library(haven)
#download datasets - AddHealth
wave1<-read_dta("/projects/add_health/data/11613344/ICPSR_27021/DS0001/da27021p1.dta")
wave3<-read_dta("/projects/add_health/data/11613344/ICPSR_27021/DS0003/da27021p3.dta")
wave4<-read_dta("/projects/add_health/data/11613344/ICPSR_27021/DS0012/da27021p12.dta")
addhealth.wghtW4<-read_dta("/projects/add_health/data/11613344/ICPSR_27021/DS0028/da27021p28.dta")
#addhealth<-merge(wave1,wave3,by="aid")
addhealth1<-merge(wave1,wave3,by="aid")
addhealth1<-merge(addhealth1,wave4,by="aid")
addhealth1<-merge(addhealth1,addhealth.wghtW4,by="aid")
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
#select variables to use
addhealth<-addhealth1%>%
select(GSWGT4,region,psuscid,BIO_SEX,H3SE13,H1GI6A,H1GI6B,H1GI4,H1GI6D,H1GI6E,H4ED2,iyear,imonth,H1GI1M,H1GI1Y,IYEAR3,IMONTH3,H3OD1Y,H3OD1M,H4OD1M,H4OD1Y,IMONTH4,IYEAR4,H4MH22,H3GH1,H4GH1,H1GI6C,H1FS6,H3SP9,H4DS18,H3DS18F,H4MH22,H4GH1,H4EC1,H4TR1,H3DS18G,H1FV6,H4LM1,H4ID1,H4ID1,H3HR2,H4OD4)
#complete cases
addhealth<-addhealth%>%
filter(complete.cases(.))
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
#UScitizen
addhealth$UScitizen<-Recode(addhealth$H4OD4,recodes="0='a_no';1='b_yes';else=NA",as.factor=T)
#physical limitations
addhealth$physical.limits<-Recode(addhealth$H4ID1,recodes="1='a_not_limited';2:3='b_limited';else=NA",as.factor=T)
#residence
addhealth$w3.residence<-Recode(addhealth$H3HR2,recodes="1='a_withparents';2='b_withsomeone';3='c_myownplace';4='d_group.qrts';5='e_homeless';6='f_other';else=NA",as.factor=T)
#number of times married
addhealth$W4.married<-Recode(addhealth$H4TR1,recodes="0='a_never married';1='b_married_once';2:4='c_married_twice+';else=NA",as.factor=T)
#general health
#addhealth$W4.general_health<-Recode(addhealth$H4GH1,recodes="1:3='c_good/vg/excellent';4:5='b_poor/fair';else=NA")
#depression
#addhealth$W4.depression<-Recode(addhealth$H4MH22,recodes="0:1='a_never_some';2:3='b_most_always';else=NA")
#Date of birth variables; Wave 1: H1GI1M (month), H1GI1Y (year); Wave 3: H3OD1M (month), H3OD1Y (year); Wave 4: H4OD1M (month), H4OD1Y (year)
#birth year w1
addhealth$birthyearw1 <- factor(ifelse(addhealth$H1GI1Y=="74",1974,
ifelse(addhealth$H1GI1Y=="75",1975,
ifelse(addhealth$H1GI1Y=="76",1976,
ifelse(addhealth$H1GI1Y=="77",1977,
ifelse(addhealth$H1GI1Y=="78",1978,
ifelse(addhealth$H1GI1Y=="79",1979,
ifelse(addhealth$H1GI1Y=="80",1980,
ifelse(addhealth$H1GI1Y=="81",1981,
ifelse(addhealth$H1GI1Y=="82",1982,
ifelse(addhealth$H1GI1Y=="83",1983,1979)))))))))))
#birth month w1
addhealth$birthmonthw1 <- Recode(addhealth$H1GI1M,recodes="1=1;2=2;3=3;4=4;5=5;6=6;7=7;8=8;9=9;10=10;11=11;12=12;else=NA")
#combine year and month for a birth date wave 1
library(zoo)
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
addhealth$birthdatew1 <- as.yearmon(paste(addhealth$birthyearw1, addhealth$birthmonthw1), "%Y %m")
#birth month wave 4
addhealth$birthmonthw4 <- Recode(addhealth$H4OD1M,recodes="1=1;2=2;3=3;4=4;5=5;6=6;7=7;8=8;9=9;10=10;11=11;12=12")
#birth year wave 4
addhealth$birthyearw4<-addhealth$H4OD1Y
addhealth$birthyearw4 <- Recode(addhealth$H4OD1Y,recodes="1974=1974;1975=1975;1976=1976;1977=1977;1978=1978;1979=1979;1980=1980;1981=1981;1982=1982;1983=1983")
#combine year and month for birth date wave 4
addhealth$birthdatew4 <- as.yearmon(paste(addhealth$birthyearw4, addhealth$birthmonthw4), "%Y %m")
#birth date wave 3
addhealth$birthdatew3<-as.yearmon(paste(addhealth$H3OD1Y,addhealth$H3OD1M),"%Y %m")
#interview date w1
addhealth$iyearfix <- Recode(addhealth$iyear,recodes="'94'='1994';'95'='1995'")
addhealth$interviewdatew1 <- as.yearmon(paste(addhealth$iyearfix, addhealth$imonth), "%Y %m")
#interview date w4
addhealth$interviewmonthw4 <- Recode(addhealth$IMONTH4,recodes="1=1;2=2;3=3;4=4;5=5;6=6;7=7;8=8;9=9;10=10;11=11;12=12")
addhealth$interviewyearw4 <- Recode(addhealth$IYEAR4,recodes="2007=2007;2008=2008;2009=2009")
addhealth$interviewdatew4<-as.yearmon(paste(addhealth$interviewyearw4,addhealth$interviewmonthw4),"%Y %m")
#interview date w3
addhealth$interviewdatew3<-as.yearmon(paste(addhealth$IYEAR3,addhealth$IMONTH3 ),"%Y %m")
#age - derived from date of birth subtracted from wave interview date
addhealth$agew4<-(as.numeric(round(addhealth$interviewdatew4 - addhealth$birthdatew4)))
addhealth$agew3<-(as.numeric(round(addhealth$interviewdatew3 - addhealth$birthdatew3)))
addhealth$agew1<-(as.numeric(round(addhealth$interviewdatew1 - addhealth$birthdatew1)))
#sex variable - Male is reference group
addhealth$sex <- ifelse(addhealth$BIO_SEX==2,2,1)
addhealth$sex<-Recode(addhealth$sex, recodes="1='a_male'; 2='b_female'",as.factor=T)
#sexual orientation from wave 3. Reference group is straight people
addhealth$sexorient <- factor(ifelse(addhealth$H3SE13=="(1) 100% heterosexual (straight)",1,
ifelse(addhealth$H3SE13=="(2) Mostly #heterosexual.somewhat attracted to people of own",2,
ifelse(addhealth$H3SE13=="(3) Bisexual-attracted #to men and women equally",3,
ifelse(addhealth$H3SE13=="(4) Mostly #homosexual.somewhat attracted to opposite sex",4,
ifelse(addhealth$H3SE13=="(5) 100% #homosexual (gay)",5,NA))))))
addhealth$sexorient<-Recode(addhealth$H3SE13, recodes="1:2='a_straight'; 3='b_bisexual';4:5='c_LGB';else=NA",as.factor=T)
#race variables - Reference group is nhwhite
#nhwhite
addhealth$nhwhite <- ifelse(addhealth$H1GI6A==1,1,0)
addhealth$nhwhite<-Recode(addhealth$nhwhite, recodes="1='nhwhite'; 0='nonnhwhite'; 6:8=NA",as.factor=T)
#nhblack
addhealth$nhblack <- ifelse(addhealth$H1GI6B==1,1,0)
addhealth$nhblack<-Recode(addhealth$nhblack, recodes="1='nhblack'; 0='nonnhblack'; 6:8=NA",as.factor=T)
#Hispanic
addhealth$hispanic <- ifelse(addhealth$H1GI4==1,1,0)
addhealth$hispanic<-Recode(addhealth$hispanic, recodes="1='hispanic'; 0='nonhispanic'; 6:8=NA",as.factor=T)
#Asian
addhealth$asian <- ifelse(addhealth$H1GI6D==1,1,0)
addhealth$asian<-Recode(addhealth$asian, recodes="1='asian'; 0='nonasian'; 6:8=NA",as.factor=T)
#Native American
addhealth$native_american <- ifelse(addhealth$H1GI6C==1,1,0)
addhealth$native_american<-Recode(addhealth$native_american, recodes="1='native_american'; 0='nonnative_american'; 6:8=NA",as.factor=T)
#other
addhealth$other <- ifelse(addhealth$H1GI6E==1,1,0)
addhealth$other<-Recode(addhealth$other, recodes="1='other'; 0='nonother'; 6:8=NA",as.factor=T)
#combine race to one variable
addhealth$racethnic <- factor(ifelse(addhealth$nhwhite=="nhwhite","a-nhwhite",
ifelse(addhealth$nhblack=="nhblack", "b-nhblack",
ifelse(addhealth$hispanic=="hispanic", "c-hispanic",
ifelse(addhealth$asian=="asian","d-asian",
ifelse(addhealth$native_american=="native_american","e-native_american",
ifelse(addhealth$other=="other","f-other",NA)))))))
#Education. Less then high school is reference group
addhealth$educ<-Recode(addhealth$H4ED2,recodes="1:2='a_less_highschool';3:6='b_highschool_grad';7='c_college_bach';8:13='d_college+';else=NA",as.factor=T)
#income variable
addhealth$incomeW4<-Recode(addhealth$H4EC1,recodes="1:5='a_<$25k';6:8='b_$25k>$50k';9:10='c_$50k>$100k';11:12='e_$100k+';else=NA",as.factor=T)
#transition
addhealth$W1.jumped.beatenup<-Recode(addhealth$H1FV6, recodes="0='a.no'; 1:2='b.yes';else=NA")
addhealth$W3.jumped1<-ifelse(addhealth$H3DS18F==1,1,
ifelse(addhealth$H3DS18F==0,0,NA))
addhealth$W3.jumped2<-ifelse(addhealth$H3DS18G==1,1,
ifelse(addhealth$H3DS18G==0,0,NA))
addhealth$transition.w1<-ifelse(addhealth$W1.jumped.beatenup=="a.no"&addhealth$W3.jumped1==1|addhealth$W3.jumped2==1,1,0)
addhealth$W4.jumped.beatenup<-Recode(addhealth$H4DS18, recodes="0='a.no'; 1='b.yes';else=NA")
addhealth$transition<-ifelse(addhealth$transition.w1==0&addhealth$W4.jumped.beatenup=="b.yes",1,0)
table(addhealth$transition)
##
## 0 1
## 8383 1003
#select variables to use
addhealth<-addhealth%>%
select(psuscid,region,GSWGT4,agew1,agew3, agew4, sex,sexorient,racethnic,educ,incomeW4,transition,W4.married,transition.w1,physical.limits,w3.residence,incomeW4,UScitizen)
#filter complete cases
addhealth<-addhealth%>%
filter(complete.cases(.))
adlong<-reshape(data.frame(addhealth), idvar = 'aid', varying=list(c('agew1', 'agew3'), c('agew3','agew4')),
v.names = c('age_enter', 'age_exit'),
times = 1:2, direction='long')
adlong<-adlong[order(adlong$aid, adlong$time),]
head(adlong)
adlong$trans<-NA
adlong$trans[adlong$transition.w1==0& adlong$time==1]<-0
adlong$trans[adlong$transition.w1==1& adlong$time==1]<-1
adlong$trans[adlong$transition==0& adlong$time==2]<-0
adlong$trans[adlong$transition==1& adlong$time==2]<-1
adlong$racethnic_new<-as.factor(ifelse(adlong$racethnic%in%c("d-asian","e-native_american","f-other"), "other", adlong$racethnic))
adlong$racethnic_new<-Recode(adlong$racethnic_new, recodes = "1='a_white'; 2='b_black'; 3='c_hispanic'", as.factor=T)
library(survminer)
## Loading required package: ggplot2
## Registered S3 methods overwritten by 'ggplot2':
## method from
## [.quosures rlang
## c.quosures rlang
## print.quosures rlang
## Loading required package: ggpubr
## Loading required package: magrittr
library(survey)
## Loading required package: grid
## Loading required package: Matrix
## Loading required package: survival
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
## dotchart
library(survival)
#Kaplan-Meier survival analysis of the outcome
fit.kaplan<-survfit(Surv(time = time , event=trans)~1,data=adlong)
summary(fit.kaplan)
## Call: survfit(formula = Surv(time = time, event = trans) ~ 1, data = adlong)
##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 17268 210 0.988 0.000834 0.986 0.989
## 2 8634 925 0.882 0.003371 0.875 0.889
f1<-survfit(Surv(time = time , event=trans)~1, data=adlong)
summary(f1)
## Call: survfit(formula = Surv(time = time, event = trans) ~ 1, data = adlong)
##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 17268 210 0.988 0.000834 0.986 0.989
## 2 8634 925 0.882 0.003371 0.875 0.889
ggsurvplot(f1,data = adlong,risk.table = T,title="Survival function for violence transition",ylim=c(.85,1))
library(muhaz)
haz<-kphaz.fit(time=adlong$time,status = adlong$trans,method = "product-limit")
kphaz.plot(haz,main="Hazard function plot")
data.frame(haz)
ggsurvplot(f1,data = adlong,risk.table = T,fun="cumhaz",title="Cumulative Hazard Function for violence transition")
#Kaplan-Meier survival analysis of the outcome across sexual orientation
fit.kaplan.LGB<-survfit(Surv(time = time , event=trans)~sexorient,data=adlong)
summary(fit.kaplan.LGB)
## Call: survfit(formula = Surv(time = time, event = trans) ~ sexorient,
## data = adlong)
##
## sexorient=a_straight
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 16720 203 0.988 0.000847 0.986 0.990
## 2 8360 879 0.884 0.003400 0.877 0.891
##
## sexorient=b_bisexual
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 284 6 0.979 0.00853 0.962 0.996
## 2 142 25 0.807 0.03207 0.746 0.872
##
## sexorient=c_LGB
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 1 264 1 0.996 0.00378 0.989 1.000
## 2 132 21 0.838 0.03187 0.778 0.903
ggsurvplot(fit.kaplan.LGB,conf.int = T,risk.table = F,title="Survivorship Function for violence transition by sexual orientation",xlab="Wave of Survey",ylim=c(.85,1))
## Warning: Removed 2 rows containing missing values (geom_path).
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 rows containing missing values (geom_path).
## Warning: Removed 2 rows containing missing values (geom_point).
ggsurvplot(fit.kaplan.LGB,risk.table = T,fun="cumhaz",title="Cumulative Hazard Function for violence transition by sexual orientation")
fit0 <- coxph(Surv(time = time , event=trans) ~ factor(sexorient), data=adlong,
iter=0, na.action=na.exclude)
o.minus.e <- tapply(resid(fit0), adlong$sexorient, sum)
obs <- tapply(adlong$transition, adlong$sexorient, sum)
cbind(observed=obs, expected= obs- o.minus.e, "o-e"=o.minus.e)
## observed expected o-e
## a_straight 1758 1775.94266 -17.942658
## b_bisexual 50 37.08701 12.912995
## c_LGB 42 36.97034 5.029664
#Survey design
library(survey)
des2<-svydesign(ids=~psuscid,
strata = ~region,
weights=~GSWGT4,
data=adlong,
nest=T)
#fit to cox model
library(eha)
fit.cox<-coxreg(Surv(time = time,event = trans)~sex+sexorient+racethnic_new+physical.limits+UScitizen+educ+W4.married+incomeW4+w3.residence,data = adlong)
summary(fit.cox)
## Call:
## coxreg(formula = Surv(time = time, event = trans) ~ sex + sexorient +
## racethnic_new + physical.limits + UScitizen + educ + W4.married +
## incomeW4 + w3.residence, data = adlong)
##
## Covariate Mean Coef Rel.Risk S.E. Wald p
## sex
## a_male 0.454 0 1 (reference)
## b_female 0.546 -0.022 0.979 0.061 0.726
## sexorient
## a_straight 0.968 0 1 (reference)
## b_bisexual 0.016 0.510 1.666 0.184 0.006
## c_LGB 0.015 0.296 1.345 0.218 0.173
## racethnic_new
## a_white 0.660 0 1 (reference)
## b_black 0.197 0.193 1.213 0.076 0.011
## c_hispanic 0.074 0.238 1.269 0.111 0.032
## other 0.070 0.088 1.092 0.132 0.506
## physical.limits
## a_not_limited 0.916 0 1 (reference)
## b_limited 0.084 0.048 1.050 0.103 0.638
## UScitizen
## a_no 0.057 0 1 (reference)
## b_yes 0.943 0.148 1.160 0.147 0.312
## educ
## a_less_highschoo 0.066 0 1 (reference)
## b_highschool_gra 0.579 -0.255 0.775 0.106 0.016
## c_college_bach 0.218 -0.414 0.661 0.127 0.001
## d_college+ 0.136 -0.444 0.642 0.139 0.001
## W4.married
## a_never married 0.505 0 1 (reference)
## b_married_once 0.459 0.086 1.090 0.065 0.182
## c_married_twice+ 0.036 0.217 1.242 0.151 0.153
## incomeW4
## a_<$25k 0.153 0 1 (reference)
## b_$25k>$50k 0.279 -0.175 0.840 0.090 0.051
## c_$50k>$100k 0.407 -0.264 0.768 0.089 0.003
## e_$100k+ 0.161 -0.157 0.854 0.110 0.153
## w3.residence
## a_withparents 0.410 0 1 (reference)
## b_withsomeone 0.054 0.133 1.142 0.129 0.301
## c_myownplace 0.473 0.081 1.085 0.066 0.215
## d_group.qrts 0.056 -0.016 0.984 0.151 0.915
## e_homeless 0.000 1.617 5.040 0.713 0.023
## f_other 0.006 0.512 1.668 0.306 0.094
##
## Events 1135
## Total time at risk 25902
## Max. log. likelihood -10347
## LR test statistic 66.09
## Degrees of freedom 21
## Overall p-value 1.46731e-06
plot(survfit(fit.cox,conf.int = F),ylab = "S(t)",xlab="Age",ylim=c(.85,1))
###i. Include all main effects in the model
#Cox model with all main effects in the model
fit1<-svycoxph(Surv(time=time,event=trans)~sex+sexorient+racethnic_new+physical.limits+UScitizen+educ+W4.married+incomeW4+w3.residence,design=des2)
summary(fit1)
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (132) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = adlong, nest = T)
## Call:
## svycoxph(formula = Surv(time = time, event = trans) ~ sex + sexorient +
## racethnic_new + physical.limits + UScitizen + educ + W4.married +
## incomeW4 + w3.residence, design = des2)
##
## n= 17268, number of events= 1135
##
## coef exp(coef) se(coef) z Pr(>|z|)
## sexb_female -0.06789 0.93436 0.07674 -0.885 0.37628
## sexorientb_bisexual 0.52443 1.68950 0.22043 2.379 0.01735 *
## sexorientc_LGB 0.29857 1.34793 0.24210 1.233 0.21748
## racethnic_newb_black 0.28495 1.32969 0.08798 3.239 0.00120 **
## racethnic_newc_hispanic 0.30618 1.35823 0.13959 2.193 0.02828 *
## racethnic_newother 0.14362 1.15444 0.22269 0.645 0.51898
## physical.limitsb_limited 0.06730 1.06961 0.11819 0.569 0.56907
## UScitizenb_yes 0.10918 1.11536 0.22079 0.494 0.62096
## educb_highschool_grad -0.16793 0.84541 0.15745 -1.067 0.28615
## educc_college_bach -0.36426 0.69471 0.18271 -1.994 0.04619 *
## educd_college+ -0.37385 0.68808 0.19375 -1.929 0.05367 .
## W4.marriedb_married_once 0.07789 1.08101 0.08714 0.894 0.37141
## W4.marriedc_married_twice+ 0.34543 1.41260 0.17375 1.988 0.04680 *
## incomeW4b_$25k>$50k -0.17424 0.84009 0.10467 -1.665 0.09597 .
## incomeW4c_$50k>$100k -0.27972 0.75599 0.10511 -2.661 0.00779 **
## incomeW4e_$100k+ -0.18443 0.83158 0.15153 -1.217 0.22356
## w3.residenceb_withsomeone 0.12171 1.12943 0.15344 0.793 0.42765
## w3.residencec_myownplace 0.06102 1.06292 0.07244 0.842 0.39958
## w3.residenced_group.qrts 0.01925 1.01944 0.19944 0.097 0.92309
## w3.residencee_homeless 0.37479 1.45468 0.99266 0.378 0.70576
## w3.residencef_other 0.43168 1.53984 0.32488 1.329 0.18394
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## sexb_female 0.9344 1.0703 0.8039 1.0860
## sexorientb_bisexual 1.6895 0.5919 1.0968 2.6025
## sexorientc_LGB 1.3479 0.7419 0.8387 2.1664
## racethnic_newb_black 1.3297 0.7521 1.1191 1.5799
## racethnic_newc_hispanic 1.3582 0.7363 1.0331 1.7856
## racethnic_newother 1.1544 0.8662 0.7461 1.7862
## physical.limitsb_limited 1.0696 0.9349 0.8485 1.3484
## UScitizenb_yes 1.1154 0.8966 0.7236 1.7193
## educb_highschool_grad 0.8454 1.1829 0.6209 1.1510
## educc_college_bach 0.6947 1.4394 0.4856 0.9939
## educd_college+ 0.6881 1.4533 0.4707 1.0059
## W4.marriedb_married_once 1.0810 0.9251 0.9113 1.2823
## W4.marriedc_married_twice+ 1.4126 0.7079 1.0049 1.9857
## incomeW4b_$25k>$50k 0.8401 1.1903 0.6843 1.0314
## incomeW4c_$50k>$100k 0.7560 1.3228 0.6152 0.9289
## incomeW4e_$100k+ 0.8316 1.2025 0.6179 1.1191
## w3.residenceb_withsomeone 1.1294 0.8854 0.8361 1.5257
## w3.residencec_myownplace 1.0629 0.9408 0.9222 1.2251
## w3.residenced_group.qrts 1.0194 0.9809 0.6896 1.5071
## w3.residencee_homeless 1.4547 0.6874 0.2079 10.1793
## w3.residencef_other 1.5398 0.6494 0.8146 2.9108
##
## Concordance= 0.579 (se = 0.013 )
## Likelihood ratio test= NA on 21 df, p=NA
## Wald test = 75.54 on 21 df, p=4e-08
## Score (logrank) test = NA on 21 df, p=NA
#Cox model with all main effects in the model and an interaction between sex and sexual orientation
fit.interact1<-svycoxph(Surv(time=time,event=trans)~sex*sexorient+racethnic_new+physical.limits+UScitizen+educ+W4.married+incomeW4+w3.residence,design=des2)
summary(fit.interact1)
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (132) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = adlong, nest = T)
## Call:
## svycoxph(formula = Surv(time = time, event = trans) ~ sex * sexorient +
## racethnic_new + physical.limits + UScitizen + educ + W4.married +
## incomeW4 + w3.residence, design = des2)
##
## n= 17268, number of events= 1135
##
## coef exp(coef) se(coef) z
## sexb_female -0.08344 0.91995 0.07688 -1.085
## sexorientb_bisexual -0.35212 0.70319 0.91029 -0.387
## sexorientc_LGB 0.18194 1.19954 0.33562 0.542
## racethnic_newb_black 0.28422 1.32872 0.08791 3.233
## racethnic_newc_hispanic 0.30517 1.35686 0.13945 2.188
## racethnic_newother 0.14615 1.15738 0.22171 0.659
## physical.limitsb_limited 0.06247 1.06446 0.11838 0.528
## UScitizenb_yes 0.10537 1.11113 0.22006 0.479
## educb_highschool_grad -0.16692 0.84627 0.15713 -1.062
## educc_college_bach -0.36068 0.69720 0.18207 -1.981
## educd_college+ -0.36689 0.69289 0.19341 -1.897
## W4.marriedb_married_once 0.07807 1.08120 0.08708 0.896
## W4.marriedc_married_twice+ 0.34872 1.41726 0.17447 1.999
## incomeW4b_$25k>$50k -0.17376 0.84050 0.10447 -1.663
## incomeW4c_$50k>$100k -0.28295 0.75355 0.10578 -2.675
## incomeW4e_$100k+ -0.18821 0.82844 0.15182 -1.240
## w3.residenceb_withsomeone 0.11998 1.12748 0.15337 0.782
## w3.residencec_myownplace 0.06221 1.06419 0.07229 0.861
## w3.residenced_group.qrts 0.01639 1.01652 0.20004 0.082
## w3.residencee_homeless 0.37236 1.45116 0.99421 0.375
## w3.residencef_other 0.42853 1.53501 0.32460 1.320
## sexb_female:sexorientb_bisexual 0.97949 2.66309 0.92603 1.058
## sexb_female:sexorientc_LGB 0.30709 1.35947 0.55825 0.550
## Pr(>|z|)
## sexb_female 0.27777
## sexorientb_bisexual 0.69889
## sexorientc_LGB 0.58776
## racethnic_newb_black 0.00122 **
## racethnic_newc_hispanic 0.02864 *
## racethnic_newother 0.50975
## physical.limitsb_limited 0.59770
## UScitizenb_yes 0.63205
## educb_highschool_grad 0.28812
## educc_college_bach 0.04759 *
## educd_college+ 0.05784 .
## W4.marriedb_married_once 0.37000
## W4.marriedc_married_twice+ 0.04564 *
## incomeW4b_$25k>$50k 0.09626 .
## incomeW4c_$50k>$100k 0.00747 **
## incomeW4e_$100k+ 0.21509
## w3.residenceb_withsomeone 0.43403
## w3.residencec_myownplace 0.38943
## w3.residenced_group.qrts 0.93470
## w3.residencee_homeless 0.70801
## w3.residencef_other 0.18677
## sexb_female:sexorientb_bisexual 0.29018
## sexb_female:sexorientc_LGB 0.58225
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## sexb_female 0.9199 1.0870 0.7913 1.0696
## sexorientb_bisexual 0.7032 1.4221 0.1181 4.1871
## sexorientc_LGB 1.1995 0.8337 0.6213 2.3158
## racethnic_newb_black 1.3287 0.7526 1.1184 1.5786
## racethnic_newc_hispanic 1.3569 0.7370 1.0324 1.7834
## racethnic_newother 1.1574 0.8640 0.7495 1.7873
## physical.limitsb_limited 1.0645 0.9394 0.8440 1.3425
## UScitizenb_yes 1.1111 0.9000 0.7219 1.7103
## educb_highschool_grad 0.8463 1.1817 0.6220 1.1515
## educc_college_bach 0.6972 1.4343 0.4880 0.9962
## educd_college+ 0.6929 1.4432 0.4743 1.0123
## W4.marriedb_married_once 1.0812 0.9249 0.9115 1.2824
## W4.marriedc_married_twice+ 1.4173 0.7056 1.0068 1.9951
## incomeW4b_$25k>$50k 0.8405 1.1898 0.6849 1.0315
## incomeW4c_$50k>$100k 0.7536 1.3270 0.6125 0.9272
## incomeW4e_$100k+ 0.8284 1.2071 0.6152 1.1156
## w3.residenceb_withsomeone 1.1275 0.8869 0.8348 1.5228
## w3.residencec_myownplace 1.0642 0.9397 0.9236 1.2262
## w3.residenced_group.qrts 1.0165 0.9837 0.6868 1.5045
## w3.residencee_homeless 1.4512 0.6891 0.2067 10.1857
## w3.residencef_other 1.5350 0.6515 0.8125 2.9001
## sexb_female:sexorientb_bisexual 2.6631 0.3755 0.4337 16.3540
## sexb_female:sexorientc_LGB 1.3595 0.7356 0.4552 4.0602
##
## Concordance= 0.581 (se = 0.013 )
## Likelihood ratio test= NA on 23 df, p=NA
## Wald test = 90.64 on 23 df, p=6e-10
## Score (logrank) test = NA on 23 df, p=NA
AIC(fit1)
## eff.p AIC deltabar
## 31.126260 20743.492968 1.482203
AIC(fit.interact1)
## eff.p AIC deltabar
## 34.099146 20749.438739 1.482572
regTermTest(fit1,~racethnic_new)
## Wald test for racethnic_new
## in svycoxph(formula = Surv(time = time, event = trans) ~ sex + sexorient +
## racethnic_new + physical.limits + UScitizen + educ + W4.married +
## incomeW4 + w3.residence, design = des2)
## F = 4.272134 on 3 and 108 df: p= 0.0068339
regTermTest(fit.interact1,~racethnic_new)
## Wald test for racethnic_new
## in svycoxph(formula = Surv(time = time, event = trans) ~ sex * sexorient +
## racethnic_new + physical.limits + UScitizen + educ + W4.married +
## incomeW4 + w3.residence, design = des2)
## F = 4.251747 on 3 and 106 df: p= 0.0070472
regTermTest(fit1,~racethnic_new,method="LRT")
## Working (Rao-Scott+F) LRT for racethnic_new
## in svycoxph(formula = Surv(time = time, event = trans) ~ sex + sexorient +
## racethnic_new + physical.limits + UScitizen + educ + W4.married +
## incomeW4 + w3.residence, design = des2)
## Working 2logLR = 10.8118 p= 0.01784
## (scale factors: 1.4 0.91 0.72 ); denominator df= 108
regTermTest(fit.interact1,~racethnic_new,method="LRT")
## Working (Rao-Scott+F) LRT for racethnic_new
## in svycoxph(formula = Surv(time = time, event = trans) ~ sex * sexorient +
## racethnic_new + physical.limits + UScitizen + educ + W4.married +
## incomeW4 + w3.residence, design = des2)
## Working 2logLR = 10.80937 p= 0.017844
## (scale factors: 1.4 0.92 0.73 ); denominator df= 106
#schoenfeld residuals
schoenresid<-resid(fit1,type = "schoenfeld")
fit.sr<-lm(schoenresid~des2$variables$time[des2$variables$trans==1])
summary(fit.sr)
## Response sexb_female :
##
## Call:
## lm(formula = sexb_female ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5793 -0.5377 0.4244 0.4623 0.4623
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.12468 0.07072 1.763
## des2$variables$time[des2$variables$trans == 1] -0.03790 0.03810 -0.995
## Pr(>|t|)
## (Intercept) 0.0782 .
## des2$variables$time[des2$variables$trans == 1] 0.3201
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4984 on 1133 degrees of freedom
## Multiple R-squared: 0.0008724, Adjusted R-squared: -9.469e-06
## F-statistic: 0.9893 on 1 and 1133 DF, p-value: 0.3201
##
##
## Response sexorientb_bisexual :
##
## Call:
## lm(formula = sexorientb_bisexual ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.02869 -0.02797 -0.02797 -0.02797 0.97631
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -0.007361 0.023144
## des2$variables$time[des2$variables$trans == 1] 0.004282 0.012469
## t value Pr(>|t|)
## (Intercept) -0.318 0.751
## des2$variables$time[des2$variables$trans == 1] 0.343 0.731
##
## Residual standard error: 0.1631 on 1133 degrees of freedom
## Multiple R-squared: 0.0001041, Adjusted R-squared: -0.0007784
## F-statistic: 0.1179 on 1 and 1133 DF, p-value: 0.7313
##
##
## Response sexorientc_LGB :
##
## Call:
## lm(formula = sexorientc_LGB ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.02325 -0.02258 -0.02258 -0.02258 0.99535
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.03210 0.01955 -1.642
## des2$variables$time[des2$variables$trans == 1] 0.01793 0.01054 1.701
## Pr(>|t|)
## (Intercept) 0.1009
## des2$variables$time[des2$variables$trans == 1] 0.0891 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1378 on 1133 degrees of freedom
## Multiple R-squared: 0.002549, Adjusted R-squared: 0.001668
## F-statistic: 2.895 on 1 and 1133 DF, p-value: 0.08913
##
##
## Response racethnic_newb_black :
##
## Call:
## lm(formula = racethnic_newb_black ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2409 -0.2243 -0.2210 -0.2210 0.7790
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.07199 0.05926 1.215
## des2$variables$time[des2$variables$trans == 1] -0.01655 0.03193 -0.518
## Pr(>|t|)
## (Intercept) 0.225
## des2$variables$time[des2$variables$trans == 1] 0.604
##
## Residual standard error: 0.4177 on 1133 degrees of freedom
## Multiple R-squared: 0.000237, Adjusted R-squared: -0.0006454
## F-statistic: 0.2686 on 1 and 1133 DF, p-value: 0.6044
##
##
## Response racethnic_newc_hispanic :
##
## Call:
## lm(formula = racethnic_newc_hispanic ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.10964 -0.08336 -0.08322 -0.08322 0.91678
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.06238 0.04022 1.551
## des2$variables$time[des2$variables$trans == 1] -0.02628 0.02167 -1.213
## Pr(>|t|)
## (Intercept) 0.121
## des2$variables$time[des2$variables$trans == 1] 0.225
##
## Residual standard error: 0.2835 on 1133 degrees of freedom
## Multiple R-squared: 0.001297, Adjusted R-squared: 0.0004151
## F-statistic: 1.471 on 1 and 1133 DF, p-value: 0.2255
##
##
## Response racethnic_newother :
##
## Call:
## lm(formula = racethnic_newother ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.06671 -0.06383 -0.06383 -0.06383 0.93641
##
## Coefficients:
## Estimate Std. Error
## (Intercept) 0.027409 0.034834
## des2$variables$time[des2$variables$trans == 1] -0.002877 0.018768
## t value Pr(>|t|)
## (Intercept) 0.787 0.432
## des2$variables$time[des2$variables$trans == 1] -0.153 0.878
##
## Residual standard error: 0.2455 on 1133 degrees of freedom
## Multiple R-squared: 2.075e-05, Adjusted R-squared: -0.0008618
## F-statistic: 0.02351 on 1 and 1133 DF, p-value: 0.8782
##
##
## Response physical.limitsb_limited :
##
## Call:
## lm(formula = physical.limitsb_limited ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1006 -0.1006 -0.1006 -0.0715 0.9289
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.05366 0.04164 -1.289
## des2$variables$time[des2$variables$trans == 1] 0.02912 0.02243 1.298
## Pr(>|t|)
## (Intercept) 0.198
## des2$variables$time[des2$variables$trans == 1] 0.194
##
## Residual standard error: 0.2935 on 1133 degrees of freedom
## Multiple R-squared: 0.001485, Adjusted R-squared: 0.0006039
## F-statistic: 1.685 on 1 and 1133 DF, p-value: 0.1945
##
##
## Response UScitizenb_yes :
##
## Call:
## lm(formula = UScitizenb_yes ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.94929 0.05071 0.05071 0.05126 0.05284
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -0.013729 0.031272
## des2$variables$time[des2$variables$trans == 1] 0.001583 0.016848
## t value Pr(>|t|)
## (Intercept) -0.439 0.661
## des2$variables$time[des2$variables$trans == 1] 0.094 0.925
##
## Residual standard error: 0.2204 on 1133 degrees of freedom
## Multiple R-squared: 7.787e-06, Adjusted R-squared: -0.0008748
## F-statistic: 0.008823 on 1 and 1133 DF, p-value: 0.9252
##
##
## Response educb_highschool_grad :
##
## Call:
## lm(formula = educb_highschool_grad ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6131 -0.6131 0.3869 0.3869 0.4149
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.06596 0.06931 -0.952
## des2$variables$time[des2$variables$trans == 1] 0.02728 0.03734 0.730
## Pr(>|t|)
## (Intercept) 0.342
## des2$variables$time[des2$variables$trans == 1] 0.465
##
## Residual standard error: 0.4886 on 1133 degrees of freedom
## Multiple R-squared: 0.0004706, Adjusted R-squared: -0.0004116
## F-statistic: 0.5335 on 1 and 1133 DF, p-value: 0.4653
##
##
## Response educc_college_bach :
##
## Call:
## lm(formula = educc_college_bach ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1851 -0.1851 -0.1851 -0.1764 0.8247
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -0.001882 0.054930
## des2$variables$time[des2$variables$trans == 1] 0.008697 0.029595
## t value Pr(>|t|)
## (Intercept) -0.034 0.973
## des2$variables$time[des2$variables$trans == 1] 0.294 0.769
##
## Residual standard error: 0.3872 on 1133 degrees of freedom
## Multiple R-squared: 7.622e-05, Adjusted R-squared: -0.0008063
## F-statistic: 0.08636 on 1 and 1133 DF, p-value: 0.7689
##
##
## Response educd_college+ :
##
## Call:
## lm(formula = `educd_college+` ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1239 -0.1103 -0.1103 -0.1101 0.8899
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.03909 0.04491 0.870
## des2$variables$time[des2$variables$trans == 1] -0.01353 0.02420 -0.559
## Pr(>|t|)
## (Intercept) 0.384
## des2$variables$time[des2$variables$trans == 1] 0.576
##
## Residual standard error: 0.3165 on 1133 degrees of freedom
## Multiple R-squared: 0.000276, Adjusted R-squared: -0.0006063
## F-statistic: 0.3128 on 1 and 1133 DF, p-value: 0.5761
##
##
## Response W4.marriedb_married_once :
##
## Call:
## lm(formula = W4.marriedb_married_once ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4716 -0.4699 -0.4235 0.5301 0.5765
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.06736 0.07075 -0.952
## des2$variables$time[des2$variables$trans == 1] 0.04642 0.03812 1.218
## Pr(>|t|)
## (Intercept) 0.341
## des2$variables$time[des2$variables$trans == 1] 0.224
##
## Residual standard error: 0.4987 on 1133 degrees of freedom
## Multiple R-squared: 0.001307, Adjusted R-squared: 0.0004258
## F-statistic: 1.483 on 1 and 1133 DF, p-value: 0.2236
##
##
## Response W4.marriedc_married_twice+ :
##
## Call:
## lm(formula = `W4.marriedc_married_twice+` ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.05276 -0.04253 -0.04208 -0.04208 0.95792
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.01242 0.02913 0.426
## des2$variables$time[des2$variables$trans == 1] -0.01023 0.01570 -0.652
## Pr(>|t|)
## (Intercept) 0.670
## des2$variables$time[des2$variables$trans == 1] 0.515
##
## Residual standard error: 0.2054 on 1133 degrees of freedom
## Multiple R-squared: 0.0003747, Adjusted R-squared: -0.0005076
## F-statistic: 0.4246 on 1 and 1133 DF, p-value: 0.5148
##
##
## Response incomeW4b_$25k>$50k :
##
## Call:
## lm(formula = `incomeW4b_$25k>$50k` ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3333 -0.2746 -0.2746 0.6667 0.7255
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.09549 0.06405 1.491
## des2$variables$time[des2$variables$trans == 1] -0.05874 0.03451 -1.702
## Pr(>|t|)
## (Intercept) 0.136
## des2$variables$time[des2$variables$trans == 1] 0.089 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4515 on 1133 degrees of freedom
## Multiple R-squared: 0.00255, Adjusted R-squared: 0.00167
## F-statistic: 2.897 on 1 and 1133 DF, p-value: 0.08901
##
##
## Response incomeW4c_$50k>$100k :
##
## Call:
## lm(formula = `incomeW4c_$50k>$100k` ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3788 -0.3788 -0.3766 0.6212 0.6876
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.10386 0.06833 -1.520
## des2$variables$time[des2$variables$trans == 1] 0.06414 0.03681 1.742
## Pr(>|t|)
## (Intercept) 0.1288
## des2$variables$time[des2$variables$trans == 1] 0.0817 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4816 on 1133 degrees of freedom
## Multiple R-squared: 0.002672, Adjusted R-squared: 0.001792
## F-statistic: 3.036 on 1 and 1133 DF, p-value: 0.08171
##
##
## Response incomeW4e_$100k+ :
##
## Call:
## lm(formula = `incomeW4e_$100k+` ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1572 -0.1503 -0.1503 -0.1500 0.8500
##
## Coefficients:
## Estimate Std. Error
## (Intercept) 0.028839 0.050916
## des2$variables$time[des2$variables$trans == 1] -0.006865 0.027432
## t value Pr(>|t|)
## (Intercept) 0.566 0.571
## des2$variables$time[des2$variables$trans == 1] -0.250 0.802
##
## Residual standard error: 0.3589 on 1133 degrees of freedom
## Multiple R-squared: 5.527e-05, Adjusted R-squared: -0.0008273
## F-statistic: 0.06263 on 1 and 1133 DF, p-value: 0.8024
##
##
## Response w3.residenceb_withsomeone :
##
## Call:
## lm(formula = w3.residenceb_withsomeone ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.07676 -0.06002 -0.05933 -0.05933 0.94067
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.03248 0.03437 0.945
## des2$variables$time[des2$variables$trans == 1] -0.01675 0.01852 -0.904
## Pr(>|t|)
## (Intercept) 0.345
## des2$variables$time[des2$variables$trans == 1] 0.366
##
## Residual standard error: 0.2423 on 1133 degrees of freedom
## Multiple R-squared: 0.0007211, Adjusted R-squared: -0.0001609
## F-statistic: 0.8176 on 1 and 1133 DF, p-value: 0.3661
##
##
## Response w3.residencec_myownplace :
##
## Call:
## lm(formula = w3.residencec_myownplace ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4952 -0.4924 -0.4662 0.5075 0.5338
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.04322 0.07098 -0.609
## des2$variables$time[des2$variables$trans == 1] 0.02624 0.03824 0.686
## Pr(>|t|)
## (Intercept) 0.543
## des2$variables$time[des2$variables$trans == 1] 0.493
##
## Residual standard error: 0.5003 on 1133 degrees of freedom
## Multiple R-squared: 0.0004155, Adjusted R-squared: -0.0004667
## F-statistic: 0.471 on 1 and 1133 DF, p-value: 0.4927
##
##
## Response w3.residenced_group.qrts :
##
## Call:
## lm(formula = w3.residenced_group.qrts ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.04764 -0.04764 -0.04764 -0.04728 0.96185
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.01670 0.02969 -0.563
## des2$variables$time[des2$variables$trans == 1] 0.00948 0.01599 0.593
## Pr(>|t|)
## (Intercept) 0.574
## des2$variables$time[des2$variables$trans == 1] 0.553
##
## Residual standard error: 0.2092 on 1133 degrees of freedom
## Multiple R-squared: 0.00031, Adjusted R-squared: -0.0005723
## F-statistic: 0.3514 on 1 and 1133 DF, p-value: 0.5535
##
##
## Response w3.residencee_homeless :
##
## Call:
## lm(formula = w3.residencee_homeless ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.00217 -0.00217 -0.00217 -0.00213 0.99787
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -0.003141 0.005954
## des2$variables$time[des2$variables$trans == 1] 0.002163 0.003208
## t value Pr(>|t|)
## (Intercept) -0.528 0.598
## des2$variables$time[des2$variables$trans == 1] 0.674 0.500
##
## Residual standard error: 0.04197 on 1133 degrees of freedom
## Multiple R-squared: 0.0004011, Adjusted R-squared: -0.0004812
## F-statistic: 0.4546 on 1 and 1133 DF, p-value: 0.5003
##
##
## Response w3.residencef_other :
##
## Call:
## lm(formula = w3.residencef_other ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.01441 -0.00879 -0.00879 -0.00879 0.99198
##
## Coefficients:
## Estimate Std. Error
## (Intercept) 0.010246 0.013912
## des2$variables$time[des2$variables$trans == 1] -0.005620 0.007495
## t value Pr(>|t|)
## (Intercept) 0.736 0.462
## des2$variables$time[des2$variables$trans == 1] -0.750 0.454
##
## Residual standard error: 0.09806 on 1133 degrees of freedom
## Multiple R-squared: 0.0004959, Adjusted R-squared: -0.0003863
## F-statistic: 0.5621 on 1 and 1133 DF, p-value: 0.4536
#schoenfeld residuals for interaction model
schoenresid2<-resid(fit.interact1,type = "schoenfeld")
fit.sr2<-lm(schoenresid2~des2$variables$time[des2$variables$trans==1])
summary(fit.sr2)
## Response sexb_female :
##
## Call:
## lm(formula = sexb_female ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5794 -0.5377 0.4244 0.4623 0.4623
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.12468 0.07072 1.763
## des2$variables$time[des2$variables$trans == 1] -0.03790 0.03810 -0.995
## Pr(>|t|)
## (Intercept) 0.0782 .
## des2$variables$time[des2$variables$trans == 1] 0.3201
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4985 on 1133 degrees of freedom
## Multiple R-squared: 0.0008724, Adjusted R-squared: -9.396e-06
## F-statistic: 0.9893 on 1 and 1133 DF, p-value: 0.3201
##
##
## Response sexorientb_bisexual :
##
## Call:
## lm(formula = sexorientb_bisexual ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.02875 -0.02796 -0.02796 -0.02796 0.97632
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -0.007356 0.023144
## des2$variables$time[des2$variables$trans == 1] 0.004281 0.012469
## t value Pr(>|t|)
## (Intercept) -0.318 0.751
## des2$variables$time[des2$variables$trans == 1] 0.343 0.731
##
## Residual standard error: 0.1631 on 1133 degrees of freedom
## Multiple R-squared: 0.000104, Adjusted R-squared: -0.0007785
## F-statistic: 0.1179 on 1 and 1133 DF, p-value: 0.7314
##
##
## Response sexorientc_LGB :
##
## Call:
## lm(formula = sexorientc_LGB ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.02326 -0.02257 -0.02257 -0.02257 0.99535
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.03210 0.01955 -1.642
## des2$variables$time[des2$variables$trans == 1] 0.01793 0.01054 1.701
## Pr(>|t|)
## (Intercept) 0.1009
## des2$variables$time[des2$variables$trans == 1] 0.0891 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1378 on 1133 degrees of freedom
## Multiple R-squared: 0.002549, Adjusted R-squared: 0.001668
## F-statistic: 2.895 on 1 and 1133 DF, p-value: 0.08914
##
##
## Response racethnic_newb_black :
##
## Call:
## lm(formula = racethnic_newb_black ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2409 -0.2243 -0.2210 -0.2210 0.7790
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.07200 0.05926 1.215
## des2$variables$time[des2$variables$trans == 1] -0.01655 0.03193 -0.518
## Pr(>|t|)
## (Intercept) 0.225
## des2$variables$time[des2$variables$trans == 1] 0.604
##
## Residual standard error: 0.4177 on 1133 degrees of freedom
## Multiple R-squared: 0.000237, Adjusted R-squared: -0.0006454
## F-statistic: 0.2686 on 1 and 1133 DF, p-value: 0.6044
##
##
## Response racethnic_newc_hispanic :
##
## Call:
## lm(formula = racethnic_newc_hispanic ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.10963 -0.08335 -0.08322 -0.08322 0.91678
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.06238 0.04022 1.551
## des2$variables$time[des2$variables$trans == 1] -0.02628 0.02167 -1.213
## Pr(>|t|)
## (Intercept) 0.121
## des2$variables$time[des2$variables$trans == 1] 0.225
##
## Residual standard error: 0.2835 on 1133 degrees of freedom
## Multiple R-squared: 0.001297, Adjusted R-squared: 0.0004151
## F-statistic: 1.471 on 1 and 1133 DF, p-value: 0.2255
##
##
## Response racethnic_newother :
##
## Call:
## lm(formula = racethnic_newother ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.06671 -0.06383 -0.06383 -0.06383 0.93642
##
## Coefficients:
## Estimate Std. Error
## (Intercept) 0.027408 0.034834
## des2$variables$time[des2$variables$trans == 1] -0.002877 0.018768
## t value Pr(>|t|)
## (Intercept) 0.787 0.432
## des2$variables$time[des2$variables$trans == 1] -0.153 0.878
##
## Residual standard error: 0.2455 on 1133 degrees of freedom
## Multiple R-squared: 2.074e-05, Adjusted R-squared: -0.0008619
## F-statistic: 0.0235 on 1 and 1133 DF, p-value: 0.8782
##
##
## Response physical.limitsb_limited :
##
## Call:
## lm(formula = physical.limitsb_limited ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.10061 -0.10061 -0.10061 -0.07149 0.92888
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.05365 0.04164 -1.289
## des2$variables$time[des2$variables$trans == 1] 0.02912 0.02243 1.298
## Pr(>|t|)
## (Intercept) 0.198
## des2$variables$time[des2$variables$trans == 1] 0.195
##
## Residual standard error: 0.2935 on 1133 degrees of freedom
## Multiple R-squared: 0.001485, Adjusted R-squared: 0.0006037
## F-statistic: 1.685 on 1 and 1133 DF, p-value: 0.1945
##
##
## Response UScitizenb_yes :
##
## Call:
## lm(formula = UScitizenb_yes ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.94929 0.05071 0.05071 0.05125 0.05284
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -0.013729 0.031271
## des2$variables$time[des2$variables$trans == 1] 0.001582 0.016848
## t value Pr(>|t|)
## (Intercept) -0.439 0.661
## des2$variables$time[des2$variables$trans == 1] 0.094 0.925
##
## Residual standard error: 0.2204 on 1133 degrees of freedom
## Multiple R-squared: 7.786e-06, Adjusted R-squared: -0.0008748
## F-statistic: 0.008822 on 1 and 1133 DF, p-value: 0.9252
##
##
## Response educb_highschool_grad :
##
## Call:
## lm(formula = educb_highschool_grad ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6131 -0.6131 0.3869 0.3869 0.4149
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.06596 0.06931 -0.952
## des2$variables$time[des2$variables$trans == 1] 0.02728 0.03735 0.730
## Pr(>|t|)
## (Intercept) 0.342
## des2$variables$time[des2$variables$trans == 1] 0.465
##
## Residual standard error: 0.4886 on 1133 degrees of freedom
## Multiple R-squared: 0.0004706, Adjusted R-squared: -0.0004116
## F-statistic: 0.5335 on 1 and 1133 DF, p-value: 0.4653
##
##
## Response educc_college_bach :
##
## Call:
## lm(formula = educc_college_bach ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1851 -0.1851 -0.1851 -0.1764 0.8247
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -0.001882 0.054930
## des2$variables$time[des2$variables$trans == 1] 0.008697 0.029595
## t value Pr(>|t|)
## (Intercept) -0.034 0.973
## des2$variables$time[des2$variables$trans == 1] 0.294 0.769
##
## Residual standard error: 0.3872 on 1133 degrees of freedom
## Multiple R-squared: 7.622e-05, Adjusted R-squared: -0.0008063
## F-statistic: 0.08636 on 1 and 1133 DF, p-value: 0.7689
##
##
## Response educd_college+ :
##
## Call:
## lm(formula = `educd_college+` ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1239 -0.1103 -0.1103 -0.1101 0.8899
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.03909 0.04491 0.870
## des2$variables$time[des2$variables$trans == 1] -0.01353 0.02420 -0.559
## Pr(>|t|)
## (Intercept) 0.384
## des2$variables$time[des2$variables$trans == 1] 0.576
##
## Residual standard error: 0.3165 on 1133 degrees of freedom
## Multiple R-squared: 0.000276, Adjusted R-squared: -0.0006063
## F-statistic: 0.3128 on 1 and 1133 DF, p-value: 0.5761
##
##
## Response W4.marriedb_married_once :
##
## Call:
## lm(formula = W4.marriedb_married_once ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4716 -0.4700 -0.4235 0.5300 0.5765
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.06737 0.07075 -0.952
## des2$variables$time[des2$variables$trans == 1] 0.04642 0.03812 1.218
## Pr(>|t|)
## (Intercept) 0.341
## des2$variables$time[des2$variables$trans == 1] 0.224
##
## Residual standard error: 0.4987 on 1133 degrees of freedom
## Multiple R-squared: 0.001307, Adjusted R-squared: 0.0004259
## F-statistic: 1.483 on 1 and 1133 DF, p-value: 0.2235
##
##
## Response W4.marriedc_married_twice+ :
##
## Call:
## lm(formula = `W4.marriedc_married_twice+` ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.05276 -0.04253 -0.04208 -0.04208 0.95792
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.01242 0.02913 0.426
## des2$variables$time[des2$variables$trans == 1] -0.01023 0.01570 -0.652
## Pr(>|t|)
## (Intercept) 0.670
## des2$variables$time[des2$variables$trans == 1] 0.515
##
## Residual standard error: 0.2054 on 1133 degrees of freedom
## Multiple R-squared: 0.0003747, Adjusted R-squared: -0.0005076
## F-statistic: 0.4247 on 1 and 1133 DF, p-value: 0.5148
##
##
## Response incomeW4b_$25k>$50k :
##
## Call:
## lm(formula = `incomeW4b_$25k>$50k` ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3333 -0.2746 -0.2746 0.6666 0.7255
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.09548 0.06405 1.491
## des2$variables$time[des2$variables$trans == 1] -0.05874 0.03451 -1.702
## Pr(>|t|)
## (Intercept) 0.136
## des2$variables$time[des2$variables$trans == 1] 0.089 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4515 on 1133 degrees of freedom
## Multiple R-squared: 0.00255, Adjusted R-squared: 0.00167
## F-statistic: 2.897 on 1 and 1133 DF, p-value: 0.08902
##
##
## Response incomeW4c_$50k>$100k :
##
## Call:
## lm(formula = `incomeW4c_$50k>$100k` ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3788 -0.3788 -0.3766 0.6212 0.6876
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.10386 0.06833 -1.520
## des2$variables$time[des2$variables$trans == 1] 0.06414 0.03681 1.742
## Pr(>|t|)
## (Intercept) 0.1288
## des2$variables$time[des2$variables$trans == 1] 0.0817 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4816 on 1133 degrees of freedom
## Multiple R-squared: 0.002672, Adjusted R-squared: 0.001792
## F-statistic: 3.036 on 1 and 1133 DF, p-value: 0.08171
##
##
## Response incomeW4e_$100k+ :
##
## Call:
## lm(formula = `incomeW4e_$100k+` ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.1572 -0.1503 -0.1503 -0.1500 0.8500
##
## Coefficients:
## Estimate Std. Error
## (Intercept) 0.028837 0.050916
## des2$variables$time[des2$variables$trans == 1] -0.006865 0.027432
## t value Pr(>|t|)
## (Intercept) 0.566 0.571
## des2$variables$time[des2$variables$trans == 1] -0.250 0.802
##
## Residual standard error: 0.3589 on 1133 degrees of freedom
## Multiple R-squared: 5.527e-05, Adjusted R-squared: -0.0008273
## F-statistic: 0.06262 on 1 and 1133 DF, p-value: 0.8024
##
##
## Response w3.residenceb_withsomeone :
##
## Call:
## lm(formula = w3.residenceb_withsomeone ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.07676 -0.06002 -0.05933 -0.05933 0.94067
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.03248 0.03437 0.945
## des2$variables$time[des2$variables$trans == 1] -0.01675 0.01852 -0.904
## Pr(>|t|)
## (Intercept) 0.345
## des2$variables$time[des2$variables$trans == 1] 0.366
##
## Residual standard error: 0.2423 on 1133 degrees of freedom
## Multiple R-squared: 0.0007211, Adjusted R-squared: -0.0001609
## F-statistic: 0.8176 on 1 and 1133 DF, p-value: 0.3661
##
##
## Response w3.residencec_myownplace :
##
## Call:
## lm(formula = w3.residencec_myownplace ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4952 -0.4924 -0.4662 0.5075 0.5338
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.04322 0.07098 -0.609
## des2$variables$time[des2$variables$trans == 1] 0.02624 0.03824 0.686
## Pr(>|t|)
## (Intercept) 0.543
## des2$variables$time[des2$variables$trans == 1] 0.493
##
## Residual standard error: 0.5003 on 1133 degrees of freedom
## Multiple R-squared: 0.0004155, Adjusted R-squared: -0.0004668
## F-statistic: 0.4709 on 1 and 1133 DF, p-value: 0.4927
##
##
## Response w3.residenced_group.qrts :
##
## Call:
## lm(formula = w3.residenced_group.qrts ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.04764 -0.04764 -0.04764 -0.04728 0.96184
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.01670 0.02969 -0.563
## des2$variables$time[des2$variables$trans == 1] 0.00948 0.01599 0.593
## Pr(>|t|)
## (Intercept) 0.574
## des2$variables$time[des2$variables$trans == 1] 0.553
##
## Residual standard error: 0.2092 on 1133 degrees of freedom
## Multiple R-squared: 0.00031, Adjusted R-squared: -0.0005723
## F-statistic: 0.3514 on 1 and 1133 DF, p-value: 0.5535
##
##
## Response w3.residencee_homeless :
##
## Call:
## lm(formula = w3.residencee_homeless ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.00217 -0.00217 -0.00217 -0.00213 0.99787
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -0.003141 0.005954
## des2$variables$time[des2$variables$trans == 1] 0.002163 0.003208
## t value Pr(>|t|)
## (Intercept) -0.528 0.598
## des2$variables$time[des2$variables$trans == 1] 0.674 0.500
##
## Residual standard error: 0.04197 on 1133 degrees of freedom
## Multiple R-squared: 0.0004011, Adjusted R-squared: -0.0004812
## F-statistic: 0.4546 on 1 and 1133 DF, p-value: 0.5003
##
##
## Response w3.residencef_other :
##
## Call:
## lm(formula = w3.residencef_other ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.01442 -0.00880 -0.00880 -0.00880 0.99198
##
## Coefficients:
## Estimate Std. Error
## (Intercept) 0.010245 0.013912
## des2$variables$time[des2$variables$trans == 1] -0.005620 0.007496
## t value Pr(>|t|)
## (Intercept) 0.736 0.462
## des2$variables$time[des2$variables$trans == 1] -0.750 0.454
##
## Residual standard error: 0.09806 on 1133 degrees of freedom
## Multiple R-squared: 0.0004959, Adjusted R-squared: -0.0003863
## F-statistic: 0.5621 on 1 and 1133 DF, p-value: 0.4536
##
##
## Response sexb_female:sexorientb_bisexual :
##
## Call:
## lm(formula = `sexb_female:sexorientb_bisexual` ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.02658 -0.02580 -0.02580 -0.02580 0.97632
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -0.003547 0.022406
## des2$variables$time[des2$variables$trans == 1] 0.002119 0.012072
## t value Pr(>|t|)
## (Intercept) -0.158 0.874
## des2$variables$time[des2$variables$trans == 1] 0.176 0.861
##
## Residual standard error: 0.1579 on 1133 degrees of freedom
## Multiple R-squared: 2.719e-05, Adjusted R-squared: -0.0008554
## F-statistic: 0.0308 on 1 and 1133 DF, p-value: 0.8607
##
##
## Response sexb_female:sexorientc_LGB :
##
## Call:
## lm(formula = `sexb_female:sexorientc_LGB` ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.00893 -0.00858 -0.00858 -0.00858 0.99142
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -0.016366 0.011870
## des2$variables$time[des2$variables$trans == 1] 0.008641 0.006395
## t value Pr(>|t|)
## (Intercept) -1.379 0.168
## des2$variables$time[des2$variables$trans == 1] 1.351 0.177
##
## Residual standard error: 0.08367 on 1133 degrees of freedom
## Multiple R-squared: 0.001609, Adjusted R-squared: 0.0007274
## F-statistic: 1.825 on 1 and 1133 DF, p-value: 0.1769
#Grambsch and Therneau
fit.test<-cox.zph(fit1)
fit.test
## rho chisq p
## sexb_female 0.18530 76.845 1.85e-18
## sexorientb_bisexual 0.07373 12.885 3.31e-04
## sexorientc_LGB 0.00758 0.108 7.43e-01
## racethnic_newb_black 0.08895 19.511 1.00e-05
## racethnic_newc_hispanic -0.06905 11.631 6.48e-04
## racethnic_newother -0.03985 5.380 2.04e-02
## physical.limitsb_limited -0.05023 5.476 1.93e-02
## UScitizenb_yes -0.09771 31.262 2.25e-08
## educb_highschool_grad -0.01390 0.548 4.59e-01
## educc_college_bach 0.03112 2.535 1.11e-01
## educd_college+ 0.03448 2.839 9.20e-02
## W4.marriedb_married_once 0.11873 36.956 1.21e-09
## W4.marriedc_married_twice+ 0.03974 2.678 1.02e-01
## incomeW4b_$25k>$50k 0.02098 0.919 3.38e-01
## incomeW4c_$50k>$100k 0.04379 3.741 5.31e-02
## incomeW4e_$100k+ 0.05238 7.019 8.07e-03
## w3.residenceb_withsomeone 0.05985 7.778 5.29e-03
## w3.residencec_myownplace 0.08362 12.183 4.82e-04
## w3.residenced_group.qrts 0.04495 5.430 1.98e-02
## w3.residencee_homeless -0.00891 0.196 6.58e-01
## w3.residencef_other -0.08686 12.246 4.66e-04
## GLOBAL NA 206.222 2.15e-32
#Martingale residuals
res.mar<-resid(fit1,type="martingale")
scatter.smooth(des2$variables$sexorient,res.mar,degree=2,span=1,ylab="Martingale Residual",col=1,cex=.5,lpars=list(col="red",lwd=3))
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
title(main="martingale residuals for sexual orientation")
###b If you find non-proportional hazards, use an appropriate method to fit an extended Cox model that addresses the non-proportionality
#I am going to stratify by the variables that showed significance in schoenfeld residuals for correlation, however, when I made an interaction between the sex and sexual orientation variables (above) the significance for correlation goes away in the schoenfeld residuals. I don't know if I should use a stratified model or the model with an interaction.
fit.stratify<-svycoxph(Surv(time=time,event=trans)~sex+sexorient+strata(racethnic_new)+physical.limits+strata(UScitizen)+educ+W4.married+strata(incomeW4)+w3.residence,design=des2)
summary(fit.stratify)
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (132) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = adlong, nest = T)
## Call:
## svycoxph(formula = Surv(time = time, event = trans) ~ sex + sexorient +
## strata(racethnic_new) + physical.limits + strata(UScitizen) +
## educ + W4.married + strata(incomeW4) + w3.residence, design = des2)
##
## n= 17268, number of events= 1135
##
## coef exp(coef) se(coef) z Pr(>|z|)
## sexb_female -0.07059 0.93185 0.07706 -0.916 0.3597
## sexorientb_bisexual 0.52940 1.69792 0.22186 2.386 0.0170 *
## sexorientc_LGB 0.33020 1.39125 0.24575 1.344 0.1791
## physical.limitsb_limited 0.07396 1.07676 0.11932 0.620 0.5354
## educb_highschool_grad -0.16139 0.85096 0.16067 -1.004 0.3152
## educc_college_bach -0.35813 0.69898 0.18471 -1.939 0.0525 .
## educd_college+ -0.35611 0.70039 0.19621 -1.815 0.0695 .
## W4.marriedb_married_once 0.07580 1.07874 0.08697 0.872 0.3834
## W4.marriedc_married_twice+ 0.34932 1.41810 0.17332 2.015 0.0439 *
## w3.residenceb_withsomeone 0.11618 1.12319 0.15158 0.766 0.4434
## w3.residencec_myownplace 0.05547 1.05704 0.07298 0.760 0.4472
## w3.residenced_group.qrts 0.02059 1.02080 0.19971 0.103 0.9179
## w3.residencee_homeless 0.47307 1.60492 1.00698 0.470 0.6385
## w3.residencef_other 0.37368 1.45307 0.31907 1.171 0.2415
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## sexb_female 0.9318 1.0731 0.8012 1.084
## sexorientb_bisexual 1.6979 0.5890 1.0992 2.623
## sexorientc_LGB 1.3913 0.7188 0.8595 2.252
## physical.limitsb_limited 1.0768 0.9287 0.8522 1.360
## educb_highschool_grad 0.8510 1.1751 0.6211 1.166
## educc_college_bach 0.6990 1.4307 0.4867 1.004
## educd_college+ 0.7004 1.4278 0.4768 1.029
## W4.marriedb_married_once 1.0787 0.9270 0.9097 1.279
## W4.marriedc_married_twice+ 1.4181 0.7052 1.0097 1.992
## w3.residenceb_withsomeone 1.1232 0.8903 0.8345 1.512
## w3.residencec_myownplace 1.0570 0.9460 0.9162 1.220
## w3.residenced_group.qrts 1.0208 0.9796 0.6902 1.510
## w3.residencee_homeless 1.6049 0.6231 0.2230 11.550
## w3.residencef_other 1.4531 0.6882 0.7775 2.716
##
## Concordance= 0.54 (se = 0.016 )
## Likelihood ratio test= NA on 14 df, p=NA
## Wald test = 39.94 on 14 df, p=3e-04
## Score (logrank) test = NA on 14 df, p=NA
#Schoenfeld residuals for stratified model
schoenresid3<-resid(fit.stratify,type = "schoenfeld")
fit.sr3<-lm(schoenresid3~des2$variables$time[des2$variables$trans==1])
summary(fit.sr3)
## Response sexb_female :
##
## Call:
## lm(formula = sexb_female ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6676 -0.5495 0.3507 0.4505 0.7873
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.13693 0.07037 -1.946
## des2$variables$time[des2$variables$trans == 1] 0.10780 0.03791 2.843
## Pr(>|t|)
## (Intercept) 0.05193 .
## des2$variables$time[des2$variables$trans == 1] 0.00454 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.496 on 1133 degrees of freedom
## Multiple R-squared: 0.007085, Adjusted R-squared: 0.006209
## F-statistic: 8.085 on 1 and 1133 DF, p-value: 0.004544
##
##
## Response sexorientb_bisexual :
##
## Call:
## lm(formula = sexorientb_bisexual ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.06495 -0.04640 -0.02708 -0.01653 0.99880
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -0.004648 0.023248
## des2$variables$time[des2$variables$trans == 1] 0.003987 0.012526
## t value Pr(>|t|)
## (Intercept) -0.200 0.842
## des2$variables$time[des2$variables$trans == 1] 0.318 0.750
##
## Residual standard error: 0.1639 on 1133 degrees of freedom
## Multiple R-squared: 8.943e-05, Adjusted R-squared: -0.0007931
## F-statistic: 0.1013 on 1 and 1133 DF, p-value: 0.7503
##
##
## Response sexorientc_LGB :
##
## Call:
## lm(formula = sexorientc_LGB ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.24413 -0.02206 -0.01728 -0.01341 0.99238
##
## Coefficients:
## Estimate Std. Error
## (Intercept) 0.009963 0.019620
## des2$variables$time[des2$variables$trans == 1] -0.005353 0.010571
## t value Pr(>|t|)
## (Intercept) 0.508 0.612
## des2$variables$time[des2$variables$trans == 1] -0.506 0.613
##
## Residual standard error: 0.1383 on 1133 degrees of freedom
## Multiple R-squared: 0.0002263, Adjusted R-squared: -0.0006561
## F-statistic: 0.2565 on 1 and 1133 DF, p-value: 0.6126
##
##
## Response physical.limitsb_limited :
##
## Call:
## lm(formula = physical.limitsb_limited ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.21900 -0.11093 -0.08409 -0.04877 0.97625
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.03138 0.04142 -0.758
## des2$variables$time[des2$variables$trans == 1] 0.01826 0.02231 0.818
## Pr(>|t|)
## (Intercept) 0.449
## des2$variables$time[des2$variables$trans == 1] 0.413
##
## Residual standard error: 0.2919 on 1133 degrees of freedom
## Multiple R-squared: 0.0005909, Adjusted R-squared: -0.0002912
## F-statistic: 0.6699 on 1 and 1133 DF, p-value: 0.4133
##
##
## Response educb_highschool_grad :
##
## Call:
## lm(formula = educb_highschool_grad ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7922 -0.6041 0.3218 0.3896 0.6653
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -0.031023 0.068394
## des2$variables$time[des2$variables$trans == 1] 0.009211 0.036849
## t value Pr(>|t|)
## (Intercept) -0.454 0.650
## des2$variables$time[des2$variables$trans == 1] 0.250 0.803
##
## Residual standard error: 0.4821 on 1133 degrees of freedom
## Multiple R-squared: 5.515e-05, Adjusted R-squared: -0.0008274
## F-statistic: 0.06249 on 1 and 1133 DF, p-value: 0.8027
##
##
## Response educc_college_bach :
##
## Call:
## lm(formula = educc_college_bach ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.44142 -0.21257 -0.13907 -0.06495 0.93505
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.02097 0.05349 -0.392
## des2$variables$time[des2$variables$trans == 1] 0.01748 0.02882 0.607
## Pr(>|t|)
## (Intercept) 0.695
## des2$variables$time[des2$variables$trans == 1] 0.544
##
## Residual standard error: 0.377 on 1133 degrees of freedom
## Multiple R-squared: 0.0003246, Adjusted R-squared: -0.0005577
## F-statistic: 0.3679 on 1 and 1133 DF, p-value: 0.5443
##
##
## Response educd_college+ :
##
## Call:
## lm(formula = `educd_college+` ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.38356 -0.12324 -0.09504 -0.08042 0.96208
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.02175 0.04415 0.493
## des2$variables$time[des2$variables$trans == 1] -0.00515 0.02379 -0.216
## Pr(>|t|)
## (Intercept) 0.622
## des2$variables$time[des2$variables$trans == 1] 0.829
##
## Residual standard error: 0.3112 on 1133 degrees of freedom
## Multiple R-squared: 4.137e-05, Adjusted R-squared: -0.0008412
## F-statistic: 0.04687 on 1 and 1133 DF, p-value: 0.8286
##
##
## Response W4.marriedb_married_once :
##
## Call:
## lm(formula = W4.marriedb_married_once ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7206 -0.4708 -0.2696 0.4906 0.7988
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.10187 0.06877 -1.481
## des2$variables$time[des2$variables$trans == 1] 0.06839 0.03705 1.846
## Pr(>|t|)
## (Intercept) 0.1388
## des2$variables$time[des2$variables$trans == 1] 0.0652 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4847 on 1133 degrees of freedom
## Multiple R-squared: 0.002998, Adjusted R-squared: 0.002118
## F-statistic: 3.407 on 1 and 1133 DF, p-value: 0.06518
##
##
## Response W4.marriedc_married_twice+ :
##
## Call:
## lm(formula = `W4.marriedc_married_twice+` ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.11501 -0.05083 -0.04792 -0.02608 1.00647
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.03504 0.02899 1.209
## des2$variables$time[des2$variables$trans == 1] -0.02169 0.01562 -1.389
## Pr(>|t|)
## (Intercept) 0.227
## des2$variables$time[des2$variables$trans == 1] 0.165
##
## Residual standard error: 0.2044 on 1133 degrees of freedom
## Multiple R-squared: 0.001699, Adjusted R-squared: 0.0008183
## F-statistic: 1.929 on 1 and 1133 DF, p-value: 0.1652
##
##
## Response w3.residenceb_withsomeone :
##
## Call:
## lm(formula = w3.residenceb_withsomeone ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.26637 -0.06376 -0.05107 -0.04789 0.97224
##
## Coefficients:
## Estimate Std. Error
## (Intercept) 0.0021786 0.0341449
## des2$variables$time[des2$variables$trans == 1] -0.0008666 0.0183965
## t value Pr(>|t|)
## (Intercept) 0.064 0.949
## des2$variables$time[des2$variables$trans == 1] -0.047 0.962
##
## Residual standard error: 0.2407 on 1133 degrees of freedom
## Multiple R-squared: 1.959e-06, Adjusted R-squared: -0.0008807
## F-statistic: 0.002219 on 1 and 1133 DF, p-value: 0.9624
##
##
## Response w3.residencec_myownplace :
##
## Call:
## lm(formula = w3.residencec_myownplace ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7115 -0.4990 -0.2582 0.4817 0.8139
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) 0.15019 0.06999 2.146
## des2$variables$time[des2$variables$trans == 1] -0.07440 0.03771 -1.973
## Pr(>|t|)
## (Intercept) 0.0321 *
## des2$variables$time[des2$variables$trans == 1] 0.0487 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4933 on 1133 degrees of freedom
## Multiple R-squared: 0.003424, Adjusted R-squared: 0.002544
## F-statistic: 3.892 on 1 and 1133 DF, p-value: 0.04875
##
##
## Response w3.residenced_group.qrts :
##
## Call:
## lm(formula = w3.residenced_group.qrts ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.12760 -0.05471 -0.05220 -0.02861 0.98965
##
## Coefficients:
## Estimate Std. Error t value
## (Intercept) -0.04241 0.02952 -1.437
## des2$variables$time[des2$variables$trans == 1] 0.02376 0.01590 1.494
## Pr(>|t|)
## (Intercept) 0.151
## des2$variables$time[des2$variables$trans == 1] 0.135
##
## Residual standard error: 0.2081 on 1133 degrees of freedom
## Multiple R-squared: 0.001966, Adjusted R-squared: 0.001085
## F-statistic: 2.232 on 1 and 1133 DF, p-value: 0.1355
##
##
## Response w3.residencee_homeless :
##
## Call:
## lm(formula = w3.residencee_homeless ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.01923 -0.00161 -0.00123 -0.00123 0.99839
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -0.002947 0.005926
## des2$variables$time[des2$variables$trans == 1] 0.002087 0.003193
## t value Pr(>|t|)
## (Intercept) -0.497 0.619
## des2$variables$time[des2$variables$trans == 1] 0.654 0.513
##
## Residual standard error: 0.04177 on 1133 degrees of freedom
## Multiple R-squared: 0.0003771, Adjusted R-squared: -0.0005052
## F-statistic: 0.4274 on 1 and 1133 DF, p-value: 0.5134
##
##
## Response w3.residencef_other :
##
## Call:
## lm(formula = w3.residencef_other ~ des2$variables$time[des2$variables$trans ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.08684 -0.01331 -0.00641 -0.00448 1.00011
##
## Coefficients:
## Estimate Std. Error
## (Intercept) 0.010764 0.013902
## des2$variables$time[des2$variables$trans == 1] -0.006026 0.007490
## t value Pr(>|t|)
## (Intercept) 0.774 0.439
## des2$variables$time[des2$variables$trans == 1] -0.805 0.421
##
## Residual standard error: 0.09799 on 1133 degrees of freedom
## Multiple R-squared: 0.000571, Adjusted R-squared: -0.0003111
## F-statistic: 0.6473 on 1 and 1133 DF, p-value: 0.4212
ggcoxdiagnostics(fit.stratify, type = , linear.predictions = TRUE)
ggcoxdiagnostics(fit1, type = , linear.predictions = TRUE)
ggcoxdiagnostics(fit.stratify, type = "dfbeta",
linear.predictions = FALSE, ggtheme = theme_bw())
ggcoxdiagnostics(fit1, type = "dfbeta",
linear.predictions = FALSE, ggtheme = theme_bw())
###E) Fit the discrete time hazard model to your outcome ###i. You must form a person-period data set
fit.0<-svyglm(trans~as.factor(age_enter)-1,design=des2,family="binomial")
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
summary(fit.0)
##
## Call:
## svyglm(formula = trans ~ as.factor(age_enter) - 1, design = des2,
## family = "binomial")
##
## Survey design:
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = adlong, nest = T)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## as.factor(age_enter)11 -12.30561 1.00000 -12.306 < 2e-16 ***
## as.factor(age_enter)12 -1.90808 1.08906 -1.752 0.0825 .
## as.factor(age_enter)13 -3.08545 0.22740 -13.568 < 2e-16 ***
## as.factor(age_enter)14 -3.62076 0.25864 -13.999 < 2e-16 ***
## as.factor(age_enter)15 -3.70566 0.22719 -16.311 < 2e-16 ***
## as.factor(age_enter)16 -3.67144 0.19859 -18.488 < 2e-16 ***
## as.factor(age_enter)17 -3.86690 0.24762 -15.616 < 2e-16 ***
## as.factor(age_enter)18 -3.78375 0.32896 -11.502 < 2e-16 ***
## as.factor(age_enter)19 -2.62466 0.20353 -12.895 < 2e-16 ***
## as.factor(age_enter)20 -2.17933 0.11651 -18.705 < 2e-16 ***
## as.factor(age_enter)21 -2.31696 0.11247 -20.601 < 2e-16 ***
## as.factor(age_enter)22 -2.19856 0.08852 -24.838 < 2e-16 ***
## as.factor(age_enter)23 -2.01187 0.11583 -17.369 < 2e-16 ***
## as.factor(age_enter)24 -2.01886 0.09287 -21.739 < 2e-16 ***
## as.factor(age_enter)25 -2.02378 0.21528 -9.401 7.99e-16 ***
## as.factor(age_enter)26 -1.69980 0.41261 -4.120 7.30e-05 ***
## as.factor(age_enter)27 -2.10905 1.13202 -1.863 0.0651 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 0.9998443)
##
## Number of Fisher Scoring iterations: 10
#linear term for time
fit.1<-svyglm(trans~as.factor(age_enter),design=des2,family="binomial")
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
summary(fit.1)
##
## Call:
## svyglm(formula = trans ~ as.factor(age_enter), design = des2,
## family = "binomial")
##
## Survey design:
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = adlong, nest = T)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -12.3056 1.0000 -12.306 < 2e-16 ***
## as.factor(age_enter)12 10.3975 1.4684 7.081 1.34e-10 ***
## as.factor(age_enter)13 9.2202 1.0170 9.066 4.71e-15 ***
## as.factor(age_enter)14 8.6848 1.0270 8.457 1.16e-13 ***
## as.factor(age_enter)15 8.6000 1.0690 8.045 9.90e-13 ***
## as.factor(age_enter)16 8.6342 1.0176 8.485 1.00e-13 ***
## as.factor(age_enter)17 8.4387 1.0332 8.168 5.24e-13 ***
## as.factor(age_enter)18 8.5219 1.0510 8.108 7.14e-13 ***
## as.factor(age_enter)19 9.6809 1.0875 8.902 1.12e-14 ***
## as.factor(age_enter)20 10.1263 1.0124 10.003 < 2e-16 ***
## as.factor(age_enter)21 9.9887 0.9945 10.044 < 2e-16 ***
## as.factor(age_enter)22 10.1070 1.0006 10.101 < 2e-16 ***
## as.factor(age_enter)23 10.2937 1.0057 10.236 < 2e-16 ***
## as.factor(age_enter)24 10.2867 1.0057 10.228 < 2e-16 ***
## as.factor(age_enter)25 10.2818 1.0251 10.030 < 2e-16 ***
## as.factor(age_enter)26 10.6058 1.0750 9.866 < 2e-16 ***
## as.factor(age_enter)27 10.1966 1.5172 6.721 7.91e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 0.9998443)
##
## Number of Fisher Scoring iterations: 10
fit.00<-svyglm(trans~as.factor(age_enter)+sex+sexorient+racethnic_new+physical.limits+UScitizen+educ+W4.married+incomeW4+w3.residence,design=des2,family="binomial")
## Warning in eval(family$initialize): non-integer #successes in a binomial
## glm!
summary(fit.00)
##
## Call:
## svyglm(formula = trans ~ as.factor(age_enter) + sex + sexorient +
## racethnic_new + physical.limits + UScitizen + educ + W4.married +
## incomeW4 + w3.residence, design = des2, family = "binomial")
##
## Survey design:
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = adlong, nest = T)
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -12.32040 1.18612 -10.387 < 2e-16 ***
## as.factor(age_enter)12 10.60859 1.49041 7.118 2.46e-10 ***
## as.factor(age_enter)13 9.39091 1.09504 8.576 2.43e-13 ***
## as.factor(age_enter)14 8.82979 1.10645 7.980 4.21e-12 ***
## as.factor(age_enter)15 8.72190 1.14368 7.626 2.26e-11 ***
## as.factor(age_enter)16 8.77803 1.09822 7.993 3.96e-12 ***
## as.factor(age_enter)17 8.57060 1.11334 7.698 1.61e-11 ***
## as.factor(age_enter)18 8.61390 1.12966 7.625 2.27e-11 ***
## as.factor(age_enter)19 9.82784 1.15917 8.478 3.88e-13 ***
## as.factor(age_enter)20 10.28438 1.08908 9.443 3.73e-15 ***
## as.factor(age_enter)21 10.12111 1.06590 9.495 2.90e-15 ***
## as.factor(age_enter)22 10.24843 1.07800 9.507 2.74e-15 ***
## as.factor(age_enter)23 10.42946 1.08292 9.631 1.51e-15 ***
## as.factor(age_enter)24 10.41194 1.08518 9.595 1.80e-15 ***
## as.factor(age_enter)25 10.34807 1.10795 9.340 6.14e-15 ***
## as.factor(age_enter)26 10.51637 1.14151 9.213 1.13e-14 ***
## as.factor(age_enter)27 10.12187 1.58802 6.374 7.46e-09 ***
## sexb_female -0.06576 0.08206 -0.801 0.42501
## sexorientb_bisexual 0.57981 0.23868 2.429 0.01710 *
## sexorientc_LGB 0.28180 0.25746 1.095 0.27659
## racethnic_newb_black 0.28257 0.09413 3.002 0.00346 **
## racethnic_newc_hispanic 0.31305 0.14714 2.128 0.03608 *
## racethnic_newother 0.15701 0.22926 0.685 0.49517
## physical.limitsb_limited 0.07902 0.12778 0.618 0.53786
## UScitizenb_yes 0.15268 0.22745 0.671 0.50375
## educb_highschool_grad -0.16464 0.16453 -1.001 0.31964
## educc_college_bach -0.36842 0.18988 -1.940 0.05544 .
## educd_college+ -0.38494 0.20201 -1.906 0.05987 .
## W4.marriedb_married_once 0.06022 0.09197 0.655 0.51429
## W4.marriedc_married_twice+ 0.33341 0.18580 1.794 0.07606 .
## incomeW4b_$25k>$50k -0.18345 0.11190 -1.639 0.10459
## incomeW4c_$50k>$100k -0.28630 0.11313 -2.531 0.01310 *
## incomeW4e_$100k+ -0.19358 0.16091 -1.203 0.23206
## w3.residenceb_withsomeone 0.11143 0.16092 0.692 0.49042
## w3.residencec_myownplace 0.03904 0.07779 0.502 0.61697
## w3.residenced_group.qrts 0.02653 0.20937 0.127 0.89946
## w3.residencee_homeless 0.38636 1.14866 0.336 0.73737
## w3.residencef_other 0.47664 0.37962 1.256 0.21248
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 0.9787943)
##
## Number of Fisher Scoring iterations: 10
haz<-1/(1+exp(-coef(fit.0)))
time<-seq(11,27,1)
plot(haz~time,ylab="h(t)")
title(main="discrete time hazard")