#Trabajando con bupa
bupa<-read.csv("https://raw.githubusercontent.com/VictorGuevaraP/Mineria-de-datos-2019-2/master/bupa.txt", sep = ",")
library(Amelia)
## Loading required package: Rcpp
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.5, built: 2018-05-07)
## ## Copyright (C) 2005-2019 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
missing(bupa)
## [1] FALSE
Como primer paso decidí utilizar el paquete “Amelia” para poder identificar si existe missings en la data.
##PRUEBA DE CORRELACIONES INDIVIDUALES
cor(bupa)
## V1 V2 V3 V4 V5 V6
## V1 1.00000000 0.04410300 0.14769505 0.1877652 0.2223145 0.31267960
## V2 0.04410300 1.00000000 0.07620761 0.1460565 0.1331404 0.10079606
## V3 0.14769505 0.07620761 1.00000000 0.7396749 0.5034353 0.20684793
## V4 0.18776515 0.14605655 0.73967487 1.0000000 0.5276259 0.27958777
## V5 0.22231449 0.13314040 0.50343525 0.5276259 1.0000000 0.34122396
## V6 0.31267960 0.10079606 0.20684793 0.2795878 0.3412240 1.00000000
## V7 -0.09107012 -0.09805018 -0.03500879 0.1573558 0.1463925 -0.02204853
## V7
## V1 -0.09107012
## V2 -0.09805018
## V3 -0.03500879
## V4 0.15735580
## V5 0.14639252
## V6 -0.02204853
## V7 1.00000000
library(corrplot)
## corrplot 0.84 loaded
corrplot(cor(bupa))
Azul es correlacion positiva ambos aumentan Rojo es correlacion negativa una aumenta y otra disminuye
#Uso de la libreria PerformanceAnalytics
library(PerformanceAnalytics)
## Loading required package: xts
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Registered S3 method overwritten by 'xts':
## method from
## as.zoo.xts zoo
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
## legend
chart.Correlation(bupa)
Con esta libreria se busca visualizar la correlacion entre las variables
#Uso de libreria psych
library(psych)
cortest(cor(bupa))
## Warning in cortest(cor(bupa)): n not specified, 100 used
## Tests of correlation matrices
## Call:cortest(R1 = cor(bupa))
## Chi Square value 208.01 with df = 21 with probability < 9.6e-33
Se rechaza H0, por lo cual hay evidencia para saber que las correlaciones son distintas
##PRUEBA DE ESFERICIDAD DE BARLETT
library(rela)
cortest.bartlett(cor(bupa), n=345)
## $chisq
## [1] 544.8724
##
## $p.value
## [1] 6.004754e-102
##
## $df
## [1] 21
Determinante de la matriz Pvalue es 6.004 se rechaza Hp , lo cual significa que no existe correlacion entre las variables
##PRUEBA KMO
KMO(bupa)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = bupa)
## Overall MSA = 0.64
## MSA for each item =
## V1 V2 V3 V4 V5 V6 V7
## 0.70 0.53 0.59 0.63 0.81 0.73 0.23
Según el resultado se justifica la realizacion del PCA (ya que MSA>0.5)
#Grafico de sedimentación
scree(bupa)
Segun el gréfico de sedimentacion deberia tomarse tres componentes
#Analisis paralelo
fa.parallel(bupa, fa="pc")
## Parallel analysis suggests that the number of factors = NA and the number of components = 2
Usamos la funcion “fa.parallel” del paquete “psych”, dicha funcion nos ayudará a realziar gráficos de pantalla de datos o matrices de correlación en comparación con matrices aleatorias
#Asignamos una variable llamada componentes
componentes<-prcomp(bupa, scale=TRUE,center = TRUE)
componentes
## Standard deviations (1, .., p=7):
## [1] 1.5837765 1.0926330 1.0046350 0.9465752 0.8188865 0.7061828 0.4724823
##
## Rotation (n x k) = (7 x 7):
## PC1 PC2 PC3 PC4 PC5 PC6
## V1 0.26093155 0.4869910 0.49039467 -0.02430417 0.67017404 0.04830950
## V2 0.14769977 0.3252950 -0.66587263 -0.62523056 0.15949171 0.06888411
## V3 0.50668951 -0.1526510 -0.23040936 0.41245134 0.03558136 0.19739104
## V4 0.53762897 -0.2217274 -0.14693268 0.13167289 0.08655906 0.36430265
## V5 0.49239652 -0.1143955 0.03814116 -0.10572417 -0.07449247 -0.84970661
## V6 0.34359042 0.3470071 0.37146594 -0.27134023 -0.69137189 0.25772936
## V7 0.06173834 -0.6716080 0.31938586 -0.57986125 0.18200666 0.18115126
## PC7
## V1 0.04700907
## V2 0.08880155
## V3 0.67566973
## V4 -0.69473462
## V5 -0.06539520
## V6 0.07416000
## V7 0.20234232
Usamos la función “prcomp” la cual realiza un analisis de componentes principales en la matriz de datos dada y devuelve los resultados como un objeto
#Se realiza un resumen de la varaible componentes
summary(componentes)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 PC6 PC7
## Standard deviation 1.5838 1.0926 1.0046 0.9466 0.8189 0.70618 0.47248
## Proportion of Variance 0.3583 0.1706 0.1442 0.1280 0.0958 0.07124 0.03189
## Cumulative Proportion 0.3583 0.5289 0.6731 0.8011 0.8969 0.96811 1.00000
En este caso usaremos 4 variables para hacer el analisis, a pesar de que los graficos realizados anteriormente no cumplen con esta condición (nos basamos en la varianza de la data)
La Desviacion estandar = que tan lejos o cerca esta de la media
#Grafico de los componentes
plot(componentes)
Se realizó un gráfico para poder visualizar la data que contiene la variable componentes
#Grafico de componentes con aplicacion de escalado
biplot(componentes, scale=1)
Se usa la funcioón “biplot” para realizar un gráfico de la data, junto a ello se puede ver que la data se escaló a 1
#Extraemos los componentes
componentes_prin<-componentes$x
componentes_prin<-componentes_prin[,1:4]
head(componentes_prin)
## PC1 PC2 PC3 PC4
## [1,] -0.1390785 0.11105334 -2.3448572 0.5938918
## [2,] 0.2907050 -1.94038272 -0.9286607 0.7578934
## [3,] -0.8721346 -1.54263788 0.1152322 0.2507909
## [4,] -0.1580974 -0.70132800 -0.3506241 -0.4200923
## [5,] -1.1408941 -1.12133672 -0.3251554 -0.4683007
## [6,] -1.0901984 0.03114855 1.5875375 -0.1588787
Se asigna una nueva variable donde se asignan los datos de “componentes”, y en el cual solo se trabaja con 4 datos
#Exportamos los componentes
write.csv(componentes_prin, file = "componentes_clientes.csv")
getwd()
## [1] "C:/Users/HP-PC/Desktop"
#Visualizamos los componentes
componentes_prin
## PC1 PC2 PC3 PC4
## [1,] -0.139078519 0.1110533377 -2.344857197 0.593891769
## [2,] 0.290705050 -1.9403827160 -0.928660655 0.757893404
## [3,] -0.872134616 -1.5426378773 0.115232185 0.250790947
## [4,] -0.158097379 -0.7013279958 -0.350624109 -0.420092305
## [5,] -1.140894140 -1.1213367230 -0.325155359 -0.468300724
## [6,] -1.090198437 0.0311485470 1.587537520 -0.158878701
## [7,] -1.612463399 0.4396000189 -0.449884031 0.959132000
## [8,] -1.841668406 0.6467797535 -0.553614217 0.726001765
## [9,] -1.255115033 0.6597858732 0.212086981 1.296802232
## [10,] -1.324740147 0.5515859229 -0.248930519 1.158986808
## [11,] -1.366885730 0.2548515157 0.009578532 1.221890992
## [12,] -1.967072925 -0.2113132673 -1.070118320 0.912341920
## [13,] 0.437085004 0.0311524476 -1.001216480 1.932179260
## [14,] -1.259467244 0.3771708306 -1.294255204 0.566523580
## [15,] -0.683870253 1.2617814162 0.102512256 0.969140440
## [16,] -0.446928018 0.7170640844 -0.895453335 0.556431904
## [17,] -1.476523381 0.6333770379 -0.540950015 0.830921686
## [18,] -1.407048489 0.8535550954 -0.914372183 0.292094756
## [19,] -0.324419551 1.3628174597 -1.750407350 -0.678053516
## [20,] -0.179719706 1.7659819007 -1.873526520 -0.900102933
## [21,] -1.100689599 0.7659745550 -0.009028676 1.277312251
## [22,] -0.945357877 0.0800668644 1.306507384 2.587501512
## [23,] -0.949328465 0.3909872924 -0.342106598 1.221374091
## [24,] -0.914533852 1.3642845144 0.218485026 0.667916264
## [25,] 0.957455616 -0.4993700176 -2.011040940 0.910647790
## [26,] -1.209977916 1.0266561615 -0.271546096 0.651095914
## [27,] -1.402093775 0.3478706464 0.258467228 1.578055253
## [28,] -1.354045990 0.4194811856 -0.652476623 0.872463010
## [29,] -1.280616945 1.5596796206 -1.467279100 -0.563011913
## [30,] -1.359889055 -0.1927195764 0.049709273 1.920040380
## [31,] -1.338262878 0.4581660425 -1.359438623 0.525228486
## [32,] -0.456633883 0.3649928216 -0.123102888 1.335261234
## [33,] -0.582501748 1.0787632644 -0.579889431 0.633532853
## [34,] -0.528493053 0.8013538274 -1.806553190 -0.061536806
## [35,] -1.105903737 1.1061809216 0.066456804 0.874090134
## [36,] 5.914578444 -2.8057471295 -2.103711197 2.753178193
## [37,] -0.009063968 -1.9909335002 -0.383966289 0.820135743
## [38,] -2.249641776 -2.3092909123 0.080357432 0.518369767
## [39,] -0.604380724 -1.1383050547 -1.139264647 -0.814409090
## [40,] -0.792965043 -0.9737282135 0.207327180 -0.207756308
## [41,] 1.273132184 -1.7432200992 -2.158305506 -0.032342725
## [42,] 0.364344497 -1.3309666243 -0.271245964 -0.098062312
## [43,] -0.689368602 -0.2903659093 -1.198202671 -1.496757266
## [44,] -1.552174985 -0.6866217469 -0.748479141 -1.053051108
## [45,] -1.556926331 -1.1935568084 -0.249896030 -0.257547794
## [46,] -1.257738083 -1.0287295058 0.189814916 -0.159413494
## [47,] -1.497904062 -0.5214324921 0.941390239 -0.173909833
## [48,] 0.001806900 -0.7315537670 1.220233788 0.341243957
## [49,] -0.810883595 -0.5073863543 -0.063112076 -0.528721519
## [50,] -0.933154413 -2.1876746082 0.248514947 0.779899234
## [51,] -0.949958211 -0.7415669159 -0.198015458 -0.589790373
## [52,] -1.251402633 -1.3593089102 -0.325390021 -0.121092618
## [53,] 1.880390648 -1.5686172965 0.100426283 0.895108550
## [54,] -0.735015339 -0.6712154283 1.417517635 0.027064665
## [55,] -1.230509177 -1.3189045732 0.428293389 0.123066200
## [56,] -0.845216955 -1.4996274685 -0.448180803 -0.095500246
## [57,] -1.196135197 -1.1274738981 -1.031095813 -0.827055004
## [58,] -1.199690731 -1.2888225996 0.604740532 0.267569709
## [59,] -0.002776649 -0.2784313214 0.720742189 -0.256151228
## [60,] -0.696241339 -0.9115691462 0.245576062 -0.123182511
## [61,] -0.035618378 -1.5301590986 0.649479137 0.803191863
## [62,] -1.439495084 -0.4580094372 0.162594879 -0.742840573
## [63,] -2.214008457 -0.4029091553 1.105225878 -0.458492301
## [64,] -1.229744055 -0.8447549507 0.877878341 0.064803653
## [65,] -0.902970392 0.3512667848 -0.984524742 0.848600931
## [66,] -0.940084255 0.7248325702 -0.933301689 0.541013219
## [67,] -1.663984764 -0.5661537790 0.362642052 -0.760941653
## [68,] -0.995288265 -1.6324897626 0.160894564 0.317382447
## [69,] 0.267118242 0.7154336111 1.259703751 -0.641348382
## [70,] -1.138205512 -0.7017678631 0.429769078 -0.345248522
## [71,] -0.176368287 0.4897631380 -0.245977214 0.931650341
## [72,] -0.477995973 0.6659760813 -0.424974976 0.929091832
## [73,] -1.035651719 0.3920610828 -0.694020256 0.919730803
## [74,] -0.511894128 0.7739995592 -0.672747710 0.764671434
## [75,] -1.338300363 0.1262186276 -0.264705712 1.154214776
## [76,] -0.968114516 1.1113865523 -0.628038665 0.063617221
## [77,] 1.862355665 -1.2268181164 -1.052617329 -1.050364505
## [78,] -0.205374472 0.1222118790 0.778963840 -0.581618443
## [79,] -0.984019411 -0.6693469042 0.967848027 -0.260411047
## [80,] 0.078807063 -0.0052547813 0.375177687 -0.723256046
## [81,] 0.963324256 -0.1899244037 -0.912900548 -1.368822774
## [82,] -0.061434548 -1.2367391996 0.589539862 0.437806344
## [83,] 0.654463738 -0.3236637103 -1.135467987 -0.957574303
## [84,] -0.720764882 -0.2565164757 1.159926065 -0.243890627
## [85,] 3.291818635 -1.4984552408 0.892491094 -0.723010440
## [86,] -0.720764882 -0.2565164757 1.159926065 -0.243890627
## [87,] -0.384693658 -1.3873066626 0.642069190 0.513977789
## [88,] -0.724921574 -0.4247561022 0.613908073 -0.418686252
## [89,] -0.746343747 1.3512708588 -0.413101394 0.230877451
## [90,] -1.018452853 0.4634748466 -1.493520227 0.172193420
## [91,] -0.698128280 0.6134542163 -0.513949539 0.705952014
## [92,] -1.462517570 0.1749759450 0.069218193 1.291233533
## [93,] 1.060392399 1.4406831748 0.293233860 1.125394733
## [94,] -1.436844820 0.8396205156 -0.273427976 0.601433664
## [95,] 0.107251558 0.3184197343 -0.500297642 1.355925167
## [96,] -1.022657034 0.6475204916 0.430111687 1.134753363
## [97,] 0.282997729 -2.1059675920 -0.651928695 0.051992451
## [98,] 0.368758711 -0.3933089877 -0.352905134 -1.522045905
## [99,] -0.599508389 -0.6441218350 0.416605117 -0.457643900
## [100,] -0.066200474 -0.2796527802 0.255977819 -0.677821304
## [101,] -0.939565511 -1.1926127659 0.165286095 -0.196673044
## [102,] -0.366093139 -0.3449895941 1.103703985 -0.693445198
## [103,] -0.586805740 0.6918111712 -0.155050899 0.805480087
## [104,] -0.639006455 1.2842869519 -0.698388506 -0.060560990
## [105,] -0.687134714 1.2907906228 -1.341387128 -0.331537180
## [106,] -0.487726499 0.0918080044 0.779684703 1.872634327
## [107,] 0.056451985 1.1334102859 -0.653729428 0.434198456
## [108,] -0.354207123 1.8813319646 -1.550913980 -0.719005501
## [109,] -1.796056624 1.4787698222 0.370169286 0.340964282
## [110,] 0.143221704 -0.0133341783 -1.157635855 -1.912825615
## [111,] 1.008588103 -1.2692595625 -0.610980906 -0.430618852
## [112,] -0.313969527 -0.4688937350 -0.565919590 -1.095531879
## [113,] -0.770281995 -1.2216882233 1.050656239 0.372346087
## [114,] -0.350817075 -0.4668989900 -0.223770823 -0.944147845
## [115,] 3.343660823 -1.0141870992 -0.904719787 -1.384315646
## [116,] -1.557447275 -0.5681110714 0.318283764 -0.871604659
## [117,] -0.784929399 -0.6005337292 1.804823993 0.215192049
## [118,] -1.120880710 -0.9983095616 0.309463819 -0.438437089
## [119,] -0.772362067 0.0432205719 -0.245600362 -1.606831871
## [120,] -1.087002418 -0.2746284321 1.178384639 -0.482067441
## [121,] 1.601896039 -0.6033159039 1.102014989 0.487202113
## [122,] -0.709393619 -1.0867099232 -1.918845188 -1.748545850
## [123,] -0.363190994 0.9065889253 -1.774874598 -3.063939682
## [124,] -0.709900668 -0.2823775158 0.214927182 -1.095869224
## [125,] 0.166120071 -0.3603921039 -0.770203489 -1.292996955
## [126,] -1.195001692 -0.1676998912 0.764259030 -0.923061895
## [127,] 0.002658052 -0.1552907293 0.559782809 -0.863289511
## [128,] 0.703379466 -0.8684950863 0.986397739 -0.159882036
## [129,] -1.319562644 -1.4959504916 0.608758081 0.128612668
## [130,] -0.936516936 -0.0874270888 0.438967756 -1.013683263
## [131,] -0.608798986 1.3605445740 0.372853665 0.378569674
## [132,] -0.525767443 1.3773740759 0.489162915 0.647591488
## [133,] 2.092741541 -1.3680050242 -0.648927788 -0.519419941
## [134,] 5.038069982 -1.5403278379 0.972559253 1.936883455
## [135,] -1.092529311 -0.6275749731 0.728413461 -0.559635684
## [136,] -1.505851514 -0.8824376578 1.211401742 -0.028934316
## [137,] -0.822369055 -0.6037517609 0.532205836 -0.728118460
## [138,] -0.320406172 -0.2798233434 1.232707892 -0.366574992
## [139,] 0.899721807 -0.5618764273 0.580629676 -0.956490279
## [140,] -0.349200753 0.6734887544 2.026803668 -0.580233774
## [141,] -0.307688399 1.6163536563 -0.052673936 -0.246474473
## [142,] 0.009453415 1.5298487893 0.881144567 0.683000543
## [143,] -0.176403759 1.1026904032 0.272056552 0.668832279
## [144,] 0.182144751 1.1495193890 0.370295683 0.829127551
## [145,] -0.999041682 1.6683866795 1.501735000 0.679324314
## [146,] 0.246297190 1.1820289562 -0.315486865 0.299107816
## [147,] 1.605216358 1.3609647044 0.058279888 1.297625876
## [148,] 2.682788860 0.6875274116 0.114497282 1.550471362
## [149,] -0.353167691 1.2850815149 0.526294287 0.539039927
## [150,] -0.176403759 1.1026904032 0.272056552 0.668832279
## [151,] 2.061713247 -2.1827470849 -0.416352060 0.620910619
## [152,] 0.381162710 0.1546923885 0.365823708 -1.200276616
## [153,] -0.372488230 -0.2812185971 0.967255986 -0.789700429
## [154,] -1.427336043 -0.6807734154 1.881507390 -0.086634374
## [155,] 1.161072403 0.5332381038 2.075108311 -0.570143122
## [156,] 0.974899148 -0.0136699350 2.393923008 0.165772096
## [157,] 3.581349710 -1.2262484268 -0.513021506 0.605439432
## [158,] 1.341667562 -0.0337896071 -0.177686014 -0.742290703
## [159,] 1.482548304 0.2428043266 -0.382469964 -1.493601815
## [160,] -0.569215287 -0.0007267122 0.681836951 -1.076895721
## [161,] 0.782394132 0.9418545137 0.677221033 -1.865093337
## [162,] -0.248941648 -0.1965054935 1.709658033 -0.238575098
## [163,] -0.062523170 -0.4851524116 1.102199982 -0.448454860
## [164,] 0.700581281 -0.0827572589 0.481831818 -0.869705087
## [165,] -0.941008732 -0.4781085544 1.079026788 -0.457084945
## [166,] 0.141067015 -0.5739869117 0.679282573 -0.512877991
## [167,] 2.468565271 0.9144947006 -0.639007220 0.880717293
## [168,] 2.881480694 1.0855845810 -1.014211985 0.092275687
## [169,] 2.906074845 -0.4184865989 -0.162771943 -0.466333610
## [170,] 0.800153914 2.0583521919 0.912902583 0.133417883
## [171,] -0.119562306 1.2420666333 -1.565197556 -0.634373289
## [172,] 1.178556139 1.2852409530 1.634832733 1.290274288
## [173,] -0.306972030 1.2995394319 0.534929834 0.400800169
## [174,] -0.437746589 2.2489781502 -0.314860367 -0.797070792
## [175,] 3.289592138 0.2903328597 -0.468414474 1.378022614
## [176,] 0.800153914 2.0583521919 0.912902583 0.133417883
## [177,] 0.788975903 -0.0682462257 0.987144838 -1.021696938
## [178,] -0.301305515 0.2977026172 1.687498558 -0.786323875
## [179,] 5.524473008 -0.8644020693 -0.760282662 -0.704872411
## [180,] 0.280008410 -0.4184365408 1.585801228 -0.351871016
## [181,] 2.715469276 -0.9255347766 0.512692181 0.239517010
## [182,] 1.816222507 1.7206194430 -0.261421539 -0.930937412
## [183,] 2.992713941 1.0219240709 -0.604378146 1.303692980
## [184,] 0.044327116 -0.2988580582 0.778517461 -1.023496462
## [185,] 2.033258424 0.4276891968 2.221523639 -0.587885894
## [186,] 3.912577118 -0.2500886930 0.376241636 -0.512672500
## [187,] 3.079006603 0.6716386127 -0.293057492 -2.060211306
## [188,] 1.606957897 1.4191964406 1.234187459 -2.141796301
## [189,] 3.200710931 1.9866031666 0.861814599 -0.442726188
## [190,] 5.816373029 2.0848029360 0.837675186 -0.379748901
## [191,] -1.211712875 0.3668094378 -1.200152597 0.706798438
## [192,] -1.543280368 0.2269989895 -0.334886545 1.272656216
## [193,] -0.497850504 -1.0858324566 -1.840057570 -0.922896976
## [194,] -0.609752454 1.4723131920 -0.961487487 0.109175075
## [195,] -1.426261986 1.5481964915 0.632285111 0.804983950
## [196,] -0.864941946 1.1713593868 -0.943530349 0.290367857
## [197,] -1.964564589 -0.4849555015 -0.653831891 1.582711763
## [198,] -0.727609175 0.3725670980 -1.126242975 0.871231589
## [199,] -0.831137111 1.4248120900 -0.285152793 0.549543630
## [200,] -1.158180772 0.9408875745 -1.697647460 0.011277480
## [201,] -1.128142095 0.8357625480 -0.414233478 0.640140470
## [202,] -1.857602850 -0.2690955028 -0.761335334 1.372786794
## [203,] 0.499344345 1.0387081960 -2.001586359 -0.108642214
## [204,] -0.501164102 0.1321308790 -1.643818580 0.880545382
## [205,] 1.074330951 0.7761607818 -1.480761193 -0.172742495
## [206,] -1.149017829 0.8705260213 -1.031840079 0.226270994
## [207,] -0.957121625 0.6842849239 -0.761484024 0.731021818
## [208,] -0.767073236 0.9042396188 -1.231954333 0.152875549
## [209,] -0.141052304 0.4452822793 -1.429226013 0.718929470
## [210,] -2.210265153 0.6342983022 -1.230774501 0.215057393
## [211,] -0.488802857 0.8219097157 -3.090972563 -0.659275890
## [212,] -1.709477421 -0.6485597798 -1.846866648 0.813616147
## [213,] -0.447203891 0.9873228956 -2.289246297 -0.274541158
## [214,] -0.695955591 1.2977381508 -2.375618016 -0.779602604
## [215,] -1.328870233 0.9780283542 -0.193662967 0.796060338
## [216,] -0.087245230 0.7966780786 -2.081007252 -0.018419477
## [217,] -1.747635381 1.3357469468 -0.737319239 -0.065300179
## [218,] 0.435849647 0.0706985095 -0.806694054 -1.211049107
## [219,] -1.002675385 -1.4095067449 0.606369030 0.562735582
## [220,] 0.439911469 -0.3331600428 -2.301543747 -1.873334592
## [221,] -0.551688989 -1.2106098256 -1.374356648 -0.874311003
## [222,] -1.204011995 -0.3826813700 -0.132852565 -0.912986154
## [223,] -0.932091391 -1.1241713941 -0.321132927 -0.292349066
## [224,] -2.631724980 -3.4922633666 -2.402907331 -0.117672526
## [225,] -1.499168776 -0.6166033332 0.443462490 -0.475562900
## [226,] -1.285954025 -1.4773782728 -0.061127940 -0.030760283
## [227,] 0.083566574 -1.0454628683 -0.861056085 -0.359362313
## [228,] 0.660710043 -1.5235041670 -1.106504934 -0.057545604
## [229,] -0.198713007 -1.8599984450 -1.236016067 -0.170691381
## [230,] -0.060241790 -1.7001171675 -0.165448152 0.267697057
## [231,] -0.645019313 -0.5212420971 0.960271674 0.133750241
## [232,] -0.469296798 -1.5196906328 -0.027805351 0.308382464
## [233,] 7.499324999 -2.3277511944 -1.349276550 2.383007665
## [234,] -0.239836188 -0.2924191990 0.297303041 -0.663135566
## [235,] -0.872516238 -1.5833839256 -0.520899041 -0.582201505
## [236,] -0.598002047 -0.6751856547 0.871097979 0.056613132
## [237,] -0.376014364 0.4470632562 1.498427150 -0.412129830
## [238,] -0.662718647 -0.5972441504 0.446878102 -0.252310774
## [239,] -1.444172973 -0.4947160725 0.871721255 -0.250143384
## [240,] -1.244840762 -1.3506173111 0.094137662 -0.110436210
## [241,] -1.843997103 -1.1581382491 -0.004450434 -0.390553445
## [242,] -1.616485611 -1.2496429692 0.199935828 -0.152089207
## [243,] -0.768872045 -1.6248411490 0.009311189 0.355764527
## [244,] -0.955320139 -1.0419841435 -0.679055615 2.010637986
## [245,] -0.502207556 0.6048649308 -0.514160755 1.092338962
## [246,] -1.044586387 1.0727052876 -0.752898084 0.322548322
## [247,] -1.245945961 0.8855033931 0.122826826 0.975099007
## [248,] -1.262296822 0.7596973015 -0.089785968 1.187348334
## [249,] -0.756160108 0.9165304349 -0.118365232 1.020760933
## [250,] 0.665712318 -1.2016436180 0.112513900 0.115778659
## [251,] -0.608977132 -0.6442351279 -1.004735535 -1.260257715
## [252,] 0.121503591 -1.5698282927 -0.936140449 -0.799271692
## [253,] -0.538370298 -0.2787301349 0.893636618 -0.143221548
## [254,] 0.562020467 -0.9371781534 0.512114818 0.329291428
## [255,] 0.230597869 -0.0827071968 -1.912184320 0.781825026
## [256,] -0.783364519 0.4399454963 -0.904500964 0.814996037
## [257,] -1.610353150 0.0439859524 0.140518032 1.495651114
## [258,] -0.810984764 0.1957231360 -0.833615495 0.940179073
## [259,] -1.104262654 0.4152546080 -0.259901481 1.184472673
## [260,] -0.224060930 0.4057124979 -0.274442099 1.127189091
## [261,] 0.960508359 0.0139881349 -1.176167846 1.599005403
## [262,] -0.802191000 1.5523004872 -0.598872695 -0.130109072
## [263,] -0.114059468 1.3742593751 0.771255450 1.194814620
## [264,] -1.124983911 -0.8009659584 1.369778947 0.194242790
## [265,] 0.026278597 -0.9969242698 -0.389556292 -0.552163042
## [266,] 0.193399531 0.0848160242 -0.261748330 -1.070827573
## [267,] -1.398109287 -0.2672358745 -0.370535704 -1.275303624
## [268,] -0.087208289 -0.0959725531 -1.402468409 -1.759912412
## [269,] -0.126746970 -1.3519305882 0.039343055 0.194688179
## [270,] -0.638651336 -0.4450159288 0.980717611 -0.172603781
## [271,] -1.678087327 -0.7420303730 0.710510599 -0.443001994
## [272,] 0.122951879 1.0251511097 0.030183713 1.110654018
## [273,] -1.022245694 1.1341237104 -0.144128176 0.323741841
## [274,] -1.046084973 0.7078725655 0.265883821 1.003906950
## [275,] -0.798929039 -0.3525961486 0.737318323 -0.526334987
## [276,] -0.179645549 -1.3106483352 0.733628384 0.464188356
## [277,] -0.115016996 -1.5094555514 -0.650777849 -0.655356293
## [278,] 2.433778420 -2.3787526594 -0.881421563 1.372787090
## [279,] -0.417530809 0.7650402692 0.453934247 1.031910861
## [280,] 0.523770069 -0.0323346249 1.967023349 -0.010026759
## [281,] -0.583983055 -0.9822176469 0.217086839 -0.290718131
## [282,] -0.539902096 -0.9125118741 0.994234758 0.278782180
## [283,] -1.163861330 -1.2158522713 -0.366498922 -0.604696533
## [284,] -1.151646791 -1.0221470253 -0.236009127 -0.818683014
## [285,] 0.063663556 0.2214526709 1.045847056 -0.708195359
## [286,] 3.770288669 -0.3535923578 -1.949494485 -0.806155049
## [287,] -1.214269493 -0.2076327522 1.915674458 -0.208257620
## [288,] -0.292308350 -0.4394159588 1.487151395 0.063677202
## [289,] 0.579365180 -1.4193773055 -0.751322965 -0.186390071
## [290,] -0.557038557 -0.2933544902 0.951566088 -0.711968313
## [291,] -0.359927243 -0.6145438461 0.870407948 -0.168788689
## [292,] -1.474633105 -0.8905157483 1.169458775 -0.005986308
## [293,] -0.773114985 -0.1686458508 0.735500118 -0.833798880
## [294,] 1.136103940 -1.6537170629 0.346416938 -0.089869503
## [295,] 2.214795141 -0.8377969977 -0.728586588 -0.379577670
## [296,] 0.045777948 -1.2862766078 1.036560208 0.026540706
## [297,] -0.697732783 -1.2816072724 0.530991791 -0.087832386
## [298,] 0.460648862 -0.7244624028 0.078261156 -0.562934330
## [299,] -0.484047463 0.0833721991 1.426043029 -0.384886905
## [300,] 7.428486746 -3.0418468425 -0.485672383 3.497475982
## [301,] 0.520438852 -0.0616233237 1.466424033 0.041547622
## [302,] -1.209570684 -0.3400545171 1.401442018 -0.469345541
## [303,] -0.825016983 -0.0824314463 1.992993517 -0.054366319
## [304,] 0.019541046 0.2407566436 2.686915856 -0.140520873
## [305,] 0.963822468 0.3803679608 -0.582625540 -1.396307777
## [306,] 0.286636239 0.0637426851 0.862830849 -0.755017470
## [307,] 1.874169445 -0.6033882472 0.440107664 -0.764712469
## [308,] 0.192587515 0.2906143053 -0.067267674 1.353290128
## [309,] -0.998783230 1.6286066537 0.529438825 0.161379250
## [310,] 0.909176511 2.4463112476 -0.389632447 -0.583293090
## [311,] 1.816707338 0.4528648542 0.410827632 1.437921746
## [312,] 2.641072388 1.5986111873 -0.587141159 0.002109684
## [313,] -0.628610787 1.1832460073 1.567594526 0.807641464
## [314,] -0.421970775 1.5827157302 0.443581127 0.350945719
## [315,] -0.195458409 1.1144375239 1.641616379 1.750264782
## [316,] 4.547874402 1.2278049494 -0.121268385 0.241895265
## [317,] 5.181647815 0.3405859616 -0.342518423 2.316053031
## [318,] -0.307688399 1.6163536563 -0.052673936 -0.246474473
## [319,] 0.680088214 0.4112726565 1.088382847 -0.952594567
## [320,] 0.775583156 0.6298719078 0.334126466 -1.706025905
## [321,] -0.258828443 0.1328362540 -1.125202085 -2.322011781
## [322,] 0.238627770 -0.5183891386 1.639892991 0.008688611
## [323,] 6.219328664 -0.3746903126 0.869875846 -0.928851659
## [324,] -1.182660542 -0.7585108022 1.109091084 -0.486484332
## [325,] -0.008972528 1.2164848919 0.658802315 0.848643946
## [326,] 1.698677031 0.5581885912 0.212767965 2.013389161
## [327,] 1.187926435 1.3488186457 0.172204685 0.704532511
## [328,] -0.232421156 0.7698620312 0.325995787 0.914722988
## [329,] 1.094870462 3.1147291003 -0.901824443 -1.582454606
## [330,] -0.416248578 -1.1388695688 0.593479193 -0.610325116
## [331,] 2.920425102 0.0163639109 1.496501964 -1.713783661
## [332,] 0.591593977 0.9943006409 1.404254381 -1.628831658
## [333,] 0.899551894 1.2980838091 1.448968600 -1.458685989
## [334,] 2.984832646 -0.5403654799 -0.484486898 -1.211777969
## [335,] 1.505305395 2.7057682574 -2.135790063 -1.943632643
## [336,] 0.490808021 1.1681019995 1.563956940 1.229961627
## [337,] 0.467032336 0.7140818457 -1.284020555 -2.986989373
## [338,] 1.564729628 0.3731876458 0.061063590 -1.594893795
## [339,] -0.151307375 0.3034511489 0.209318320 -1.865223557
## [340,] 2.180233903 -1.1044635612 0.648227065 0.116418033
## [341,] 1.252382803 2.7755478581 1.428928180 -0.346608453
## [342,] 4.901142691 -0.1198332117 1.523238305 -0.915810258
## [343,] 3.461396538 2.4043144117 1.123568816 -0.025538799
## [344,] 0.932619239 2.2182227163 1.178903139 -0.269505375
## [345,] 4.438259643 3.1481593802 0.688666238 -0.943946430
#Uso del algoritmo kmeans
clustering<-kmeans(componentes_prin, 3)
clustering
## K-means clustering with 3 clusters of sizes 42, 173, 130
##
## Cluster means:
## PC1 PC2 PC3 PC4
## 1 3.4333410 -0.2032703 -0.03254866 0.2064720
## 2 -0.3984542 -0.6259153 0.32597513 -0.5117194
## 3 -0.5789827 0.8986207 -0.42328195 0.6142741
##
## Clustering vector:
## [1] 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [36] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2
## [71] 3 3 3 3 3 3 1 2 2 2 2 2 2 2 1 2 2 2 3 3 3 3 3 3 3 3 2 2 2 2 2 2 3 3 3
## [106] 3 3 3 3 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 3 3 1 1 2 2 2 2 2 2
## [141] 3 3 3 3 3 3 3 1 3 3 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 3 3 3 3 3 1
## [176] 3 2 2 1 2 1 1 1 2 1 1 1 2 1 1 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [211] 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 3 3
## [246] 3 3 3 3 2 2 2 2 2 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3 2 2 2 1 3 2
## [281] 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 1 3 3 3 1 1 3 3 3
## [316] 1 1 3 2 2 2 2 1 2 3 1 3 3 3 2 1 2 2 1 3 3 2 2 2 1 3 1 1 3 1
##
## Within cluster sum of squares by cluster:
## [1] 288.7016 439.1094 322.6786
## (between_SS / total_SS = 45.5 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"
## [9] "ifault"
#Convertimos a dataframe la matriz componentes_prin
componentes_prin<-as.data.frame(componentes_prin)
plot(componentes_prin$PC1,componentes_prin$PC2, col=clustering$cluster)
plot(componentes_prin$PC2,componentes_prin$PC3, col=clustering$cluster)
plot(componentes_prin$PC3,componentes_prin$PC4, col=clustering$cluster)
plot(componentes_prin$PC1,componentes_prin$PC4, col=clustering$cluster)
plot(componentes_prin$PC2,componentes_prin$PC4, col=clustering$cluster)
#Usamos la libreria rgl para ahcer graficos 3d
library(rgl)
plot3d(x=componentes_prin$PC1,y=componentes_prin$PC2,z=componentes_prin$PC3, col=clustering$cluster)
##APLICAMOS EL ALGORITMO PAM
bupa_scale<- scale(bupa)
library(cluster)
library(factoextra)
## Loading required package: ggplot2
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
## %+%, alpha
## Welcome! Related Books: `Practical Guide To Cluster Analysis in R` at https://goo.gl/13EFCZ
Lo primero que debemos de hacer es escalar la data para que las variables esten en las mismas unidades. Tambien se instalarán los paquetes “cluster” (Nos ayuda a encontrar grupos en la data) y “factoextra” (Sirve para la extraccion y visualizacion de los resultados del analisis de datos multivariados)
#Identificar el número óptimo de clusters
fviz_nbclust(x = bupa_scale,FUNcluster = pam, method="wss" , k.max = 7,
diss = dist(bupa_scale,method = "euclidean"))
Aplicamos el metodo del codo para encontrar la cantidad optima de clusters, asignamos una cantidad maxima de clusters de 7. En este caso el metodo a utilizar fue “euclidean” ya que la data no contaba con outliers
#Específica la cantidad de grupos
set.seed(111)
pam_cluster <- pam(x = bupa_scale,k = 3,metric = "euclidean")
pam_cluster
## Medoids:
## ID V1 V2 V3 V4 V5
## [1,] 74 -0.03584012 0.1706176 0.1842018 -0.3620131 -0.41483167
## [2,] 99 -0.26065541 -0.2654051 -0.2257958 -0.6600907 -0.05818572
## [3,] 169 0.63860576 0.7701487 1.4141947 2.2213260 0.60415677
## V6 V7
## [1,] -0.4359330 -1.1727371
## [2,] -0.1363376 0.8502344
## [3,] 1.0620439 0.8502344
## Clustering vector:
## [1] 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [36] 3 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2
## [71] 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1
## [106] 1 1 1 1 2 3 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 1 1 3 3 2 2 2 2 2 2
## [141] 1 1 1 1 1 1 1 3 1 1 3 2 2 2 2 2 3 3 3 2 2 2 2 2 2 2 3 3 3 1 1 1 1 1 3
## [176] 1 2 2 3 2 3 1 3 2 3 3 3 3 3 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [211] 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 1 1
## [246] 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 2 2 2 3 1 2
## [281] 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 2 2 2 3 1 1 1 1 3 1 1 1
## [316] 3 3 1 2 2 2 2 3 2 1 1 1 1 1 2 3 2 2 3 1 1 2 3 2 3 1 3 3 1 3
## Objective function:
## build swap
## 1.958425 1.958425
##
## Available components:
## [1] "medoids" "id.med" "clustering" "objective" "isolation"
## [6] "clusinfo" "silinfo" "diss" "call" "data"
Para que nos salga los mismos resultados ponemos una semilla de ‘111’, luego especificamos la cantidad de clusters con ‘pam’ y se asigna el tipo de metrica a “euclidean”.(En este caso la cantidad óptima de cluster es 3)
#Diagrama de dispersión
fviz_cluster(object = pam_cluster, data = bupa_scale,geom = "point",
ellipse.type = "t",repel = TRUE)+
theme_bw() +
labs(title = "ALGORITMO PAM")
En esta parte se diseña un diagrama de dispersión para la visualizacion del algoritmo de PAM, en donde nos muestra 3 clusters
##APLICAMOS EL ALGORITMO CLARA
# Diagrama de dispersión
clara_cluster<-clara(bupa,3)
fviz_cluster(clara_cluster,stand = TRUE,geom = "point",pointsize = 1)+
theme_bw() +
labs(title = "ALGORITMO CLARA")
Para el uso de CLARA, se crea una variable llamada “clara_cluster” con la cual se trabajará en el siguiente codigo, el cual nos diseñara un gráfico que formara los clusters que se le asignó