00   Min.   :    10.0   Min.   :    13  
##  1st Qu.:  36.25   1st Qu.:   559.5   1st Qu.:   584  
##  Median : 199.50   Median :  5385.0   Median :  5541  
##  Mean   : 742.00   Mean   : 40953.5   Mean   : 41696  
##  3rd Qu.: 515.25   3rd Qu.: 25680.2   3rd Qu.: 26331  
##  Max.   :6350.00   Max.   :476420.0   Max.   :482750  
## 

Q1 Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.

library(ggplot2)
lm <- lm(LifeExp ~ TotExp, data=who)
ggplot(who, aes(x=TotExp, y=LifeExp)) + geom_point() +geom_smooth(method='lm')

cor(who$TotExp,who$LifeExp)
## [1] 0.5076339
summary(lm)
## 
## Call:
## lm(formula = LifeExp ~ TotExp, data = who)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.764  -4.778   3.154   7.116  13.292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.475e+01  7.535e-01  85.933  < 2e-16 ***
## TotExp      6.297e-05  7.795e-06   8.079 7.71e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared:  0.2577, Adjusted R-squared:  0.2537 
## F-statistic: 65.26 on 1 and 188 DF,  p-value: 7.714e-14

The P-value for F-test is approximately 0, which is less than 0.05. We reject the null hypothesis,and accept that it is statistically significant. However the Adjusted R-squared is only 0.2537 ,which means it can only explain 25% of variability. the Standard error 9.371 is too high.

plot(lm$fitted.values, lm$residuals, 
     xlab="Fitted", ylab="Residuals",
     main="Residuals Plot for Linear Model")
abline(h=0)

plot(lm)

According to the diagnostic plot. we found that the constant variance condition fails and both QQ plot and residual vs.fitted value tell us that the model is not normally distributed.

Question 2 Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”

LifeExp_n <- who$LifeExp^4.6
TotExp_n <- who$TotExp^0.06

# Linear regression model build
lm_n <- lm(LifeExp_n ~ TotExp_n)
ggplot(who, aes(x=TotExp_n, y=LifeExp_n)) + geom_point() +geom_smooth(method='lm')

cor(LifeExp_n,TotExp_n)
## [1] 0.8542642
summary(lm_n)
## 
## Call:
## lm(formula = LifeExp_n ~ TotExp_n)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -308616089  -53978977   13697187   59139231  211951764 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -736527910   46817945  -15.73   <2e-16 ***
## TotExp_n     620060216   27518940   22.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared:  0.7298, Adjusted R-squared:  0.7283 
## F-statistic: 507.7 on 1 and 188 DF,  p-value: < 2.2e-16
plot(lm_n)

F−Statistic is 507.7 and the Standard Error is 90490000. The p−value is nearly 0. The correlation is 0.8543 which is much better than the previous case and R2 is 0.7298. There is a strong relationship between transformed variables TotExp and LifeExp. Therefore, we can say this transformed model is better than the previous model.

Question 3: Using the results from 3, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5:

x = 1.5 
le = (x * lm_n$coefficients[2] + lm_n$coefficients[1])^(1/4.6)
le
## TotExp_n 
## 63.31153
x = 2.5 
le = (x * lm_n$coefficients[2] + lm_n$coefficients[1])^(1/4.6)
le
## TotExp_n 
## 86.50645

When totexp = 1.5 the forecast life expectancy is 63.31 years and when the totexp = 2.5, the life expectancy is 86.451 years.

Question 4: Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model?: LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp

lm_4 =lm(LifeExp ~ PropMD + TotExp + PropMD*TotExp, data = who)
summary(lm_4)
## 
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD * TotExp, data = who)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.320  -4.132   2.098   6.540  13.074 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    6.277e+01  7.956e-01  78.899  < 2e-16 ***
## PropMD         1.497e+03  2.788e+02   5.371 2.32e-07 ***
## TotExp         7.233e-05  8.982e-06   8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03  1.472e-03  -4.093 6.35e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared:  0.3574, Adjusted R-squared:  0.3471 
## F-statistic: 34.49 on 3 and 186 DF,  p-value: < 2.2e-16
ggplot(lm_4, aes(.fitted, .resid)) + 
  geom_point(color = "black", size=2) +
  labs(title = "Fitted Values vs Residuals") +
  labs(x = "Fitted Values") +
  labs(y = "Residuals")

F−Statistic is 34.49 and the Standard Error is 8.765. The p−value is nearly 0. The R2 is 0.3574.

The model explains only 35.74% of variability.

In this new model, we notice that the residuals are not normally distributed.

This model is not a good model to describe the relationships between variables TotExp, PropMd and LifeExp.

Question 5: Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?

propmd = 0.03
totexp = 14

y =lm_4$coefficients[1] + 
   lm_4$coefficients[2] * propmd +
   lm_4$coefficients[3] * totexp  +
   lm_4$coefficients[4]*propmd * totexp
print(y)
## (Intercept) 
##     107.696

When propmd = 0.03 and totexp = 14, the forecast value of life expectancy is 107.69 years which is unrealistic.