Final Project Overview and Motivation

As the presidential election cycle starts to ramp up again, we thought it would be interesting to take a look back at the election data from 2016 in order to think more about potential factors that could affect the outcome of next year’s vote. Labeled by Politico as the “biggest upset in U.S. history”, a large narrative about a “divided” America continued to develop in the days following the 2016 presidential election. Many would argue that this narrative continues to dominate current news headlines and will be an influential factor in the way candidates run their campaigns over the next 12 months.

For our project, we are curious about what factors seem to “divide” America. We’ll explore questions such as:

We’ll be utilizing two different datasets for this project.

Dataset 1

The first, contains the presidential election results by county for the 2016 election.

knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
library(dplyr)
library(tidyr)
library(plyr)
library(knitr)
library(kableExtra)

election_data <- read.csv('https://raw.githubusercontent.com/zachalexander/data607_cunysps/master/FinalProject/election_data.csv')

kable(head(election_data, n = 15L), align = rep('c', 5)) %>% 
  kable_styling(bootstrap_options = c("striped", "responsive", "condensed"), full_width = TRUE)
X state county fips trump16 clinton16 otherpres16 romney12 obama12 otherpres12 demsen16 repsen16 othersen16 demhouse16 rephouse16 otherhouse16 demgov16 repgov16 othergov16 repgov14 demgov14 othergov14 total_population cvap white_pct black_pct hispanic_pct nonwhite_pct foreignborn_pct female_pct age29andunder_pct age65andolder_pct median_hh_inc clf_unemploy_pct lesshs_pct lesscollege_pct lesshs_whites_pct lesscollege_whites_pct rural_pct ruralurban_cc
1 Alabama Autauga 1001 18172 5936 865 17379 6363 190 6331 18220 62 7544 14315 2258 NA NA NA 9427 3638 0 55049 40690 75.68348 18.370906 2.5722538 24.316518 1.8383622 51.17622 40.03706 13.97846 53099 5.591657 12.417046 75.40723 10.002112 74.06560 42.00216 2
2 Alabama Baldwin 1003 72883 18458 3874 66016 18424 898 19145 74021 248 0 76995 1991 NA NA NA 37650 8416 0 199510 151770 83.17879 9.225603 4.3666984 16.821212 3.2695103 51.19493 35.47441 18.71485 51365 6.286843 9.972418 70.45289 7.842227 68.40561 42.27910 3
3 Alabama Barbour 1005 5454 4871 144 5550 5912 47 4777 5436 16 5297 4286 463 NA NA NA 3111 3651 0 26614 20375 45.88562 47.888329 4.3097618 54.114376 2.8593973 46.49808 37.66439 16.52889 33956 12.824738 26.235928 87.13221 19.579752 81.36475 67.78963 6
4 Alabama Bibb 1007 6738 1874 207 6132 2202 86 2082 6612 17 1971 6670 15 NA NA NA 3525 1368 0 22572 17590 74.76520 21.212121 2.2239943 25.234804 1.3512316 46.46465 37.32943 14.88570 39776 7.146827 19.301587 88.00000 15.020490 87.47177 68.35261 1
5 Alabama Blount 1009 22859 2156 573 20757 2970 279 2980 22169 48 2390 22367 47 NA NA NA 12074 2178 0 57704 42430 87.65770 1.557951 8.7272979 12.342299 4.2718009 50.48524 37.24005 17.19292 46212 5.953833 19.968585 86.95024 16.643368 86.16361 89.95150 1
6 Alabama Bullock 1011 1140 3530 40 1251 4061 10 3364 1167 6 3517 889 80 NA NA NA 747 2440 0 10552 8195 21.68309 75.502274 0.1231994 78.316907 1.5163002 45.80174 37.93594 15.13457 29335 13.258520 33.437883 89.74499 11.780384 79.15778 51.37438 6
7 Alabama Butler 1013 4901 3726 105 5087 4374 35 3663 4840 7 4088 3918 321 NA NA NA 3148 2741 0 20280 15425 52.78107 43.515779 1.2475345 47.218935 1.3954635 53.04734 37.05621 18.12623 34315 9.804827 18.940426 83.91999 14.604180 80.07600 71.23216 6
8 Alabama Calhoun 1015 32865 13242 1757 30278 15511 468 14152 32976 69 14000 33175 75 NA NA NA 17688 9082 0 115883 88525 72.99777 20.331714 3.4362245 27.002235 2.3937937 51.89804 38.78308 15.93072 41954 11.681822 17.663137 82.34703 16.399511 81.64061 33.69683 3
9 Alabama Chambers 1017 7843 5784 273 7626 6871 114 5845 7865 18 5796 7907 16 NA NA NA 3635 4587 0 34018 26480 56.74349 40.478570 0.4350638 43.256511 0.9906520 52.08713 35.87219 18.38732 36027 7.489945 19.736732 87.51572 15.295351 83.85879 49.14803 6
10 Alabama Cherokee 1019 8953 1547 233 7506 2132 141 1915 8636 7 1702 8707 12 NA NA NA 5007 1868 0 25897 20505 91.87165 4.606711 1.5638877 8.128355 0.7259528 50.25292 32.71035 20.32282 38925 5.855731 18.717236 86.03830 19.256407 85.78324 85.73627 6
11 Alabama Chilton 1021 15081 2911 377 13932 3397 133 3327 14582 25 2996 14723 12 NA NA NA 9028 2419 0 43817 31555 80.61027 10.009813 7.6248944 19.389735 5.5572038 50.79764 38.83424 15.24979 42594 7.938580 19.902472 85.14545 17.849792 84.38194 86.74472 1
12 Alabama Choctaw 1023 4106 3109 77 4152 3786 30 2992 4035 8 4332 0 94 NA NA NA 2380 1947 0 13287 10515 56.20531 42.229247 0.5569354 43.794686 0.1655754 52.21645 33.40107 20.74960 32622 13.642814 21.147333 88.03980 17.688938 87.45893 100.00000 9
13 Alabama Clarke 1025 7140 5749 142 7470 6334 47 5558 7158 14 5214 2848 127 NA NA NA 5000 3524 0 24847 19195 53.17745 45.494426 0.1730591 46.822554 0.4668572 52.75888 36.60402 18.06254 32735 17.083333 18.957819 87.86277 14.136998 82.08411 75.98034 7
14 Alabama Clay 1027 5245 1237 142 4817 1777 68 1377 5147 4 1317 5231 4 NA NA NA 3199 1215 0 13483 10360 80.26404 14.744493 3.1076170 19.735964 1.8912705 51.55381 34.84388 19.40221 38815 6.591530 25.386407 88.93712 21.804320 87.52224 100.00000 9
15 Alabama Cleburne 1029 5764 684 145 5272 971 62 847 5554 6 769 5644 4 NA NA NA 3129 717 0 14991 11295 92.79568 2.361417 2.3280635 7.204323 1.7477153 50.48362 36.14169 18.16423 36316 7.173601 25.815165 88.47193 24.262969 88.65948 100.00000 8

The dataset was found on GitHub, here: https://github.com/tonmcg/US_County_Level_Election_Results_08-16

Dataset 2

The second dataset that we’ll work with contains data related to values, with a respondent identifier that captures their state of residence – which we can use to connect to our election results. This dataset was found on the Public Religion Research Institute (PRRI) website and contains a large number of questions related to values ranging from respondent’s views on immigration, gun control laws, health care, and much more.

Reading data files from Github

library(haven)
# avs <- read.csv('https://raw.githubusercontent.com/zachalexander/data607_cunysps/master/FinalProject/avs.csv')
spss_file <- file.path('https://github.com/zachalexander/data607_cunysps/blob/master/FinalProject/PRRI-2017-American-Values-Survey.sav?raw=true')
avs <- read_sav(spss_file)

kable(head(avs, n = 15L), align = rep('c', 5)) %>% 
  kable_styling(bootstrap_options = c("striped", "responsive", "condensed"), full_width = TRUE)
case_id week weight state metro region division ownhome marital employ hhnum adults kids1217 kids611 kids06 parent age age2 educ2 educ income race partyrot party ideorot ideo regvote othtel sex ident l1 l2a c1 c2 c1a usborn relig religopen denom denomopen born jewid secular jdenom year demh1 demh2 date sexorient_1 sexorient_2 sexorient_3 sexorient_4 sexorient_5 formrot q1 q2 q3rot q3 q4rot q4 q5rot q5 q5ot q6rot q6a q6b q6c q6d q6e q6f partyln partyst1 partyst2 q7 q8 q9 q10 q11 q12 q13rot q13 q14rot q14a q14b q14c q14d q15 q16 q17rot q17a q17c q17b q17d q17e q17f q17g q17h q18 q19 q20 q20ot q21 q22rot q22a q22b q22c q22d q22e q22f q22g q23 q24 q25rot q25
10000001 842 0.3804 SC 3 3 5 1 6 3 2 2 NA NA NA 2 69 NA 6 4 2 1 1 2 1 4 1 1 1 1 2 NA NA NA NA NA 90 NA NA 2 1 NA 17 NA NA 171018 0 0 0 0 1 1 3 4 1 2 NA NA 1 4 ACB 2 3 2 NA NA NA NA NA 1 4 1 3 NA NA NA 1 2 ABCD 4 4 1 3 3 1 EGHCDAFB 2 2 3 3 3 2 3 3 1 3 1 2 DBEFGCA 1 3 3 3 4 4 1 2 1 1 1
10000002 842 0.5964 GA 1 3 5 1 6 3 2 2 NA NA NA 2 65 NA 4 3 98 1 1 3 1 1 2 0 2 1 1 NA NA NA 8 NA 99 NA NA NA NA NA 17 NA NA 171018 1 0 0 0 0 2 3 4 1 2 NA NA 4 3 FED NA NA NA 1 1 2 2 NA NA 4 1 NA 3 NA NA 1 2 DBCA 3 4 1 4 3 1 DBAFHECG 2 3 2 3 2 2 3 3 3 1 2 1 GBCDEFA 3 4 3 3 2 4 2 1 1 1 2
10000003 842 0.8891 FL 1 3 5 1 3 4 2 2 NA NA NA 2 99 4 4 3 4 2 2 1 2 3 1 0 2 1 1 NA NA NA 1 NA 1 NA 1 NA NA NA 17 NA NA 171018 1 0 0 0 0 2 5 4 2 2 NA NA 2 5 EDF NA NA NA 1 2 3 NA 2 NA 4 2 NA 3 2 2 2 9 ADBC 3 4 1 3 3 1 ACFBHGED 3 2 3 3 3 3 3 3 1 1 1 1 BDFCGEA 2 2 2 1 3 3 2 1 1 2 2
10000004 842 0.9169 FL 1 3 5 1 3 3 2 2 NA NA NA 2 71 NA 5 3 4 1 2 2 2 4 1 0 1 1 1 NA NA NA 1 NA 96 NA NA 2 NA NA 17 NA NA 171018 1 0 0 0 0 1 1 4 2 2 NA NA 5 5 ACB 1 1 1 NA NA NA NA NA 1 4 2 3 NA NA NA 2 2 DACB 4 4 1 4 3 1 DHGCEABF 3 3 3 4 3 2 3 4 2 1 1 2 GACEBFD 1 3 3 3 2 3 2 2 1 2 1
10000005 842 0.8904 NJ 3 1 2 2 1 6 1 1 NA NA NA 2 33 NA 3 2 1 2 1 2 1 4 1 0 1 1 1 NA NA NA 1 NA 22 13 2 NA NA NA 17 1 4 171018 1 0 0 0 0 2 4 2 NA NA 1 1 3 3 DFE NA NA NA 3 3 2 NA NA 2 3 2 NA 3 NA NA 1 2 BDCA 4 4 1 4 3 2 BHCFAEGD 2 2 4 3 2 4 1 2 1 1 1 2 ADEBFGC 1 2 2 1 4 4 1 2 1 1 1
10000006 842 0.6692 OR 5 4 9 2 4 7 1 1 NA NA NA 2 55 NA 3 2 1 1 1 2 1 4 1 0 2 1 1 NA NA NA 1 NA 90 NA NA 2 2 NA 17 1 4 171018 1 0 0 0 0 1 4 3 1 2 NA NA 2 4 ACB 9 2 1 NA NA NA NA NA 2 3 1 3 NA NA NA 1 2 CADB 9 2 9 4 9 1 CGFEDHAB 2 1 4 3 3 2 2 3 1 1 2 1 GABCDEF 1 1 1 4 4 4 1 1 1 1 1
10000007 842 0.3147 OH 3 2 3 1 3 1 1 1 NA NA NA 2 50 NA 4 3 8 1 2 3 2 1 1 4 1 1 1 NA NA NA 7 NA 99 NA NA NA NA NA 17 1 2 171018 1 0 0 0 0 1 1 1 NA NA 2 1 4 2 ABC 1 9 9 NA NA NA 1 NA NA 1 9 9 NA 9 9 2 9 BCDA 1 1 1 1 9 2 BGHEAFCD 2 3 1 1 2 4 9 1 1 2 9 1 ECBDFGA 4 1 1 3 3 2 3 9 9 2 2
10000008 842 0.8399 MD 2 3 5 1 3 1 2 2 NA NA NA 2 61 NA 7 5 12 1 1 2 1 3 1 0 1 1 1 NA NA NA 1 NA 99 NA NA NA NA NA 17 1 1 171018 1 0 0 0 0 2 1 4 1 2 NA NA 4 4 EDF NA NA NA 3 3 2 NA NA 1 4 1 NA 3 NA NA 1 2 ABCD 4 4 1 4 3 1 ECDHFBAG 1 9 3 3 3 2 4 3 1 1 1 2 CAFGEBD 1 3 9 4 4 4 1 2 1 1 1
10000009 842 1.3808 FL 2 3 5 1 3 1 4 3 1 0 0 1 56 NA 5 3 13 1 1 3 1 3 1 0 2 1 1 NA NA NA 1 NA 2 NA NA NA NA NA 17 1 1 171018 1 0 0 0 0 2 4 4 1 2 NA NA 1 5 EFD NA NA NA 1 3 1 2 NA NA 4 2 NA 3 NA NA 1 2 DACB 4 3 1 3 3 1 HEDGACBF 2 1 4 1 2 4 1 4 4 3 1 2 GACEBFD 1 3 2 1 3 1 2 2 1 1 1
10000011 842 0.6906 MI 3 2 3 1 3 3 2 2 NA NA NA 2 68 NA 4 3 6 1 2 3 2 4 1 0 2 1 1 NA NA NA 1 NA 95 NA NA 2 NA NA 17 NA NA 171018 1 0 0 0 0 1 1 4 2 2 NA NA 1 4 CBA 3 2 3 NA NA NA 2 NA NA 4 1 3 NA NA NA 2 2 BDCA 4 4 1 4 3 1 BCHAEGFD 1 1 4 4 4 2 4 4 1 1 2 2 AFEGBDC 2 4 3 3 4 4 1 2 1 2 1
10000012 842 1.4924 NY 3 1 2 1 1 6 9 9 NA NA NA 2 41 NA 3 2 1 1 2 2 2 5 1 0 1 1 1 NA NA NA 1 NA 2 NA NA NA NA NA 17 1 4 171018 0 0 0 0 1 2 5 3 2 1 NA NA 4 3 DEF NA NA NA 1 1 1 NA NA 2 4 3 NA 2 NA NA 2 3 CDBA 2 2 2 2 3 1 CDGBHFEA 4 4 4 4 4 4 1 4 2 3 2 2 CDABEFG 4 4 4 4 4 4 4 2 2 2 1
10000013 842 0.9353 PA 3 1 2 1 2 6 2 2 NA NA NA 2 74 NA 4 3 5 1 1 2 1 3 1 0 1 1 2 NA NA NA NA NA 15 3 2 NA NA NA 17 NA NA 171018 1 0 0 0 0 1 2 4 1 1 NA NA 4 5 CAB 3 3 1 NA NA NA NA NA 1 3 1 2 NA NA NA 1 2 CBAD 4 3 1 3 3 2 GFCDAEBH 4 3 3 4 9 4 3 4 1 1 1 2 ABFGECD 2 3 2 4 2 1 1 2 2 1 1
10000014 842 0.6506 NY 1 1 2 2 6 3 1 1 NA NA NA 2 62 NA 3 2 1 8 2 2 2 3 1 0 2 1 1 NA NA NA 1 NA 25 NA 1 NA NA NA 17 1 4 171018 1 0 0 0 0 2 4 3 2 2 NA NA 3 5 FED NA NA NA 2 1 1 NA NA 2 3 2 NA 3 NA NA 2 2 CBAD 4 1 1 3 2 2 GBCHAFED 4 4 3 4 4 1 2 4 1 3 2 2 GACEBFD 2 2 2 3 2 3 3 2 1 2 2
10000015 842 0.6039 NY 4 1 2 1 2 2 5 4 0 1 0 1 27 NA 4 3 6 1 1 3 1 3 1 0 1 1 1 NA NA NA 2 NA 20 NA NA NA NA NA 17 1 4 171018 1 0 0 0 0 2 3 4 1 2 NA NA 5 4 FED NA NA NA 3 3 1 2 NA NA 4 3 NA 3 NA NA 1 2 DBCA 4 4 1 4 3 1 HADGECFB 1 1 4 4 4 1 4 4 1 1 2 1 CBEFAGD 1 4 3 3 4 4 2 2 1 1 1
10000016 842 1.7472 NY 4 1 2 1 3 4 4 4 NA NA NA 2 55 NA 3 2 6 1 2 3 2 4 1 0 2 1 1 NA NA NA 1 NA 2 NA NA NA NA NA 17 1 1 171018 1 0 0 0 0 2 2 4 2 2 NA NA 5 4 DFE NA NA NA 2 2 1 2 NA NA 4 1 NA 3 NA NA 2 2 ACBD 3 3 1 3 3 1 EBADGFHC 2 2 4 4 2 2 3 3 2 3 1 2 ECDFGAB 1 3 1 3 3 1 1 1 1 2 1