TRABAJO DE ALGORITMOS-MINERIA DE DATOS

En esta publicación se ha trabajado los algoritmos de Kohone, Diana, Clara, Pam y Fanny. Se ha generado ejemplos de cada uno de estos algoritmos y a su vez se ha detallado cada paso a realizar para que se entienda mejor cuando se ejecuten los comandos.

#Exploracion De Datos:

1.Cargamos la base de datos que nos brindó el profesor llamada “CLIENTE”

cliente<-read.csv("https://raw.githubusercontent.com/VictorGuevaraP/Mineria-de-datos-2019-2/master/clientes.csv",sep = ";",header = T)

2.Verificamos el número de filas y el número de columnas con el comando “dim(nombreBD)” de la DB “Cliente”.

dim(cliente)
## [1] 850   9

3.Con el siguiente comando “names(nombreBD)” procederemos a verificar el nombre de cada variable o también se puede utilizar el comando “colnames(nombreBD9” de igual forma nos mostrara los nombres de cada variable.

names(cliente)
## [1] "ID_cliente"          "edad"                "educacion"          
## [4] "años_empleo"         "Ingreso"             "Tarjeta_credito"    
## [7] "otra_tarjeta"        "Direccion"           "Ratio.ingreso.deuda"

• DESCRIPCION DE Las Variables:

  1. ID_Cliente: Código asignado al cliente.
  2. Educación: Grado de educación alcanzada por el cliente.
  3. Edad: Tiempo de vida del cliente.
  4. Años_Empleo: Tiempo laborado por el cliente.
  5. Ingreso: Cantidad salarial del cliente.
  6. Tarjeta_Credito: Tipo de tarjeta que utiliza el cliente.
  7. Otra_Tarjeta: Tipo de tarjeta que utiliza el cliente.
  8. Direccion: Ubicación en la que reside el cliente.
  9. Ratio.Ingreso.Deuda: Deuda del cliente

4.Con el comando “head(nombreBD) nos mostrara las 6 primeras filas.

head(cliente)
##   ID_cliente edad educacion años_empleo Ingreso Tarjeta_credito
## 1          1   41         2           6      19           0.124
## 2          2   47         1          26     100           4.582
## 3          3   33         2          10      57           6.111
## 4          4   29         2           4      19           0.681
## 5          5   47         1          31     253           9.308
## 6          6   40         1          23      81           0.998
##   otra_tarjeta Direccion Ratio.ingreso.deuda
## 1        1.073    NBA001                 6.3
## 2        8.218    NBA021                12.8
## 3        5.802    NBA013                20.9
## 4        0.516    NBA009                 6.3
## 5        8.908    NBA008                 7.2
## 6        7.831    NBA016                10.9

5.Con el comando “tail(nombreBD) nos mostrara las 6 últimas filas.

tail(cliente)
##     ID_cliente edad educacion años_empleo Ingreso Tarjeta_credito
## 845        845   41         1           7      43           0.694
## 846        846   27         1           5      26           0.548
## 847        847   28         2           7      34           0.359
## 848        848   25         4           0      18           2.802
## 849        849   32         1          12      28           0.116
## 850        850   52         1          16      64           1.866
##     otra_tarjeta Direccion Ratio.ingreso.deuda
## 845        1.198    NBA011                 4.4
## 846        1.220    NBA007                 6.8
## 847        2.021    NBA002                 7.0
## 848        3.210    NBA001                33.4
## 849        0.696    NBA012                 2.9
## 850        3.638    NBA025                 8.6

6.Con el comando lapply(nombreBD,class) sabremos qué clase tiene cada variable.

lapply(cliente,class)
## $ID_cliente
## [1] "integer"
## 
## $edad
## [1] "integer"
## 
## $educacion
## [1] "integer"
## 
## $años_empleo
## [1] "integer"
## 
## $Ingreso
## [1] "integer"
## 
## $Tarjeta_credito
## [1] "numeric"
## 
## $otra_tarjeta
## [1] "numeric"
## 
## $Direccion
## [1] "factor"
## 
## $Ratio.ingreso.deuda
## [1] "numeric"

• ID_cliente: Es una variable de clase INTEGER.

• Edad: Es una variable de clase INTEGER.

• Educación: Es una variable de clase INTEGER.

• Años_empleo: Es una variable de clase INTEGER.

• Ingreso: Es una variable de clase INTEGER.

• Tarjeta_credito: Es una variable de clase NUMERIC.

• Otra_tarjeta: Es una variable de clase NUMERIC.

• Dirección: Es una variable de clase FACTOR.

• Ratio.ingreso.deuda: Es una variable de clase NUMERIC.

  1. Con el comando “summary” nos mostrara una lista detallada de cada variable identificando su primer cuartil, tercer cuartil, media, mediana, minimo y maximo:
summary(cliente)
##    ID_cliente         edad         educacion      años_empleo    
##  Min.   :  1.0   Min.   :20.00   Min.   :1.000   Min.   : 0.000  
##  1st Qu.:213.2   1st Qu.:29.00   1st Qu.:1.000   1st Qu.: 3.000  
##  Median :425.5   Median :34.00   Median :1.000   Median : 7.000  
##  Mean   :425.5   Mean   :35.03   Mean   :1.711   Mean   : 8.566  
##  3rd Qu.:637.8   3rd Qu.:41.00   3rd Qu.:2.000   3rd Qu.:13.000  
##  Max.   :850.0   Max.   :56.00   Max.   :5.000   Max.   :33.000  
##                                                                  
##     Ingreso       Tarjeta_credito    otra_tarjeta      Direccion  
##  Min.   : 13.00   Min.   : 0.0120   Min.   : 0.046   NBA001 : 71  
##  1st Qu.: 24.00   1st Qu.: 0.3825   1st Qu.: 1.046   NBA002 : 71  
##  Median : 35.00   Median : 0.8850   Median : 2.003   NBA000 : 60  
##  Mean   : 46.68   Mean   : 1.5768   Mean   : 3.079   NBA004 : 58  
##  3rd Qu.: 55.75   3rd Qu.: 1.8985   3rd Qu.: 3.903   NBA003 : 55  
##  Max.   :446.00   Max.   :20.5610   Max.   :35.197   NBA006 : 50  
##                                                      (Other):485  
##  Ratio.ingreso.deuda
##  Min.   : 0.10      
##  1st Qu.: 5.10      
##  Median : 8.70      
##  Mean   :10.17      
##  3rd Qu.:13.80      
##  Max.   :41.30      
## 

• La variable “ID_cliente” nos indica que tiene un mínimo de 1.0 y un máximo de 850.0, también nos indica que en su primer cuartil tiene un 213.2 y en su tercer cuartil tiene 637.8, también nos indica que media es de 425.5 y su mediana de 425.5.

• La variable “Edad” nos indica que tiene un mínimo de 20.00 y un máximo de 50.00, también nos indica que en su primer cuartil tiene un 29.00 y en su tercer cuartil tiene 41.00, también nos indica que media es de 35.03 y su mediana de 34.00.

• La variable “Educación” nos indica que tiene un mínimo de 1.000 y un máximo de 5.000, también nos indica que en su primer cuartil tiene un 1.000 y en su tercer cuartil tiene 2.000, también nos indica que media es de 1.711 y su mediana de 1.000.

• La variable “Ingreso” nos indica que tiene un mínimo de 13.00 y un máximo de 446.00, también nos indica que en su primer cuartil tiene un 24.00 y en su tercer cuartil tiene 55.75, también nos indica que media es de 46.68 y su mediana de 35.00.

• La variable “Tarjeta_credito” nos indica que tiene un mínimo de 0.0120 y un máximo de 20.5610, también nos indica que en su primer cuartil tiene un 0.3825 y en su tercer cuartil tiene 1.8985, también nos indica que media es de 1.5768 y su mediana de 0.8850.

• La variable “Otra_tarjeta” nos indica que tiene un mínimo de 0.046 y un máximo de 35.197, también nos indica que en su primer cuartil tiene un 1.046 y en su tercer cuartil tiene 3.903, también nos indica que media es de 3.079 y su mediana de 2.003.

• La variable “Ratio.ingreso.deuda” nos indica que tiene un mínimo de 0.10 y un máximo de 41.30, también nos indica que en su primer cuartil tiene un 5.10 y en su tercer cuartil tiene 13.80, también nos indica que media es de 10.17 y su mediana de 8.70.

#UNA VEZ EXPLORADO LOS DATOS PROCEDEMOS A IMPLEMENTARLO EN CADA #ALGORITMO BRINDADO POR EL PROFESOR EN CLASE.

1. ALGORITMO DE KOHONE

El primer paso a realizar es cargar la data a trabajar.

cliente<-read.csv("https://raw.githubusercontent.com/VictorGuevaraP/Mineria-de-datos-2019-2/master/clientes.csv",sep = ";",header = T)

Ahora continuamos a hacer un summary de la data para detectar si existen NA’s. Se separa la data en ttesting, el cual llevará mas datos, y taprendizaje, luego visualizaremos las variables de la data.

summary(cliente)
##    ID_cliente         edad         educacion      años_empleo    
##  Min.   :  1.0   Min.   :20.00   Min.   :1.000   Min.   : 0.000  
##  1st Qu.:213.2   1st Qu.:29.00   1st Qu.:1.000   1st Qu.: 3.000  
##  Median :425.5   Median :34.00   Median :1.000   Median : 7.000  
##  Mean   :425.5   Mean   :35.03   Mean   :1.711   Mean   : 8.566  
##  3rd Qu.:637.8   3rd Qu.:41.00   3rd Qu.:2.000   3rd Qu.:13.000  
##  Max.   :850.0   Max.   :56.00   Max.   :5.000   Max.   :33.000  
##                                                                  
##     Ingreso       Tarjeta_credito    otra_tarjeta      Direccion  
##  Min.   : 13.00   Min.   : 0.0120   Min.   : 0.046   NBA001 : 71  
##  1st Qu.: 24.00   1st Qu.: 0.3825   1st Qu.: 1.046   NBA002 : 71  
##  Median : 35.00   Median : 0.8850   Median : 2.003   NBA000 : 60  
##  Mean   : 46.68   Mean   : 1.5768   Mean   : 3.079   NBA004 : 58  
##  3rd Qu.: 55.75   3rd Qu.: 1.8985   3rd Qu.: 3.903   NBA003 : 55  
##  Max.   :446.00   Max.   :20.5610   Max.   :35.197   NBA006 : 50  
##                                                      (Other):485  
##  Ratio.ingreso.deuda
##  Min.   : 0.10      
##  1st Qu.: 5.10      
##  Median : 8.70      
##  Mean   :10.17      
##  3rd Qu.:13.80      
##  Max.   :41.30      
## 
muestra <- sample(1:200,75)
ttesting <- cliente[muestra,]
taprendizaje <- cliente[-muestra,]
head(taprendizaje)
##   ID_cliente edad educacion años_empleo Ingreso Tarjeta_credito
## 1          1   41         2           6      19           0.124
## 3          3   33         2          10      57           6.111
## 4          4   29         2           4      19           0.681
## 6          6   40         1          23      81           0.998
## 8          8   42         3           0      64           0.279
## 9          9   26         1           5      18           0.575
##   otra_tarjeta Direccion Ratio.ingreso.deuda
## 1        1.073    NBA001                 6.3
## 3        5.802    NBA013                20.9
## 4        0.516    NBA009                 6.3
## 6        7.831    NBA016                10.9
## 8        3.945    NBA009                 6.6
## 9        2.215    NBA006                15.5

Antes de crear un SOM, debemos elegir las variables en las que queremos buscar patrones

colnames(cliente)
## [1] "ID_cliente"          "edad"                "educacion"          
## [4] "años_empleo"         "Ingreso"             "Tarjeta_credito"    
## [7] "otra_tarjeta"        "Direccion"           "Ratio.ingreso.deuda"

Comenzaremos con algunos ejemplos simples usando intentos de disparo de esta manera podremos tener resultados con los que se podrán trabajar después.

library(kohonen)

cliente.measures1 <- c("edad", "años_empleo", "Ingreso")
cliente.SOM1 <- som(scale(cliente[cliente.measures1]), grid = somgrid(6, 4, "rectangular"))
plot(cliente.SOM1)

Mapa de calor SOM Recuerde que lo anterior es solo un mapa de los datos del cliente: cada celda muestra su vector representativo. Podríamos identificar clientes con celdas en el mapa asignando a cada cliente a la celda con el vector representativo más cercano a la línea estadística de ese cliente El tipo SOM de “conteo” hace exactamente esto, y crea un mapa de calor basado en la cantidad de cliente asignados a cada celda. Solo por diversión, invertimos el orden de la paleta predefinida heat.colorspara que el rojo represente las celdas de la cuadrícula con un mayor número de cliente representados. reverse color ramp

colors <- function(n, alpha = 1) {
  rev(heat.colors(n, alpha))
}

plot(cliente.SOM1, type = "counts", palette.name = colors, heatkey = TRUE)

par(mfrow = c(1, 2))
plot(cliente.SOM1, type = "mapping", pchs = 20, main = "Mapping Type SOM")
plot(cliente.SOM1, main = "Default SOM Plot")

cliente.SOM2 <- som(scale(cliente[cliente.measures1]), grid = somgrid(6, 6, "hexagonal"))
par(mfrow = c(1, 2))
plot(cliente.SOM2, type = "mapping", pchs = 20, main = "Mapping Type SOM")
plot(cliente.SOM2, main = "Default SOM Plot")

plot(cliente.SOM2, type = "dist.neighbours", palette.name = terrain.colors)

#SOM supervisados El kohonenpaquete también admite SOM supervisados, lo que nos permite hacer clasificaciones. Hasta ahora solo hemos trabajado con el mapeo de datos tridimensionales a dos dimensiones. La utilidad de los SOM se vuelve más evidente cuando trabajamos con datos dimensionales más altos, así que hagamos este ejemplo supervisado con una lista ampliada de estadísticas de clientes:

colnames(cliente)
## [1] "ID_cliente"          "edad"                "educacion"          
## [4] "años_empleo"         "Ingreso"             "Tarjeta_credito"    
## [7] "otra_tarjeta"        "Direccion"           "Ratio.ingreso.deuda"
cliente.measures1 <- c("edad", "años_empleo", "Ingreso")


training_indices <- sample(nrow(cliente), 150)
cliente.training <- scale(cliente[training_indices, cliente.measures1])
cliente.testing <- scale(cliente[-training_indices, cliente.measures1])
summary(cliente.testing)
##       edad          años_empleo         Ingreso       
##  Min.   :-1.8497   Min.   :-1.2357   Min.   :-0.8498  
##  1st Qu.:-0.8586   1st Qu.:-0.7993   1st Qu.:-0.5742  
##  Median :-0.1152   Median :-0.2175   Median :-0.3237  
##  Mean   : 0.0000   Mean   : 0.0000   Mean   : 0.0000  
##  3rd Qu.: 0.6281   3rd Qu.: 0.6551   3rd Qu.: 0.2086  
##  Max.   : 2.6104   Max.   : 3.5640   Max.   : 9.9977

Tenga en cuenta que cuando cambiamos la escala de nuestros datos de prueba, debemos escalar de acuerdo con la escala de nuestros datos de capacitación.

cliente.SOM3 <- xyf(cliente.training, classvec2classmat(cliente$Ingreso[training_indices]), 
                  grid = somgrid(6, 6, "hexagonal"),  rlen = 100)


summary(cliente.SOM3)
## SOM of size 6x6 with a hexagonal topology and a bubble neighbourhood function.
## The number of data layers is 2.
## Distance measure(s) used: sumofsquares, tanimoto.
## Training data included: 150 objects.
## Mean distance to the closest unit in the map: 0.015.

2. Algoritmo DIANA

Importamos la BD clientes con la cual se va a trabajar.

Cliente<-read.csv("https://raw.githubusercontent.com/VictorGuevaraP/Mineria-de-datos-2019-2/master/clientes.csv",sep = ";")

En esta parte se decide con que matriz trabajar. Se decidió trabajar con la matriz de distancia euclidean.

mat_dist<-dist(x = Cliente, method = "euclidean")

Dendogramas con linkage complete y average para que nos muestre el porcentaje de cada una de ellas.

hc_euc_complete<-hclust(d = mat_dist, method = "complete")
hc_euc_average<-hclust(d = mat_dist, method = "average")
cor(x = mat_dist, cophenetic(hc_euc_complete))
## [1] 0.7375627
cor(x = mat_dist, cophenetic(hc_euc_average))
## [1] 0.7310714

Se simulan datos aleatorios con dos dimensiones, a su vez se hace el cambio del tipo de dato.

set.seed(111)
Cliente<-matrix(rnorm(n = 100*2),nrow = 100, ncol = 2,
              dimnames = list(NULL,c("x","y")))
Cliente<-as.data.frame(Cliente)

Dendogramas con linkage complete y average

hc_euc_complete<-hclust(d = mat_dist, method = "complete")
hc_euc_average<-hclust(d = mat_dist, method = "average")
cor(x = mat_dist, cophenetic(hc_euc_complete))
## [1] 0.7375627
cor(x = mat_dist, cophenetic(hc_euc_average))
## [1] 0.7310714

3. Algoritmo PAM

Importamos la BD clientes con la cual trabajaremos.

Cliente<-read.csv("https://raw.githubusercontent.com/VictorGuevaraP/Mineria-de-datos-2019-2/master/clientes.csv",sep = ";")

Eliminamos la columna ID_CLIENTE porque no es un valor relevante con lo que queremos hacer también eliminamos la columna dirección porque no es un tipo de dato numérico y nos impide realiar nuestro cluestering.

str(Cliente)
## 'data.frame':    850 obs. of  9 variables:
##  $ ID_cliente         : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ edad               : int  41 47 33 29 47 40 38 42 26 47 ...
##  $ educacion          : int  2 1 2 2 1 1 2 3 1 3 ...
##  $ años_empleo        : int  6 26 10 4 31 23 4 0 5 23 ...
##  $ Ingreso            : int  19 100 57 19 253 81 56 64 18 115 ...
##  $ Tarjeta_credito    : num  0.124 4.582 6.111 0.681 9.308 ...
##  $ otra_tarjeta       : num  1.073 8.218 5.802 0.516 8.908 ...
##  $ Direccion          : Factor w/ 32 levels "NBA000","NBA001",..: 2 22 14 10 9 17 14 10 7 12 ...
##  $ Ratio.ingreso.deuda: num  6.3 12.8 20.9 6.3 7.2 10.9 1.6 6.6 15.5 4 ...
Cliente$ID_cliente<-NULL
Cliente$Direccion<-NULL

Luego escalamos los datos para normalizar la data de esta manera podremos tenerla mas entendible

cliepam <- scale(Cliente)

library(cluster)
library(factoextra)

Con este gráfico de codo observamos que lo óptimo sería crear dos cluestering, pero optamos crear 3 porque de esta manera ganamos un poco mas de eficiencia.

fviz_nbclust(x = Cliente, FUNcluster = pam, method = "wss", k.max =15,
             diss = dist(Cliente, method = "manhattan"))

set.seed(111)
pam_clusters <- pam(Cliente, k = 3, metric = "manhattan")
pam_clusters
## Medoids:
##       ID edad educacion años_empleo Ingreso Tarjeta_credito otra_tarjeta
## [1,] 531   29         1           4      24           0.867        1.005
## [2,] 474   41         1          19      96           2.254        5.234
## [3,] 499   37         2          11      47           1.597        2.915
##      Ratio.ingreso.deuda
## [1,]                 7.8
## [2,]                 7.8
## [3,]                 9.6
## Clustering vector:
##   [1] 1 2 3 1 2 2 3 3 1 2 2 3 1 1 1 1 1 1 3 3 1 3 3 2 2 3 1 3 3 3 2 3 1 1 3
##  [36] 1 1 1 1 2 1 2 1 2 1 2 1 1 1 3 2 3 1 2 3 1 1 1 3 3 3 3 3 2 1 3 2 1 1 1
##  [71] 3 3 2 3 1 1 3 1 2 3 3 3 2 3 3 1 1 1 1 1 3 1 1 1 1 3 1 3 1 1 1 2 3 3 1
## [106] 3 1 1 3 2 3 1 3 1 1 3 1 3 3 1 1 1 1 3 3 3 3 1 1 1 3 3 1 1 1 1 2 1 3 3
## [141] 3 1 3 1 3 1 3 3 1 1 3 3 1 1 3 3 2 2 1 3 1 3 2 3 1 1 3 1 1 3 2 1 1 3 1
## [176] 1 3 1 1 2 3 3 1 2 1 3 1 1 3 3 1 3 2 1 2 1 1 3 2 1 2 1 1 1 1 3 1 2 2 1
## [211] 1 3 3 2 1 1 3 3 3 3 1 2 1 1 1 1 2 1 1 3 3 1 3 1 2 1 3 1 3 1 1 3 1 1 1
## [246] 2 3 3 3 1 1 1 1 1 2 3 3 1 1 1 1 2 3 3 3 3 3 3 1 3 1 1 3 3 1 1 1 3 1 1
## [281] 1 2 2 1 2 1 2 1 2 3 1 3 1 3 1 1 1 1 1 2 3 3 1 1 1 3 3 1 3 3 3 1 1 1 3
## [316] 1 1 1 3 1 2 1 2 1 1 3 1 1 2 3 3 2 1 1 3 1 1 2 1 3 3 3 1 1 2 3 1 3 1 1
## [351] 2 1 3 1 1 3 2 1 1 1 2 1 1 1 3 1 3 2 2 3 1 1 2 1 1 1 1 3 1 1 1 1 1 1 2
## [386] 1 2 1 1 1 1 3 3 3 1 3 1 2 3 1 1 1 1 1 1 3 1 3 2 1 3 3 3 1 1 3 3 1 3 1
## [421] 3 3 1 1 3 3 1 1 3 1 3 3 1 1 2 1 1 1 2 3 3 3 1 2 3 3 3 3 3 3 2 1 1 1 2
## [456] 1 1 1 1 3 3 2 1 1 1 1 2 1 3 3 2 3 3 2 3 1 3 1 1 1 3 3 3 1 1 1 3 2 1 1
## [491] 1 2 3 3 1 1 1 3 3 1 1 1 2 2 1 3 3 1 2 1 1 1 1 2 3 3 1 1 1 3 3 1 1 1 3
## [526] 1 1 3 1 1 1 1 2 2 1 3 1 1 1 3 2 3 1 3 3 2 3 1 2 1 3 2 1 2 3 1 2 1 1 1
## [561] 3 3 1 3 1 3 2 1 2 1 3 2 1 1 3 1 1 1 1 3 3 1 3 3 3 1 3 1 1 3 1 2 3 3 1
## [596] 1 1 1 2 3 3 3 1 3 1 3 1 1 1 1 1 1 1 1 3 3 3 1 3 1 2 1 1 1 1 3 1 1 3 2
## [631] 1 1 3 3 2 1 3 2 1 2 1 1 2 1 2 3 2 1 1 1 1 1 2 2 1 1 1 3 3 3 1 3 3 2 1
## [666] 3 2 1 1 3 3 3 2 1 1 2 1 3 1 3 3 1 3 2 1 3 1 3 1 1 1 3 1 3 1 3 3 1 1 1
## [701] 1 3 1 1 1 3 1 1 2 1 2 1 3 2 3 1 1 2 3 2 1 1 1 3 3 2 3 1 1 3 3 2 3 3 2
## [736] 3 1 3 3 3 3 2 1 1 3 3 2 3 1 1 1 1 1 1 1 1 1 1 2 1 2 3 1 3 1 3 3 3 1 2
## [771] 1 1 1 3 3 3 3 3 3 1 3 3 3 3 2 1 3 3 1 3 3 2 3 2 1 1 1 1 1 1 1 2 1 1 3
## [806] 1 3 3 3 1 1 1 1 3 1 1 1 1 1 3 1 3 1 1 1 2 3 1 1 1 3 1 3 1 1 3 1 1 1 1
## [841] 1 3 3 3 3 1 1 1 1 3
## Objective function:
##    build     swap 
## 29.81590 28.18529 
## 
## Available components:
##  [1] "medoids"    "id.med"     "clustering" "objective"  "isolation" 
##  [6] "clusinfo"   "silinfo"    "diss"       "call"       "data"

FINALMENTE PODEMOS OBSERVAR LOS 3 CLUESTERING CREADOS POR EL METODO PAM.

fviz_cluster(object = pam_clusters, data = Cliente) +
  theme_bw() +
  labs(title = "Resultados Cluestering PAM") +
  theme(legend.position =  "none")

4. ALGORITMO CLARA:

Cargamos la DATA “Clientes” y luego procederemos a hacer las siguientes operaciones

cliente<-read.csv("https://raw.githubusercontent.com/VictorGuevaraP/Mineria-de-datos-2019-2/master/clientes.csv", sep = ";")

Para ilustrar la aplicación del método CLARA se simula un set de datos bidimensional (dos variables) con 500 observaciones, de las cuales 200 pertenecen a un grupo y 300 a otro (número de grupos reales = 2).

set.seed(1234)

colnames(cliente) <- c("x", "y")
head(cliente)
##   x  y NA NA  NA    NA    NA     NA   NA
## 1 1 41  2  6  19 0.124 1.073 NBA001  6.3
## 2 2 47  1 26 100 4.582 8.218 NBA021 12.8
## 3 3 33  2 10  57 6.111 5.802 NBA013 20.9
## 4 4 29  2  4  19 0.681 0.516 NBA009  6.3
## 5 5 47  1 31 253 9.308 8.908 NBA008  7.2
## 6 6 40  1 23  81 0.998 7.831 NBA016 10.9

##Usaremos estas dos librerías que nos ayudarán a hacer el algorítmo Clara

library(cluster)
library(factoextra)

una matriz numérica x donde cada fila es una observación, el número de clusters k, la medida de distancia empleada metric (euclídea o manhattan), si los datos se tienen que estandarizar stand, el número de partes samples en las que se divide el set de datos es de 50 y si se utiliza el algoritmo PAM pamLike.

clara_clustersFA<- clara(x = cliente, k = 2, metric = "manhattan", stand = TRUE,
                        samples = 50, pamLike = TRUE)
clara_clustersFA
## Call:     clara(x = cliente, k = 2, metric = "manhattan", stand = TRUE,      samples = 50, pamLike = TRUE) 
## Medoids:
##        x  y <NA> <NA> <NA>  <NA>  <NA> <NA> <NA>
## [1,] 350 34    1    5   33 0.778 1.631    4  7.3
## [2,] 499 37    2   11   47 1.597 2.915   12  9.6
## Objective function:   7.671177
## Clustering vector:    int [1:850] 1 2 2 1 2 2 2 2 1 2 2 1 1 1 1 1 1 1 ...
## Cluster sizes:            474 376 
## Best sample:
##  [1]   3  13  79  87  92 114 115 198 208 233 234 268 299 350 368 376 394
## [18] 400 444 445 448 466 472 499 540 542 554 563 573 601 603 609 625 641
## [35] 644 648 668 676 717 738 756 758 771 787
## 
## Available components:
##  [1] "sample"     "medoids"    "i.med"      "clustering" "objective" 
##  [6] "clusinfo"   "diss"       "call"       "silinfo"    "data"

En ésta parte se muestra los resultados de nuestro clustering

fviz_cluster(object = clara_clustersFA, ellipse.type = "t", geom = "point",
             pointsize = 2.5) +
  theme_bw() +
  labs(title = "Resultados clustering CLARA") +
  theme(legend.position = "none")

plot(silhouette(clara_clustersFA),  col = 2:3, main = "Silhouette plot")

fviz_cluster(clara_clustersFA)

fviz_silhouette(clara_clustersFA)
##   cluster size ave.sil.width
## 1       1   23          0.49
## 2       2   21         -0.05

5. ALGORITMO DE fanny

Cargamos la DATA “Clientes” y luego procederemos a hacer las siguientes operaciones

cliente<-read.csv("https://raw.githubusercontent.com/VictorGuevaraP/Mineria-de-datos-2019-2/master/clientes.csv", sep = ";")

Eliminamos la columna direccion

cliente$Direccion<-NULL
summary(cliente)
##    ID_cliente         edad         educacion      años_empleo    
##  Min.   :  1.0   Min.   :20.00   Min.   :1.000   Min.   : 0.000  
##  1st Qu.:213.2   1st Qu.:29.00   1st Qu.:1.000   1st Qu.: 3.000  
##  Median :425.5   Median :34.00   Median :1.000   Median : 7.000  
##  Mean   :425.5   Mean   :35.03   Mean   :1.711   Mean   : 8.566  
##  3rd Qu.:637.8   3rd Qu.:41.00   3rd Qu.:2.000   3rd Qu.:13.000  
##  Max.   :850.0   Max.   :56.00   Max.   :5.000   Max.   :33.000  
##     Ingreso       Tarjeta_credito    otra_tarjeta    Ratio.ingreso.deuda
##  Min.   : 13.00   Min.   : 0.0120   Min.   : 0.046   Min.   : 0.10      
##  1st Qu.: 24.00   1st Qu.: 0.3825   1st Qu.: 1.046   1st Qu.: 5.10      
##  Median : 35.00   Median : 0.8850   Median : 2.003   Median : 8.70      
##  Mean   : 46.68   Mean   : 1.5768   Mean   : 3.079   Mean   :10.17      
##  3rd Qu.: 55.75   3rd Qu.: 1.8985   3rd Qu.: 3.903   3rd Qu.:13.80      
##  Max.   :446.00   Max.   :20.5610   Max.   :35.197   Max.   :41.30
head(cliente)
##   ID_cliente edad educacion años_empleo Ingreso Tarjeta_credito
## 1          1   41         2           6      19           0.124
## 2          2   47         1          26     100           4.582
## 3          3   33         2          10      57           6.111
## 4          4   29         2           4      19           0.681
## 5          5   47         1          31     253           9.308
## 6          6   40         1          23      81           0.998
##   otra_tarjeta Ratio.ingreso.deuda
## 1        1.073                 6.3
## 2        8.218                12.8
## 3        5.802                20.9
## 4        0.516                 6.3
## 5        8.908                 7.2
## 6        7.831                10.9
plot(cliente)

Escojer cluster necesarios Metodo de Slope

wss=as.numeric()
for (k in 2:10) {
  agrupa=kmeans(cliente, k)
  wss[k-1]= agrupa$tot.withinss
}
plot(2:10, wss, type = "b")

library(cluster)
cliente_agrupa=fanny(x = cliente, diss = FALSE, k = 3, metric = "euclidean", stand = FALSE)
cliente_agrupa
## Fuzzy Clustering object of class 'fanny' :                      
## m.ship.expon.        2
## objective     31231.79
## tolerance        1e-15
## iterations          51
## converged            1
## maxit              500
## n                  850
## Membership coefficients (in %, rounded):
##        [,1] [,2] [,3]
##   [1,]   71   19   10
##   [2,]   69   20   11
##   [3,]   71   18   10
##   [4,]   71   18   10
##   [5,]   55   28   17
##   [6,]   71   19   10
##   [7,]   72   18   10
##   [8,]   72   18   10
##   [9,]   72   18   10
##  [10,]   68   20   11
##  [11,]   71   19   10
##  [12,]   73   17   10
##  [13,]   72   18   10
##  [14,]   73   17   10
##  [15,]   73   17   10
##  [16,]   73   18   10
##  [17,]   73   17   10
##  [18,]   74   17    9
##  [19,]   74   17    9
##  [20,]   74   17    9
##  [21,]   74   17    9
##  [22,]   75   16    9
##  [23,]   75   16    9
##  [24,]   73   17    9
##  [25,]   69   20   11
##  [26,]   75   16    9
##  [27,]   75   16    9
##  [28,]   76   16    9
##  [29,]   75   16    9
##  [30,]   76   16    8
##  [31,]   72   18   10
##  [32,]   76   16    8
##  [33,]   76   16    8
##  [34,]   76   15    8
##  [35,]   77   15    8
##  [36,]   77   15    8
##  [37,]   77   15    8
##  [38,]   76   15    8
##  [39,]   76   15    8
##  [40,]   70   19   10
##  [41,]   76   15    8
##  [42,]   72   18   10
##  [43,]   78   15    8
##  [44,]   64   23   13
##  [45,]   77   15    8
##  [46,]   76   16    8
##  [47,]   77   15    8
##  [48,]   78   14    7
##  [49,]   78   14    8
##  [50,]   79   14    7
##  [51,]   77   15    8
##  [52,]   78   14    7
##  [53,]   78   14    7
##  [54,]   78   15    8
##  [55,]   78   14    7
##  [56,]   80   13    7
##  [57,]   79   14    7
##  [58,]   80   13    7
##  [59,]   80   13    7
##  [60,]   80   13    7
##  [61,]   80   13    7
##  [62,]   81   13    6
##  [63,]   80   13    7
##  [64,]   79   14    7
##  [65,]   80   13    7
##  [66,]   82   12    6
##  [67,]   79   14    7
##  [68,]   82   12    6
##  [69,]   81   12    6
##  [70,]   80   13    7
##  [71,]   82   12    6
##  [72,]   80   13    7
##  [73,]   77   15    8
##  [74,]   83   12    6
##  [75,]   83   11    6
##  [76,]   82   12    6
##  [77,]   83   11    6
##  [78,]   82   12    6
##  [79,]   69   20   11
##  [80,]   83   12    6
##  [81,]   82   12    6
##  [82,]   81   13    6
##  [83,]   67   21   11
##  [84,]   84   11    5
##  [85,]   83   11    5
##  [86,]   82   12    6
##  [87,]   83   11    5
##  [88,]   83   11    6
##  [89,]   85   10    5
##  [90,]   84   11    5
##  [91,]   82   12    6
##  [92,]   85   10    5
##  [93,]   84   11    5
##  [94,]   84   11    5
##  [95,]   85   10    5
##  [96,]   85   10    5
##  [97,]   85   10    5
##  [98,]   85   10    5
##  [99,]   85   10    5
## [100,]   84   11    5
## [101,]   85   10    5
## [102,]   73   18    9
## [103,]   85   10    5
## [104,]   86   10    5
## [105,]   85   10    5
## [106,]   84   11    5
## [107,]   86    9    4
## [108,]   86   10    5
## [109,]   86   10    4
## [110,]   82   12    6
## [111,]   86    9    4
## [112,]   86   10    4
## [113,]   87    9    4
## [114,]   84   11    5
## [115,]   86    9    4
## [116,]   87    9    4
## [117,]   85   10    5
## [118,]   87    9    4
## [119,]   85   10    5
## [120,]   87    9    4
## [121,]   86   10    4
## [122,]   87    9    4
## [123,]   87    9    4
## [124,]   86    9    4
## [125,]   87    9    4
## [126,]   84   11    5
## [127,]   87    9    4
## [128,]   86   10    4
## [129,]   85   10    5
## [130,]   85   11    5
## [131,]   87    9    4
## [132,]   86   10    4
## [133,]   86    9    4
## [134,]   86   10    4
## [135,]   86   10    4
## [136,]   87    9    4
## [137,]   80   14    6
## [138,]   85   10    5
## [139,]   86   10    4
## [140,]   86    9    4
## [141,]   86    9    4
## [142,]   85   11    5
## [143,]   86    9    4
## [144,]   85   10    4
## [145,]   83   12    5
## [146,]   85   10    4
## [147,]   85   11    5
## [148,]   85   10    4
## [149,]   85   10    4
## [150,]   85   11    5
## [151,]   85   10    4
## [152,]   84   11    5
## [153,]   85   10    4
## [154,]   83   12    5
## [155,]   83   12    5
## [156,]   85   11    5
## [157,]   73   19    8
## [158,]   75   17    7
## [159,]   83   12    5
## [160,]   83   12    5
## [161,]   82   12    5
## [162,]   84   11    5
## [163,]   79   15    6
## [164,]   84   12    5
## [165,]   82   12    5
## [166,]   83   12    5
## [167,]   82   12    5
## [168,]   82   13    5
## [169,]   82   13    5
## [170,]   82   13    5
## [171,]   76   17    7
## [172,]   81   14    6
## [173,]   81   13    5
## [174,]   82   13    5
## [175,]   81   14    5
## [176,]   78   15    6
## [177,]   80   14    6
## [178,]   80   15    6
## [179,]   81   14    6
## [180,]   74   19    8
## [181,]   80   14    6
## [182,]   80   14    6
## [183,]   78   16    6
## [184,]   65   25   10
## [185,]   76   17    7
## [186,]   78   16    6
## [187,]   77   16    6
## [188,]   78   16    6
## [189,]   78   16    6
## [190,]   75   18    7
## [191,]   77   17    6
## [192,]   76   18    7
## [193,]   74   19    7
## [194,]   76   17    7
## [195,]   74   19    7
## [196,]   76   17    7
## [197,]   74   19    7
## [198,]   73   20    7
## [199,]   51   33   16
## [200,]   74   19    7
## [201,]   65   25   10
## [202,]   73   20    7
## [203,]   73   20    7
## [204,]   73   20    7
## [205,]   72   20    7
## [206,]   72   20    7
## [207,]   72   20    7
## [208,]   49   34   17
## [209,]   66   25    9
## [210,]   71   22    8
## [211,]   71   22    8
## [212,]   71   22    8
## [213,]   70   22    8
## [214,]   67   24    9
## [215,]   69   23    8
## [216,]   68   24    8
## [217,]   68   24    8
## [218,]   67   24    9
## [219,]   68   24    8
## [220,]   67   25    9
## [221,]   66   25    9
## [222,]   60   29   11
## [223,]   67   25    8
## [224,]   66   26    9
## [225,]   66   26    9
## [226,]   65   26    9
## [227,]   60   29   11
## [228,]   65   26    9
## [229,]   64   27    9
## [230,]   64   27    9
## [231,]   64   27    9
## [232,]   63   28    9
## [233,]   63   28    9
## [234,]   62   29   10
## [235,]   60   30   10
## [236,]   61   29   10
## [237,]   61   29    9
## [238,]   60   30   10
## [239,]   60   30   10
## [240,]   60   30   10
## [241,]   60   30   10
## [242,]   60   31   10
## [243,]   59   31   10
## [244,]   59   31   10
## [245,]   58   32   10
## [246,]   49   37   15
## [247,]   57   33   10
## [248,]   57   33   10
## [249,]   57   33   10
## [250,]   56   34   10
## [251,]   56   34   10
## [252,]   56   34   10
## [253,]   55   34   10
## [254,]   54   35   11
## [255,]   53   36   11
## [256,]   54   36   11
## [257,]   54   36   11
## [258,]   53   36   11
## [259,]   52   37   11
## [260,]   52   37   11
## [261,]   52   37   11
## [262,]   50   38   12
## [263,]   51   38   11
## [264,]   51   38   11
## [265,]   50   39   11
## [266,]   50   39   11
## [267,]   50   39   11
## [268,]   49   40   11
## [269,]   49   40   11
## [270,]   48   40   11
## [271,]   48   41   11
## [272,]   47   41   11
## [273,]   47   42   11
## [274,]   47   42   11
## [275,]   46   42   11
## [276,]   46   43   12
## [277,]   46   43   11
## [278,]   45   43   11
## [279,]   45   44   11
## [280,]   44   44   11
## [281,]   44   44   12
## [282,]   42   43   15
## [283,]   43   44   14
## [284,]   43   45   12
## [285,]   42   45   13
## [286,]   42   46   12
## [287,]   42   46   12
## [288,]   41   47   12
## [289,]   41   46   13
## [290,]   41   47   12
## [291,]   40   48   12
## [292,]   40   48   12
## [293,]   39   49   12
## [294,]   39   49   12
## [295,]   39   50   12
## [296,]   38   50   12
## [297,]   38   50   12
## [298,]   38   51   12
## [299,]   37   51   12
## [300,]   38   50   13
## [301,]   37   51   12
## [302,]   36   52   12
## [303,]   36   52   12
## [304,]   35   53   12
## [305,]   35   53   12
## [306,]   35   53   12
## [307,]   34   54   12
## [308,]   34   53   12
## [309,]   34   55   12
## [310,]   33   55   12
## [311,]   33   55   12
## [312,]   33   55   12
## [313,]   32   56   12
## [314,]   32   56   12
## [315,]   32   57   12
## [316,]   32   56   12
## [317,]   31   57   12
## [318,]   31   58   12
## [319,]   30   58   12
## [320,]   30   58   12
## [321,]   32   55   13
## [322,]   29   59   12
## [323,]   31   56   13
## [324,]   29   59   12
## [325,]   29   59   12
## [326,]   28   60   12
## [327,]   28   60   12
## [328,]   28   61   12
## [329,]   30   56   14
## [330,]   27   62   12
## [331,]   27   62   12
## [332,]   30   56   14
## [333,]   26   62   12
## [334,]   25   63   11
## [335,]   25   64   11
## [336,]   25   63   12
## [337,]   25   63   12
## [338,]   26   62   12
## [339,]   24   64   11
## [340,]   24   64   11
## [341,]   23   66   11
## [342,]   24   65   11
## [343,]   23   66   11
## [344,]   23   65   12
## [345,]   24   64   12
## [346,]   22   67   11
## [347,]   22   66   11
## [348,]   23   65   12
## [349,]   22   67   11
## [350,]   21   69   11
## [351,]   28   56   16
## [352,]   21   68   11
## [353,]   20   69   11
## [354,]   20   70   11
## [355,]   20   69   11
## [356,]   19   70   11
## [357,]   24   63   13
## [358,]   19   71   11
## [359,]   19   70   11
## [360,]   19   70   11
## [361,]   29   51   19
## [362,]   19   71   11
## [363,]   18   71   11
## [364,]   18   72   10
## [365,]   19   69   11
## [366,]   18   71   11
## [367,]   18   71   11
## [368,]   24   61   15
## [369,]   23   62   15
## [370,]   17   73   10
## [371,]   17   73   10
## [372,]   16   74   10
## [373,]   18   71   11
## [374,]   16   73   10
## [375,]   17   73   11
## [376,]   15   74   10
## [377,]   15   75   10
## [378,]   15   76   10
## [379,]   15   75   10
## [380,]   15   74   11
## [381,]   14   76   10
## [382,]   15   75   10
## [383,]   15   74   11
## [384,]   14   75   10
## [385,]   23   59   17
## [386,]   13   77    9
## [387,]   16   73   12
## [388,]   14   77   10
## [389,]   13   78    9
## [390,]   13   77   10
## [391,]   13   77   10
## [392,]   13   77   10
## [393,]   12   78    9
## [394,]   13   77   10
## [395,]   13   78   10
## [396,]   12   79    9
## [397,]   12   78   10
## [398,]   21   63   17
## [399,]   11   80    9
## [400,]   12   79    9
## [401,]   12   78   10
## [402,]   12   78   10
## [403,]   12   78   10
## [404,]   12   78   10
## [405,]   11   80    9
## [406,]   11   79   10
## [407,]   11   80    9
## [408,]   11   79   10
## [409,]   15   71   13
## [410,]   11   80    9
## [411,]   10   81    9
## [412,]   11   79   10
## [413,]   10   81    9
## [414,]   11   79   10
## [415,]   10   80    9
## [416,]   10   81    9
## [417,]   11   78   11
## [418,]   10   80   10
## [419,]   10   80   10
## [420,]   10   80   10
## [421,]   10   80   10
## [422,]   11   79   10
## [423,]   10   80   10
## [424,]    9   81    9
## [425,]   12   76   12
## [426,]   10   80   10
## [427,]   10   81   10
## [428,]   10   79   10
## [429,]    9   81    9
## [430,]   10   79   10
## [431,]   10   80   10
## [432,]    9   81   10
## [433,]   10   79   11
## [434,]   10   79   11
## [435,]   11   77   12
## [436,]    9   80   10
## [437,]    9   80   10
## [438,]   10   80   11
## [439,]   12   75   13
## [440,]    9   80   11
## [441,]    9   80   10
## [442,]    9   81   10
## [443,]    9   80   11
## [444,]   25   47   28
## [445,]   10   79   11
## [446,]    9   80   11
## [447,]    9   80   11
## [448,]    9   79   11
## [449,]    9   79   11
## [450,]    9   80   11
## [451,]   13   72   15
## [452,]    9   79   11
## [453,]   10   78   12
## [454,]   10   78   12
## [455,]   20   56   24
## [456,]    9   79   12
## [457,]   11   75   14
## [458,]    9   78   12
## [459,]   10   77   13
## [460,]   10   77   13
## [461,]   10   78   13
## [462,]   20   55   25
## [463,]   11   75   14
## [464,]   10   77   13
## [465,]   10   77   13
## [466,]   10   75   14
## [467,]   12   72   16
## [468,]   10   76   14
## [469,]   10   75   15
## [470,]   10   75   15
## [471,]   13   69   18
## [472,]   10   76   14
## [473,]   10   75   15
## [474,]   13   68   19
## [475,]   11   73   16
## [476,]   10   74   16
## [477,]   10   74   16
## [478,]   10   74   16
## [479,]   10   74   16
## [480,]   11   72   17
## [481,]   10   73   16
## [482,]   10   74   16
## [483,]   12   70   19
## [484,]   11   71   18
## [485,]   10   72   17
## [486,]   10   73   17
## [487,]   10   72   17
## [488,]   13   65   22
## [489,]   11   70   19
## [490,]   11   71   19
## [491,]   11   70   19
## [492,]   13   66   22
## [493,]   11   71   19
## [494,]   11   69   20
## [495,]   11   70   19
## [496,]   11   69   20
## [497,]   11   68   20
## [498,]   13   65   23
## [499,]   11   69   20
## [500,]   11   67   21
## [501,]   11   69   21
## [502,]   11   68   21
## [503,]   14   61   26
## [504,]   14   60   26
## [505,]   11   67   22
## [506,]   11   67   22
## [507,]   11   66   22
## [508,]   11   66   23
## [509,]   12   64   24
## [510,]   11   65   23
## [511,]   11   65   24
## [512,]   11   65   24
## [513,]   11   65   24
## [514,]   15   56   29
## [515,]   12   64   25
## [516,]   11   64   25
## [517,]   12   63   26
## [518,]   11   63   25
## [519,]   12   62   26
## [520,]   12   62   27
## [521,]   12   61   27
## [522,]   12   62   27
## [523,]   12   61   27
## [524,]   12   60   28
## [525,]   12   61   28
## [526,]   12   60   28
## [527,]   12   60   28
## [528,]   12   60   29
## [529,]   12   58   29
## [530,]   12   58   30
## [531,]   12   58   30
## [532,]   12   58   30
## [533,]   27   38   35
## [534,]   13   55   32
## [535,]   12   57   31
## [536,]   12   57   31
## [537,]   12   56   32
## [538,]   12   56   32
## [539,]   12   56   32
## [540,]   12   56   33
## [541,]   14   51   35
## [542,]   12   55   33
## [543,]   12   54   34
## [544,]   12   54   34
## [545,]   12   54   34
## [546,]   13   51   36
## [547,]   12   53   35
## [548,]   12   53   35
## [549,]   13   50   37
## [550,]   12   52   36
## [551,]   12   51   37
## [552,]   21   41   38
## [553,]   12   51   37
## [554,]   16   45   39
## [555,]   12   50   38
## [556,]   12   49   38
## [557,]   20   41   38
## [558,]   12   49   39
## [559,]   12   49   39
## [560,]   12   48   40
## [561,]   12   48   40
## [562,]   12   47   41
## [563,]   12   47   41
## [564,]   12   47   41
## [565,]   12   46   42
## [566,]   12   46   42
## [567,]   12   45   42
## [568,]   12   45   43
## [569,]   12   45   43
## [570,]   12   45   44
## [571,]   12   44   44
## [572,]   18   41   41
## [573,]   12   44   45
## [574,]   12   43   45
## [575,]   11   43   46
## [576,]   12   43   46
## [577,]   12   42   46
## [578,]   11   42   47
## [579,]   11   42   47
## [580,]   11   41   47
## [581,]   12   41   48
## [582,]   11   40   48
## [583,]   11   40   49
## [584,]   11   40   49
## [585,]   11   39   50
## [586,]   11   39   49
## [587,]   11   39   50
## [588,]   11   38   51
## [589,]   11   38   51
## [590,]   11   38   51
## [591,]   11   37   52
## [592,]   12   38   51
## [593,]   11   37   53
## [594,]   11   36   53
## [595,]   11   36   53
## [596,]   11   36   54
## [597,]   11   35   54
## [598,]   11   35   54
## [599,]   11   35   54
## [600,]   10   34   55
## [601,]   10   34   56
## [602,]   10   33   56
## [603,]   11   34   56
## [604,]   11   34   56
## [605,]   10   33   57
## [606,]   10   32   57
## [607,]   10   32   58
## [608,]   10   31   59
## [609,]   10   31   59
## [610,]   10   31   60
## [611,]   10   30   60
## [612,]   10   30   60
## [613,]   10   30   60
## [614,]   10   29   61
## [615,]   10   29   61
## [616,]    9   29   62
## [617,]    9   29   62
## [618,]    9   28   62
## [619,]    9   28   63
## [620,]    9   27   63
## [621,]   10   29   61
## [622,]    9   27   64
## [623,]    9   27   64
## [624,]    9   27   64
## [625,]    9   27   64
## [626,]    9   26   65
## [627,]    9   26   65
## [628,]    9   26   65
## [629,]    9   26   65
## [630,]   12   31   57
## [631,]    9   25   66
## [632,]    8   24   68
## [633,]    9   25   66
## [634,]    8   24   68
## [635,]   10   28   62
## [636,]    8   23   68
## [637,]    8   23   69
## [638,]    9   24   67
## [639,]    8   22   70
## [640,]    9   24   67
## [641,]    8   22   70
## [642,]    8   22   70
## [643,]   15   32   53
## [644,]    8   21   72
## [645,]    8   22   69
## [646,]    8   21   72
## [647,]   11   28   60
## [648,]    7   20   72
## [649,]    7   20   73
## [650,]    7   19   74
## [651,]    8   20   72
## [652,]    7   19   74
## [653,]   10   25   65
## [654,]    8   20   72
## [655,]    7   19   74
## [656,]    7   18   75
## [657,]    7   18   76
## [658,]    7   19   74
## [659,]    7   19   74
## [660,]    7   17   76
## [661,]    7   17   77
## [662,]    7   17   77
## [663,]    7   18   74
## [664,]    9   23   67
## [665,]    6   16   78
## [666,]    6   16   78
## [667,]    7   18   75
## [668,]    6   16   78
## [669,]    6   16   78
## [670,]    6   15   80
## [671,]    6   16   78
## [672,]    6   15   79
## [673,]   16   32   52
## [674,]    6   15   79
## [675,]    6   14   80
## [676,]    9   22   69
## [677,]    5   13   81
## [678,]    6   14   81
## [679,]    5   13   81
## [680,]    5   13   82
## [681,]    5   13   82
## [682,]    6   14   81
## [683,]    5   13   82
## [684,]    8   18   75
## [685,]    5   13   81
## [686,]    5   12   83
## [687,]    6   13   81
## [688,]    6   14   81
## [689,]    5   12   83
## [690,]    5   12   83
## [691,]    6   13   81
## [692,]    5   11   84
## [693,]    5   11   84
## [694,]    5   13   82
## [695,]    5   12   83
## [696,]    5   11   84
## [697,]    5   12   82
## [698,]    5   11   84
## [699,]    5   11   84
## [700,]    5   12   83
## [701,]    5   11   84
## [702,]    4   10   85
## [703,]    5   10   85
## [704,]    5   11   84
## [705,]    5   12   83
## [706,]    5   12   83
## [707,]    5   11   84
## [708,]    5   11   84
## [709,]    5   12   82
## [710,]    5   11   84
## [711,]    7   15   78
## [712,]    4   10   86
## [713,]    5   11   83
## [714,]    9   18   73
## [715,]    4   10   86
## [716,]    5   11   84
## [717,]    4    9   87
## [718,]    9   20   70
## [719,]    4   10   86
## [720,]    6   13   81
## [721,]    4   10   86
## [722,]    4    9   87
## [723,]    4   10   86
## [724,]    4    9   87
## [725,]    4   10   86
## [726,]   11   22   68
## [727,]    4    9   87
## [728,]    4    9   87
## [729,]    4   10   86
## [730,]    4    9   87
## [731,]    5   11   84
## [732,]    5   11   83
## [733,]    4    9   86
## [734,]    4    9   87
## [735,]   10   20   70
## [736,]    5   10   85
## [737,]    5   10   85
## [738,]    4    9   86
## [739,]    4    9   87
## [740,]    4    9   87
## [741,]    4    9   86
## [742,]    6   12   82
## [743,]    5   10   85
## [744,]    5   10   86
## [745,]    4    9   87
## [746,]    5   10   85
## [747,]    9   19   72
## [748,]    4    9   86
## [749,]    5   11   84
## [750,]    5    9   86
## [751,]    5   10   85
## [752,]    5   10   85
## [753,]    5    9   86
## [754,]    5   10   85
## [755,]    5   10   85
## [756,]    5   10   85
## [757,]    5   10   85
## [758,]    5   11   84
## [759,]    6   12   82
## [760,]    5   11   84
## [761,]    7   15   77
## [762,]    5   11   84
## [763,]    5   11   84
## [764,]    6   12   83
## [765,]    6   11   83
## [766,]    6   12   82
## [767,]    6   11   83
## [768,]    5   10   85
## [769,]    5   10   84
## [770,]    6   13   81
## [771,]    6   12   83
## [772,]    6   11   83
## [773,]    6   11   83
## [774,]    6   11   84
## [775,]    5   11   84
## [776,]    6   12   82
## [777,]    6   13   81
## [778,]    6   11   83
## [779,]    6   12   83
## [780,]    6   12   82
## [781,]    6   11   83
## [782,]    6   11   83
## [783,]    6   11   83
## [784,]    6   12   83
## [785,]    7   14   79
## [786,]    6   12   82
## [787,]    6   12   82
## [788,]    6   12   82
## [789,]    6   12   82
## [790,]    6   12   82
## [791,]    6   13   81
## [792,]   19   31   50
## [793,]    7   13   80
## [794,]    8   15   77
## [795,]    7   13   80
## [796,]    7   13   80
## [797,]    7   13   80
## [798,]    7   13   80
## [799,]    7   13   80
## [800,]    7   13   80
## [801,]    7   14   79
## [802,]    9   17   73
## [803,]    7   14   78
## [804,]    7   14   79
## [805,]    7   13   79
## [806,]    7   14   78
## [807,]    7   14   79
## [808,]    7   14   78
## [809,]    8   15   77
## [810,]    8   15   77
## [811,]    8   14   78
## [812,]    8   15   77
## [813,]    8   15   77
## [814,]    8   14   78
## [815,]    8   15   77
## [816,]    8   15   78
## [817,]    8   15   77
## [818,]    8   15   77
## [819,]    8   15   77
## [820,]    8   15   77
## [821,]    8   15   76
## [822,]    8   15   76
## [823,]    9   16   76
## [824,]    8   16   76
## [825,]    9   16   76
## [826,]   11   19   70
## [827,]    9   17   75
## [828,]    9   16   75
## [829,]    9   16   75
## [830,]    9   16   75
## [831,]    9   16   75
## [832,]    9   17   74
## [833,]    9   16   75
## [834,]    9   16   75
## [835,]    9   17   74
## [836,]    9   17   74
## [837,]    9   17   74
## [838,]    9   17   73
## [839,]    9   17   74
## [840,]    9   17   73
## [841,]   10   17   73
## [842,]   10   18   73
## [843,]   10   17   73
## [844,]   10   17   73
## [845,]   10   18   73
## [846,]   10   18   72
## [847,]   10   18   72
## [848,]   10   19   71
## [849,]   10   18   72
## [850,]   10   19   71
## Fuzzyness coefficients:
## dunn_coeff normalized 
##  0.5755568  0.3633352 
## Closest hard clustering:
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [71] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [106] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [141] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [176] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [211] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [246] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [281] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [316] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [351] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [386] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [421] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [456] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [491] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [526] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [561] 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [596] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [631] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [666] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [701] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [736] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [771] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [806] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [841] 3 3 3 3 3 3 3 3 3 3
## 
## Available components:
##  [1] "membership"  "coeff"       "memb.exp"    "clustering"  "k.crisp"    
##  [6] "objective"   "convergence" "diss"        "call"        "silinfo"    
## [11] "data"
summary(cliente_agrupa)
## Fuzzy Clustering object of class 'fanny' :                      
## m.ship.expon.        2
## objective     31231.79
## tolerance        1e-15
## iterations          51
## converged            1
## maxit              500
## n                  850
## Membership coefficients (in %, rounded):
##        [,1] [,2] [,3]
##   [1,]   71   19   10
##   [2,]   69   20   11
##   [3,]   71   18   10
##   [4,]   71   18   10
##   [5,]   55   28   17
##   [6,]   71   19   10
##   [7,]   72   18   10
##   [8,]   72   18   10
##   [9,]   72   18   10
##  [10,]   68   20   11
##  [11,]   71   19   10
##  [12,]   73   17   10
##  [13,]   72   18   10
##  [14,]   73   17   10
##  [15,]   73   17   10
##  [16,]   73   18   10
##  [17,]   73   17   10
##  [18,]   74   17    9
##  [19,]   74   17    9
##  [20,]   74   17    9
##  [21,]   74   17    9
##  [22,]   75   16    9
##  [23,]   75   16    9
##  [24,]   73   17    9
##  [25,]   69   20   11
##  [26,]   75   16    9
##  [27,]   75   16    9
##  [28,]   76   16    9
##  [29,]   75   16    9
##  [30,]   76   16    8
##  [31,]   72   18   10
##  [32,]   76   16    8
##  [33,]   76   16    8
##  [34,]   76   15    8
##  [35,]   77   15    8
##  [36,]   77   15    8
##  [37,]   77   15    8
##  [38,]   76   15    8
##  [39,]   76   15    8
##  [40,]   70   19   10
##  [41,]   76   15    8
##  [42,]   72   18   10
##  [43,]   78   15    8
##  [44,]   64   23   13
##  [45,]   77   15    8
##  [46,]   76   16    8
##  [47,]   77   15    8
##  [48,]   78   14    7
##  [49,]   78   14    8
##  [50,]   79   14    7
##  [51,]   77   15    8
##  [52,]   78   14    7
##  [53,]   78   14    7
##  [54,]   78   15    8
##  [55,]   78   14    7
##  [56,]   80   13    7
##  [57,]   79   14    7
##  [58,]   80   13    7
##  [59,]   80   13    7
##  [60,]   80   13    7
##  [61,]   80   13    7
##  [62,]   81   13    6
##  [63,]   80   13    7
##  [64,]   79   14    7
##  [65,]   80   13    7
##  [66,]   82   12    6
##  [67,]   79   14    7
##  [68,]   82   12    6
##  [69,]   81   12    6
##  [70,]   80   13    7
##  [71,]   82   12    6
##  [72,]   80   13    7
##  [73,]   77   15    8
##  [74,]   83   12    6
##  [75,]   83   11    6
##  [76,]   82   12    6
##  [77,]   83   11    6
##  [78,]   82   12    6
##  [79,]   69   20   11
##  [80,]   83   12    6
##  [81,]   82   12    6
##  [82,]   81   13    6
##  [83,]   67   21   11
##  [84,]   84   11    5
##  [85,]   83   11    5
##  [86,]   82   12    6
##  [87,]   83   11    5
##  [88,]   83   11    6
##  [89,]   85   10    5
##  [90,]   84   11    5
##  [91,]   82   12    6
##  [92,]   85   10    5
##  [93,]   84   11    5
##  [94,]   84   11    5
##  [95,]   85   10    5
##  [96,]   85   10    5
##  [97,]   85   10    5
##  [98,]   85   10    5
##  [99,]   85   10    5
## [100,]   84   11    5
## [101,]   85   10    5
## [102,]   73   18    9
## [103,]   85   10    5
## [104,]   86   10    5
## [105,]   85   10    5
## [106,]   84   11    5
## [107,]   86    9    4
## [108,]   86   10    5
## [109,]   86   10    4
## [110,]   82   12    6
## [111,]   86    9    4
## [112,]   86   10    4
## [113,]   87    9    4
## [114,]   84   11    5
## [115,]   86    9    4
## [116,]   87    9    4
## [117,]   85   10    5
## [118,]   87    9    4
## [119,]   85   10    5
## [120,]   87    9    4
## [121,]   86   10    4
## [122,]   87    9    4
## [123,]   87    9    4
## [124,]   86    9    4
## [125,]   87    9    4
## [126,]   84   11    5
## [127,]   87    9    4
## [128,]   86   10    4
## [129,]   85   10    5
## [130,]   85   11    5
## [131,]   87    9    4
## [132,]   86   10    4
## [133,]   86    9    4
## [134,]   86   10    4
## [135,]   86   10    4
## [136,]   87    9    4
## [137,]   80   14    6
## [138,]   85   10    5
## [139,]   86   10    4
## [140,]   86    9    4
## [141,]   86    9    4
## [142,]   85   11    5
## [143,]   86    9    4
## [144,]   85   10    4
## [145,]   83   12    5
## [146,]   85   10    4
## [147,]   85   11    5
## [148,]   85   10    4
## [149,]   85   10    4
## [150,]   85   11    5
## [151,]   85   10    4
## [152,]   84   11    5
## [153,]   85   10    4
## [154,]   83   12    5
## [155,]   83   12    5
## [156,]   85   11    5
## [157,]   73   19    8
## [158,]   75   17    7
## [159,]   83   12    5
## [160,]   83   12    5
## [161,]   82   12    5
## [162,]   84   11    5
## [163,]   79   15    6
## [164,]   84   12    5
## [165,]   82   12    5
## [166,]   83   12    5
## [167,]   82   12    5
## [168,]   82   13    5
## [169,]   82   13    5
## [170,]   82   13    5
## [171,]   76   17    7
## [172,]   81   14    6
## [173,]   81   13    5
## [174,]   82   13    5
## [175,]   81   14    5
## [176,]   78   15    6
## [177,]   80   14    6
## [178,]   80   15    6
## [179,]   81   14    6
## [180,]   74   19    8
## [181,]   80   14    6
## [182,]   80   14    6
## [183,]   78   16    6
## [184,]   65   25   10
## [185,]   76   17    7
## [186,]   78   16    6
## [187,]   77   16    6
## [188,]   78   16    6
## [189,]   78   16    6
## [190,]   75   18    7
## [191,]   77   17    6
## [192,]   76   18    7
## [193,]   74   19    7
## [194,]   76   17    7
## [195,]   74   19    7
## [196,]   76   17    7
## [197,]   74   19    7
## [198,]   73   20    7
## [199,]   51   33   16
## [200,]   74   19    7
## [201,]   65   25   10
## [202,]   73   20    7
## [203,]   73   20    7
## [204,]   73   20    7
## [205,]   72   20    7
## [206,]   72   20    7
## [207,]   72   20    7
## [208,]   49   34   17
## [209,]   66   25    9
## [210,]   71   22    8
## [211,]   71   22    8
## [212,]   71   22    8
## [213,]   70   22    8
## [214,]   67   24    9
## [215,]   69   23    8
## [216,]   68   24    8
## [217,]   68   24    8
## [218,]   67   24    9
## [219,]   68   24    8
## [220,]   67   25    9
## [221,]   66   25    9
## [222,]   60   29   11
## [223,]   67   25    8
## [224,]   66   26    9
## [225,]   66   26    9
## [226,]   65   26    9
## [227,]   60   29   11
## [228,]   65   26    9
## [229,]   64   27    9
## [230,]   64   27    9
## [231,]   64   27    9
## [232,]   63   28    9
## [233,]   63   28    9
## [234,]   62   29   10
## [235,]   60   30   10
## [236,]   61   29   10
## [237,]   61   29    9
## [238,]   60   30   10
## [239,]   60   30   10
## [240,]   60   30   10
## [241,]   60   30   10
## [242,]   60   31   10
## [243,]   59   31   10
## [244,]   59   31   10
## [245,]   58   32   10
## [246,]   49   37   15
## [247,]   57   33   10
## [248,]   57   33   10
## [249,]   57   33   10
## [250,]   56   34   10
## [251,]   56   34   10
## [252,]   56   34   10
## [253,]   55   34   10
## [254,]   54   35   11
## [255,]   53   36   11
## [256,]   54   36   11
## [257,]   54   36   11
## [258,]   53   36   11
## [259,]   52   37   11
## [260,]   52   37   11
## [261,]   52   37   11
## [262,]   50   38   12
## [263,]   51   38   11
## [264,]   51   38   11
## [265,]   50   39   11
## [266,]   50   39   11
## [267,]   50   39   11
## [268,]   49   40   11
## [269,]   49   40   11
## [270,]   48   40   11
## [271,]   48   41   11
## [272,]   47   41   11
## [273,]   47   42   11
## [274,]   47   42   11
## [275,]   46   42   11
## [276,]   46   43   12
## [277,]   46   43   11
## [278,]   45   43   11
## [279,]   45   44   11
## [280,]   44   44   11
## [281,]   44   44   12
## [282,]   42   43   15
## [283,]   43   44   14
## [284,]   43   45   12
## [285,]   42   45   13
## [286,]   42   46   12
## [287,]   42   46   12
## [288,]   41   47   12
## [289,]   41   46   13
## [290,]   41   47   12
## [291,]   40   48   12
## [292,]   40   48   12
## [293,]   39   49   12
## [294,]   39   49   12
## [295,]   39   50   12
## [296,]   38   50   12
## [297,]   38   50   12
## [298,]   38   51   12
## [299,]   37   51   12
## [300,]   38   50   13
## [301,]   37   51   12
## [302,]   36   52   12
## [303,]   36   52   12
## [304,]   35   53   12
## [305,]   35   53   12
## [306,]   35   53   12
## [307,]   34   54   12
## [308,]   34   53   12
## [309,]   34   55   12
## [310,]   33   55   12
## [311,]   33   55   12
## [312,]   33   55   12
## [313,]   32   56   12
## [314,]   32   56   12
## [315,]   32   57   12
## [316,]   32   56   12
## [317,]   31   57   12
## [318,]   31   58   12
## [319,]   30   58   12
## [320,]   30   58   12
## [321,]   32   55   13
## [322,]   29   59   12
## [323,]   31   56   13
## [324,]   29   59   12
## [325,]   29   59   12
## [326,]   28   60   12
## [327,]   28   60   12
## [328,]   28   61   12
## [329,]   30   56   14
## [330,]   27   62   12
## [331,]   27   62   12
## [332,]   30   56   14
## [333,]   26   62   12
## [334,]   25   63   11
## [335,]   25   64   11
## [336,]   25   63   12
## [337,]   25   63   12
## [338,]   26   62   12
## [339,]   24   64   11
## [340,]   24   64   11
## [341,]   23   66   11
## [342,]   24   65   11
## [343,]   23   66   11
## [344,]   23   65   12
## [345,]   24   64   12
## [346,]   22   67   11
## [347,]   22   66   11
## [348,]   23   65   12
## [349,]   22   67   11
## [350,]   21   69   11
## [351,]   28   56   16
## [352,]   21   68   11
## [353,]   20   69   11
## [354,]   20   70   11
## [355,]   20   69   11
## [356,]   19   70   11
## [357,]   24   63   13
## [358,]   19   71   11
## [359,]   19   70   11
## [360,]   19   70   11
## [361,]   29   51   19
## [362,]   19   71   11
## [363,]   18   71   11
## [364,]   18   72   10
## [365,]   19   69   11
## [366,]   18   71   11
## [367,]   18   71   11
## [368,]   24   61   15
## [369,]   23   62   15
## [370,]   17   73   10
## [371,]   17   73   10
## [372,]   16   74   10
## [373,]   18   71   11
## [374,]   16   73   10
## [375,]   17   73   11
## [376,]   15   74   10
## [377,]   15   75   10
## [378,]   15   76   10
## [379,]   15   75   10
## [380,]   15   74   11
## [381,]   14   76   10
## [382,]   15   75   10
## [383,]   15   74   11
## [384,]   14   75   10
## [385,]   23   59   17
## [386,]   13   77    9
## [387,]   16   73   12
## [388,]   14   77   10
## [389,]   13   78    9
## [390,]   13   77   10
## [391,]   13   77   10
## [392,]   13   77   10
## [393,]   12   78    9
## [394,]   13   77   10
## [395,]   13   78   10
## [396,]   12   79    9
## [397,]   12   78   10
## [398,]   21   63   17
## [399,]   11   80    9
## [400,]   12   79    9
## [401,]   12   78   10
## [402,]   12   78   10
## [403,]   12   78   10
## [404,]   12   78   10
## [405,]   11   80    9
## [406,]   11   79   10
## [407,]   11   80    9
## [408,]   11   79   10
## [409,]   15   71   13
## [410,]   11   80    9
## [411,]   10   81    9
## [412,]   11   79   10
## [413,]   10   81    9
## [414,]   11   79   10
## [415,]   10   80    9
## [416,]   10   81    9
## [417,]   11   78   11
## [418,]   10   80   10
## [419,]   10   80   10
## [420,]   10   80   10
## [421,]   10   80   10
## [422,]   11   79   10
## [423,]   10   80   10
## [424,]    9   81    9
## [425,]   12   76   12
## [426,]   10   80   10
## [427,]   10   81   10
## [428,]   10   79   10
## [429,]    9   81    9
## [430,]   10   79   10
## [431,]   10   80   10
## [432,]    9   81   10
## [433,]   10   79   11
## [434,]   10   79   11
## [435,]   11   77   12
## [436,]    9   80   10
## [437,]    9   80   10
## [438,]   10   80   11
## [439,]   12   75   13
## [440,]    9   80   11
## [441,]    9   80   10
## [442,]    9   81   10
## [443,]    9   80   11
## [444,]   25   47   28
## [445,]   10   79   11
## [446,]    9   80   11
## [447,]    9   80   11
## [448,]    9   79   11
## [449,]    9   79   11
## [450,]    9   80   11
## [451,]   13   72   15
## [452,]    9   79   11
## [453,]   10   78   12
## [454,]   10   78   12
## [455,]   20   56   24
## [456,]    9   79   12
## [457,]   11   75   14
## [458,]    9   78   12
## [459,]   10   77   13
## [460,]   10   77   13
## [461,]   10   78   13
## [462,]   20   55   25
## [463,]   11   75   14
## [464,]   10   77   13
## [465,]   10   77   13
## [466,]   10   75   14
## [467,]   12   72   16
## [468,]   10   76   14
## [469,]   10   75   15
## [470,]   10   75   15
## [471,]   13   69   18
## [472,]   10   76   14
## [473,]   10   75   15
## [474,]   13   68   19
## [475,]   11   73   16
## [476,]   10   74   16
## [477,]   10   74   16
## [478,]   10   74   16
## [479,]   10   74   16
## [480,]   11   72   17
## [481,]   10   73   16
## [482,]   10   74   16
## [483,]   12   70   19
## [484,]   11   71   18
## [485,]   10   72   17
## [486,]   10   73   17
## [487,]   10   72   17
## [488,]   13   65   22
## [489,]   11   70   19
## [490,]   11   71   19
## [491,]   11   70   19
## [492,]   13   66   22
## [493,]   11   71   19
## [494,]   11   69   20
## [495,]   11   70   19
## [496,]   11   69   20
## [497,]   11   68   20
## [498,]   13   65   23
## [499,]   11   69   20
## [500,]   11   67   21
## [501,]   11   69   21
## [502,]   11   68   21
## [503,]   14   61   26
## [504,]   14   60   26
## [505,]   11   67   22
## [506,]   11   67   22
## [507,]   11   66   22
## [508,]   11   66   23
## [509,]   12   64   24
## [510,]   11   65   23
## [511,]   11   65   24
## [512,]   11   65   24
## [513,]   11   65   24
## [514,]   15   56   29
## [515,]   12   64   25
## [516,]   11   64   25
## [517,]   12   63   26
## [518,]   11   63   25
## [519,]   12   62   26
## [520,]   12   62   27
## [521,]   12   61   27
## [522,]   12   62   27
## [523,]   12   61   27
## [524,]   12   60   28
## [525,]   12   61   28
## [526,]   12   60   28
## [527,]   12   60   28
## [528,]   12   60   29
## [529,]   12   58   29
## [530,]   12   58   30
## [531,]   12   58   30
## [532,]   12   58   30
## [533,]   27   38   35
## [534,]   13   55   32
## [535,]   12   57   31
## [536,]   12   57   31
## [537,]   12   56   32
## [538,]   12   56   32
## [539,]   12   56   32
## [540,]   12   56   33
## [541,]   14   51   35
## [542,]   12   55   33
## [543,]   12   54   34
## [544,]   12   54   34
## [545,]   12   54   34
## [546,]   13   51   36
## [547,]   12   53   35
## [548,]   12   53   35
## [549,]   13   50   37
## [550,]   12   52   36
## [551,]   12   51   37
## [552,]   21   41   38
## [553,]   12   51   37
## [554,]   16   45   39
## [555,]   12   50   38
## [556,]   12   49   38
## [557,]   20   41   38
## [558,]   12   49   39
## [559,]   12   49   39
## [560,]   12   48   40
## [561,]   12   48   40
## [562,]   12   47   41
## [563,]   12   47   41
## [564,]   12   47   41
## [565,]   12   46   42
## [566,]   12   46   42
## [567,]   12   45   42
## [568,]   12   45   43
## [569,]   12   45   43
## [570,]   12   45   44
## [571,]   12   44   44
## [572,]   18   41   41
## [573,]   12   44   45
## [574,]   12   43   45
## [575,]   11   43   46
## [576,]   12   43   46
## [577,]   12   42   46
## [578,]   11   42   47
## [579,]   11   42   47
## [580,]   11   41   47
## [581,]   12   41   48
## [582,]   11   40   48
## [583,]   11   40   49
## [584,]   11   40   49
## [585,]   11   39   50
## [586,]   11   39   49
## [587,]   11   39   50
## [588,]   11   38   51
## [589,]   11   38   51
## [590,]   11   38   51
## [591,]   11   37   52
## [592,]   12   38   51
## [593,]   11   37   53
## [594,]   11   36   53
## [595,]   11   36   53
## [596,]   11   36   54
## [597,]   11   35   54
## [598,]   11   35   54
## [599,]   11   35   54
## [600,]   10   34   55
## [601,]   10   34   56
## [602,]   10   33   56
## [603,]   11   34   56
## [604,]   11   34   56
## [605,]   10   33   57
## [606,]   10   32   57
## [607,]   10   32   58
## [608,]   10   31   59
## [609,]   10   31   59
## [610,]   10   31   60
## [611,]   10   30   60
## [612,]   10   30   60
## [613,]   10   30   60
## [614,]   10   29   61
## [615,]   10   29   61
## [616,]    9   29   62
## [617,]    9   29   62
## [618,]    9   28   62
## [619,]    9   28   63
## [620,]    9   27   63
## [621,]   10   29   61
## [622,]    9   27   64
## [623,]    9   27   64
## [624,]    9   27   64
## [625,]    9   27   64
## [626,]    9   26   65
## [627,]    9   26   65
## [628,]    9   26   65
## [629,]    9   26   65
## [630,]   12   31   57
## [631,]    9   25   66
## [632,]    8   24   68
## [633,]    9   25   66
## [634,]    8   24   68
## [635,]   10   28   62
## [636,]    8   23   68
## [637,]    8   23   69
## [638,]    9   24   67
## [639,]    8   22   70
## [640,]    9   24   67
## [641,]    8   22   70
## [642,]    8   22   70
## [643,]   15   32   53
## [644,]    8   21   72
## [645,]    8   22   69
## [646,]    8   21   72
## [647,]   11   28   60
## [648,]    7   20   72
## [649,]    7   20   73
## [650,]    7   19   74
## [651,]    8   20   72
## [652,]    7   19   74
## [653,]   10   25   65
## [654,]    8   20   72
## [655,]    7   19   74
## [656,]    7   18   75
## [657,]    7   18   76
## [658,]    7   19   74
## [659,]    7   19   74
## [660,]    7   17   76
## [661,]    7   17   77
## [662,]    7   17   77
## [663,]    7   18   74
## [664,]    9   23   67
## [665,]    6   16   78
## [666,]    6   16   78
## [667,]    7   18   75
## [668,]    6   16   78
## [669,]    6   16   78
## [670,]    6   15   80
## [671,]    6   16   78
## [672,]    6   15   79
## [673,]   16   32   52
## [674,]    6   15   79
## [675,]    6   14   80
## [676,]    9   22   69
## [677,]    5   13   81
## [678,]    6   14   81
## [679,]    5   13   81
## [680,]    5   13   82
## [681,]    5   13   82
## [682,]    6   14   81
## [683,]    5   13   82
## [684,]    8   18   75
## [685,]    5   13   81
## [686,]    5   12   83
## [687,]    6   13   81
## [688,]    6   14   81
## [689,]    5   12   83
## [690,]    5   12   83
## [691,]    6   13   81
## [692,]    5   11   84
## [693,]    5   11   84
## [694,]    5   13   82
## [695,]    5   12   83
## [696,]    5   11   84
## [697,]    5   12   82
## [698,]    5   11   84
## [699,]    5   11   84
## [700,]    5   12   83
## [701,]    5   11   84
## [702,]    4   10   85
## [703,]    5   10   85
## [704,]    5   11   84
## [705,]    5   12   83
## [706,]    5   12   83
## [707,]    5   11   84
## [708,]    5   11   84
## [709,]    5   12   82
## [710,]    5   11   84
## [711,]    7   15   78
## [712,]    4   10   86
## [713,]    5   11   83
## [714,]    9   18   73
## [715,]    4   10   86
## [716,]    5   11   84
## [717,]    4    9   87
## [718,]    9   20   70
## [719,]    4   10   86
## [720,]    6   13   81
## [721,]    4   10   86
## [722,]    4    9   87
## [723,]    4   10   86
## [724,]    4    9   87
## [725,]    4   10   86
## [726,]   11   22   68
## [727,]    4    9   87
## [728,]    4    9   87
## [729,]    4   10   86
## [730,]    4    9   87
## [731,]    5   11   84
## [732,]    5   11   83
## [733,]    4    9   86
## [734,]    4    9   87
## [735,]   10   20   70
## [736,]    5   10   85
## [737,]    5   10   85
## [738,]    4    9   86
## [739,]    4    9   87
## [740,]    4    9   87
## [741,]    4    9   86
## [742,]    6   12   82
## [743,]    5   10   85
## [744,]    5   10   86
## [745,]    4    9   87
## [746,]    5   10   85
## [747,]    9   19   72
## [748,]    4    9   86
## [749,]    5   11   84
## [750,]    5    9   86
## [751,]    5   10   85
## [752,]    5   10   85
## [753,]    5    9   86
## [754,]    5   10   85
## [755,]    5   10   85
## [756,]    5   10   85
## [757,]    5   10   85
## [758,]    5   11   84
## [759,]    6   12   82
## [760,]    5   11   84
## [761,]    7   15   77
## [762,]    5   11   84
## [763,]    5   11   84
## [764,]    6   12   83
## [765,]    6   11   83
## [766,]    6   12   82
## [767,]    6   11   83
## [768,]    5   10   85
## [769,]    5   10   84
## [770,]    6   13   81
## [771,]    6   12   83
## [772,]    6   11   83
## [773,]    6   11   83
## [774,]    6   11   84
## [775,]    5   11   84
## [776,]    6   12   82
## [777,]    6   13   81
## [778,]    6   11   83
## [779,]    6   12   83
## [780,]    6   12   82
## [781,]    6   11   83
## [782,]    6   11   83
## [783,]    6   11   83
## [784,]    6   12   83
## [785,]    7   14   79
## [786,]    6   12   82
## [787,]    6   12   82
## [788,]    6   12   82
## [789,]    6   12   82
## [790,]    6   12   82
## [791,]    6   13   81
## [792,]   19   31   50
## [793,]    7   13   80
## [794,]    8   15   77
## [795,]    7   13   80
## [796,]    7   13   80
## [797,]    7   13   80
## [798,]    7   13   80
## [799,]    7   13   80
## [800,]    7   13   80
## [801,]    7   14   79
## [802,]    9   17   73
## [803,]    7   14   78
## [804,]    7   14   79
## [805,]    7   13   79
## [806,]    7   14   78
## [807,]    7   14   79
## [808,]    7   14   78
## [809,]    8   15   77
## [810,]    8   15   77
## [811,]    8   14   78
## [812,]    8   15   77
## [813,]    8   15   77
## [814,]    8   14   78
## [815,]    8   15   77
## [816,]    8   15   78
## [817,]    8   15   77
## [818,]    8   15   77
## [819,]    8   15   77
## [820,]    8   15   77
## [821,]    8   15   76
## [822,]    8   15   76
## [823,]    9   16   76
## [824,]    8   16   76
## [825,]    9   16   76
## [826,]   11   19   70
## [827,]    9   17   75
## [828,]    9   16   75
## [829,]    9   16   75
## [830,]    9   16   75
## [831,]    9   16   75
## [832,]    9   17   74
## [833,]    9   16   75
## [834,]    9   16   75
## [835,]    9   17   74
## [836,]    9   17   74
## [837,]    9   17   74
## [838,]    9   17   73
## [839,]    9   17   74
## [840,]    9   17   73
## [841,]   10   17   73
## [842,]   10   18   73
## [843,]   10   17   73
## [844,]   10   17   73
## [845,]   10   18   73
## [846,]   10   18   72
## [847,]   10   18   72
## [848,]   10   19   71
## [849,]   10   18   72
## [850,]   10   19   71
## Fuzzyness coefficients:
## dunn_coeff normalized 
##  0.5755568  0.3633352 
## Closest hard clustering:
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [36] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [71] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [106] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [141] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [176] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [211] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [246] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [281] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [316] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [351] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [386] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [421] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [456] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [491] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [526] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
## [561] 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [596] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [631] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [666] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [701] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [736] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [771] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [806] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [841] 3 3 3 3 3 3 3 3 3 3
## 
## Silhouette plot information:
##     cluster neighbor     sil_width
## 113       1        2  0.7405589415
## 104       1        2  0.7380669749
## 118       1        2  0.7377222856
## 116       1        2  0.7376134780
## 98        1        2  0.7374440176
## 111       1        2  0.7372321697
## 107       1        2  0.7372051299
## 122       1        2  0.7371321446
## 125       1        2  0.7371243895
## 109       1        2  0.7369524317
## 92        1        2  0.7367982048
## 99        1        2  0.7366721595
## 97        1        2  0.7361649071
## 123       1        2  0.7357682158
## 89        1        2  0.7356583469
## 84        1        2  0.7352002937
## 108       1        2  0.7349528091
## 95        1        2  0.7346904066
## 112       1        2  0.7342344804
## 96        1        2  0.7338820309
## 120       1        2  0.7338467818
## 115       1        2  0.7334051206
## 101       1        2  0.7331718230
## 127       1        2  0.7326319792
## 105       1        2  0.7322412444
## 124       1        2  0.7315512126
## 103       1        2  0.7314368410
## 90        1        2  0.7313002102
## 77        1        2  0.7304881776
## 131       1        2  0.7302577492
## 85        1        2  0.7299071837
## 75        1        2  0.7294682962
## 121       1        2  0.7292104573
## 93        1        2  0.7290286736
## 74        1        2  0.7287946865
## 87        1        2  0.7281477931
## 94        1        2  0.7276948614
## 117       1        2  0.7276035288
## 128       1        2  0.7273344487
## 119       1        2  0.7268657353
## 80        1        2  0.7268503651
## 100       1        2  0.7267149895
## 136       1        2  0.7262695872
## 133       1        2  0.7261703480
## 66        1        2  0.7259027265
## 132       1        2  0.7257735602
## 78        1        2  0.7247014736
## 88        1        2  0.7244816704
## 135       1        2  0.7239563097
## 141       1        2  0.7237291804
## 81        1        2  0.7237002626
## 140       1        2  0.7233323633
## 134       1        2  0.7229375018
## 106       1        2  0.7227952180
## 71        1        2  0.7226758414
## 114       1        2  0.7224598516
## 68        1        2  0.7221558952
## 76        1        2  0.7219216030
## 139       1        2  0.7218076669
## 143       1        2  0.7217377831
## 86        1        2  0.7210708122
## 129       1        2  0.7207159152
## 69        1        2  0.7206346575
## 91        1        2  0.7195549607
## 62        1        2  0.7193395158
## 61        1        2  0.7160448246
## 60        1        2  0.7153680531
## 130       1        2  0.7152862869
## 82        1        2  0.7145634846
## 65        1        2  0.7143711830
## 144       1        2  0.7143709450
## 138       1        2  0.7140158534
## 58        1        2  0.7140122619
## 126       1        2  0.7139740959
## 59        1        2  0.7137239063
## 63        1        2  0.7135485804
## 56        1        2  0.7128699119
## 148       1        2  0.7128535221
## 146       1        2  0.7126556462
## 70        1        2  0.7124508023
## 72        1        2  0.7121202997
## 149       1        2  0.7119544913
## 151       1        2  0.7113435441
## 142       1        2  0.7103096299
## 147       1        2  0.7100179079
## 57        1        2  0.7098611076
## 110       1        2  0.7095157618
## 153       1        2  0.7083288584
## 50        1        2  0.7076869162
## 64        1        2  0.7073895132
## 150       1        2  0.7070148945
## 67        1        2  0.7062594623
## 55        1        2  0.7036108401
## 156       1        2  0.7035057403
## 52        1        2  0.7034895115
## 48        1        2  0.7030106117
## 152       1        2  0.7028869036
## 49        1        2  0.7022617098
## 53        1        2  0.7015892166
## 43        1        2  0.7010372787
## 54        1        2  0.6996993959
## 37        1        2  0.6992478281
## 45        1        2  0.6986061798
## 36        1        2  0.6985657480
## 145       1        2  0.6978137878
## 35        1        2  0.6970456692
## 155       1        2  0.6953442918
## 47        1        2  0.6947603325
## 162       1        2  0.6943234628
## 154       1        2  0.6938754829
## 34        1        2  0.6931392010
## 164       1        2  0.6928931599
## 30        1        2  0.6925606530
## 160       1        2  0.6921763339
## 33        1        2  0.6921439899
## 159       1        2  0.6917511109
## 32        1        2  0.6914785200
## 38        1        2  0.6912376183
## 51        1        2  0.6904365183
## 39        1        2  0.6902822372
## 41        1        2  0.6894625827
## 28        1        2  0.6876433357
## 73        1        2  0.6872854459
## 29        1        2  0.6870607369
## 166       1        2  0.6864077809
## 46        1        2  0.6861715045
## 161       1        2  0.6834418900
## 22        1        2  0.6828578936
## 137       1        2  0.6827831178
## 167       1        2  0.6825583215
## 165       1        2  0.6823936177
## 23        1        2  0.6816804025
## 26        1        2  0.6810609467
## 27        1        2  0.6803558533
## 168       1        2  0.6789552373
## 20        1        2  0.6780612423
## 21        1        2  0.6770002261
## 170       1        2  0.6760806619
## 169       1        2  0.6743091433
## 19        1        2  0.6738337131
## 18        1        2  0.6727017665
## 174       1        2  0.6713028666
## 24        1        2  0.6707783957
## 173       1        2  0.6706929514
## 12        1        2  0.6694310301
## 14        1        2  0.6682675932
## 15        1        2  0.6673495854
## 17        1        2  0.6672508908
## 172       1        2  0.6671924527
## 175       1        2  0.6657795852
## 16        1        2  0.6652951580
## 13        1        2  0.6632876715
## 7         1        2  0.6614192762
## 179       1        2  0.6609023263
## 177       1        2  0.6602336809
## 8         1        2  0.6598450818
## 163       1        2  0.6586550732
## 9         1        2  0.6584684178
## 31        1        2  0.6580372861
## 3         1        2  0.6554722174
## 182       1        2  0.6544868491
## 181       1        2  0.6540027923
## 178       1        2  0.6537628385
## 4         1        2  0.6533803553
## 11        1        2  0.6501286916
## 42        1        2  0.6500035067
## 1         1        2  0.6493617669
## 6         1        2  0.6479891917
## 176       1        2  0.6436248338
## 102       1        2  0.6424448232
## 183       1        2  0.6394754765
## 40        1        2  0.6338727223
## 186       1        2  0.6334699052
## 158       1        2  0.6325411011
## 171       1        2  0.6318683760
## 189       1        2  0.6314648144
## 188       1        2  0.6309026523
## 2         1        2  0.6281351952
## 187       1        2  0.6280942859
## 25        1        2  0.6262226793
## 10        1        2  0.6228117939
## 191       1        2  0.6214612147
## 185       1        2  0.6207575058
## 194       1        2  0.6140280156
## 157       1        2  0.6133262354
## 79        1        2  0.6125782169
## 192       1        2  0.6117937989
## 196       1        2  0.6115165228
## 180       1        2  0.6055106429
## 190       1        2  0.6051614396
## 193       1        2  0.5948528369
## 83        1        2  0.5928610004
## 195       1        2  0.5923788332
## 200       1        2  0.5903984120
## 197       1        2  0.5890920799
## 198       1        2  0.5820935105
## 202       1        2  0.5811428669
## 203       1        2  0.5779086739
## 204       1        2  0.5751823941
## 205       1        2  0.5731196615
## 206       1        2  0.5697309551
## 207       1        2  0.5683722821
## 44        1        2  0.5609505292
## 211       1        2  0.5524052160
## 210       1        2  0.5524046065
## 212       1        2  0.5522405342
## 213       1        2  0.5429052769
## 215       1        2  0.5322048248
## 219       1        2  0.5188577741
## 216       1        2  0.5176515556
## 217       1        2  0.5136512042
## 214       1        2  0.5107072561
## 184       1        2  0.5106648013
## 209       1        2  0.5059214706
## 218       1        2  0.5049415995
## 220       1        2  0.5021805488
## 223       1        2  0.5006853105
## 201       1        2  0.4992849344
## 221       1        2  0.4980897687
## 224       1        2  0.4861625791
## 225       1        2  0.4843275442
## 226       1        2  0.4803812700
## 228       1        2  0.4736016417
## 229       1        2  0.4616340029
## 231       1        2  0.4588808775
## 230       1        2  0.4574746869
## 5         1        2  0.4513927883
## 232       1        2  0.4489763140
## 233       1        2  0.4395801626
## 234       1        2  0.4253392463
## 237       1        2  0.4189293811
## 236       1        2  0.4161100555
## 222       1        2  0.4146013342
## 227       1        2  0.4105547936
## 239       1        2  0.4032213908
## 240       1        2  0.4007411677
## 238       1        2  0.3996037367
## 235       1        2  0.3960819703
## 241       1        2  0.3958671544
## 242       1        2  0.3900544908
## 243       1        2  0.3818840853
## 244       1        2  0.3756155404
## 245       1        2  0.3647351665
## 248       1        2  0.3430769043
## 249       1        2  0.3419745837
## 247       1        2  0.3388924610
## 250       1        2  0.3296039887
## 251       1        2  0.3253760638
## 252       1        2  0.3168295044
## 253       1        2  0.3093479749
## 199       1        2  0.3093045793
## 254       1        2  0.2923903566
## 256       1        2  0.2801272332
## 257       1        2  0.2755333979
## 255       1        2  0.2627003437
## 258       1        2  0.2607850609
## 208       1        2  0.2584969218
## 260       1        2  0.2471818002
## 259       1        2  0.2468343230
## 261       1        2  0.2384908983
## 263       1        2  0.2218046497
## 246       1        2  0.2133062187
## 264       1        2  0.2129813668
## 262       1        2  0.1998035432
## 265       1        2  0.1926531822
## 266       1        2  0.1900105921
## 267       1        2  0.1880929985
## 268       1        2  0.1700440915
## 269       1        2  0.1659749702
## 270       1        2  0.1567740197
## 271       1        2  0.1450808239
## 272       1        2  0.1345619116
## 273       1        2  0.1270480930
## 274       1        2  0.1149450986
## 275       1        2  0.1037007021
## 276       1        2  0.0905134813
## 277       1        2  0.0817603761
## 278       1        2  0.0695514498
## 279       1        2  0.0606864954
## 280       1        2  0.0490576758
## 429       2        3  0.7048149219
## 424       2        1  0.7042394020
## 426       2        3  0.7017936439
## 427       2        3  0.7014756811
## 421       2        1  0.6977969177
## 432       2        3  0.6968137551
## 431       2        3  0.6963092407
## 420       2        1  0.6952140911
## 423       2        1  0.6948645525
## 419       2        1  0.6941025718
## 428       2        3  0.6934008671
## 416       2        1  0.6929297986
## 422       2        1  0.6927313934
## 418       2        1  0.6919507550
## 430       2        3  0.6904295065
## 413       2        1  0.6902662343
## 436       2        3  0.6899525736
## 415       2        1  0.6888015137
## 437       2        3  0.6885700094
## 411       2        1  0.6883473745
## 442       2        3  0.6861876804
## 441       2        3  0.6858049944
## 440       2        3  0.6853985283
## 438       2        3  0.6845943054
## 433       2        3  0.6839734445
## 412       2        1  0.6827880750
## 410       2        1  0.6827067185
## 414       2        1  0.6814598600
## 417       2        1  0.6810916545
## 443       2        3  0.6810790508
## 434       2        3  0.6810073049
## 425       2        1  0.6786586528
## 407       2        1  0.6783634200
## 408       2        1  0.6779721384
## 445       2        3  0.6766113354
## 446       2        3  0.6766020634
## 435       2        3  0.6759326454
## 447       2        3  0.6755519822
## 405       2        1  0.6746919533
## 448       2        3  0.6736260546
## 406       2        1  0.6731233483
## 450       2        3  0.6721620466
## 449       2        3  0.6699251205
## 399       2        1  0.6684056070
## 452       2        3  0.6668730203
## 404       2        1  0.6641461720
## 400       2        1  0.6637742098
## 403       2        1  0.6636555036
## 402       2        1  0.6627105792
## 396       2        1  0.6622871157
## 401       2        1  0.6617728954
## 456       2        3  0.6579090124
## 397       2        1  0.6562780999
## 453       2        3  0.6556478607
## 454       2        3  0.6548456138
## 439       2        3  0.6547427742
## 458       2        3  0.6537997947
## 393       2        1  0.6529966318
## 395       2        1  0.6512205323
## 394       2        1  0.6467875325
## 461       2        3  0.6464557411
## 459       2        3  0.6461328365
## 389       2        1  0.6460543924
## 390       2        1  0.6430939733
## 392       2        1  0.6422024581
## 460       2        3  0.6418829164
## 391       2        1  0.6414256808
## 464       2        3  0.6397685339
## 386       2        1  0.6373992592
## 465       2        3  0.6359751350
## 388       2        1  0.6346428261
## 457       2        3  0.6339127543
## 409       2        1  0.6281944020
## 463       2        3  0.6253334137
## 468       2        3  0.6245429660
## 451       2        3  0.6232311530
## 381       2        1  0.6228863228
## 384       2        1  0.6217387400
## 472       2        3  0.6211701232
## 466       2        3  0.6206602028
## 469       2        3  0.6203059930
## 382       2        1  0.6164867030
## 473       2        3  0.6157807529
## 378       2        1  0.6154321591
## 470       2        3  0.6153602812
## 383       2        1  0.6109156040
## 377       2        1  0.6090105489
## 387       2        1  0.6085163810
## 379       2        1  0.6079766074
## 380       2        1  0.6049397794
## 376       2        1  0.6037780420
## 477       2        3  0.6023375394
## 467       2        3  0.5997395070
## 478       2        3  0.5994852441
## 479       2        3  0.5980170857
## 475       2        3  0.5970920898
## 476       2        3  0.5969481554
## 372       2        1  0.5969453762
## 374       2        1  0.5929436400
## 481       2        3  0.5897554365
## 482       2        3  0.5881696779
## 375       2        1  0.5869754792
## 370       2        1  0.5857382560
## 371       2        1  0.5837917506
## 480       2        3  0.5765417981
## 373       2        1  0.5757595379
## 486       2        3  0.5748181698
## 485       2        3  0.5738424325
## 471       2        3  0.5727751841
## 487       2        3  0.5710773762
## 364       2        1  0.5647229187
## 484       2        3  0.5643453529
## 366       2        1  0.5639279707
## 367       2        1  0.5636934942
## 483       2        3  0.5590602175
## 474       2        3  0.5586053795
## 363       2        1  0.5567417426
## 362       2        1  0.5517085225
## 490       2        3  0.5512545570
## 493       2        3  0.5499795803
## 365       2        1  0.5494641622
## 358       2        1  0.5460064252
## 491       2        3  0.5458602946
## 359       2        1  0.5455342746
## 489       2        3  0.5447615734
## 398       2        1  0.5402825665
## 360       2        1  0.5387421334
## 356       2        1  0.5370481973
## 495       2        3  0.5367426609
## 496       2        3  0.5313083132
## 354       2        1  0.5303926758
## 494       2        3  0.5296552680
## 355       2        1  0.5295241162
## 499       2        3  0.5246711622
## 353       2        1  0.5242822655
## 497       2        3  0.5185992860
## 352       2        1  0.5151859108
## 501       2        3  0.5150780919
## 350       2        1  0.5136864540
## 492       2        3  0.5081099064
## 502       2        3  0.5066024812
## 500       2        3  0.5041964768
## 488       2        3  0.5038990023
## 349       2        1  0.4953514132
## 346       2        1  0.4935423765
## 505       2        3  0.4916445123
## 506       2        3  0.4911654833
## 385       2        1  0.4863367517
## 369       2        1  0.4850667385
## 347       2        1  0.4845913951
## 498       2        3  0.4833578030
## 507       2        3  0.4832953206
## 348       2        1  0.4776779235
## 508       2        3  0.4772446796
## 343       2        1  0.4772361787
## 357       2        1  0.4757934523
## 368       2        1  0.4730681271
## 341       2        1  0.4693683937
## 344       2        1  0.4690970119
## 455       2        3  0.4675764934
## 510       2        3  0.4648877128
## 342       2        1  0.4642634014
## 345       2        1  0.4591876673
## 512       2        3  0.4590570067
## 511       2        3  0.4584706544
## 509       2        3  0.4582509712
## 513       2        3  0.4543368075
## 340       2        1  0.4539289316
## 339       2        1  0.4500619773
## 462       2        3  0.4375815534
## 515       2        3  0.4368300734
## 335       2        1  0.4339706650
## 516       2        3  0.4337312216
## 503       2        3  0.4327293693
## 337       2        1  0.4301871175
## 336       2        1  0.4271122929
## 518       2        3  0.4262687007
## 334       2        1  0.4259180298
## 338       2        1  0.4249331702
## 504       2        3  0.4245050760
## 517       2        3  0.4221926484
## 333       2        1  0.4125674566
## 519       2        3  0.4039622554
## 331       2        1  0.4034232623
## 520       2        3  0.4033875408
## 330       2        1  0.4015507666
## 522       2        3  0.4005624799
## 521       2        3  0.3971183889
## 523       2        3  0.3883047348
## 351       2        1  0.3839373236
## 328       2        1  0.3824933402
## 525       2        3  0.3785894886
## 524       2        3  0.3773623914
## 326       2        1  0.3744769795
## 327       2        1  0.3721230981
## 526       2        3  0.3669559351
## 527       2        3  0.3657321849
## 528       2        3  0.3600659559
## 324       2        1  0.3580567765
## 325       2        1  0.3565471876
## 322       2        1  0.3496711928
## 514       2        3  0.3490759284
## 444       2        3  0.3474781042
## 361       2        1  0.3417503939
## 332       2        1  0.3412427919
## 529       2        3  0.3390228030
## 329       2        1  0.3376605103
## 530       2        3  0.3366892608
## 531       2        3  0.3357651666
## 320       2        1  0.3321945974
## 319       2        1  0.3302554514
## 532       2        3  0.3279344331
## 318       2        1  0.3197944305
## 323       2        1  0.3159595133
## 317       2        1  0.3135617001
## 535       2        3  0.3073862237
## 536       2        3  0.3030279690
## 321       2        1  0.3005188273
## 316       2        1  0.2964290011
## 315       2        1  0.2961476126
## 537       2        3  0.2888948819
## 538       2        3  0.2856857024
## 314       2        1  0.2801638166
## 534       2        3  0.2799932201
## 313       2        1  0.2770705799
## 539       2        3  0.2732080521
## 540       2        3  0.2704361069
## 312       2        1  0.2672903653
## 311       2        1  0.2630331783
## 310       2        1  0.2598236554
## 542       2        3  0.2527187786
## 309       2        1  0.2499319490
## 543       2        3  0.2434143826
## 544       2        3  0.2339426797
## 307       2        1  0.2312028571
## 545       2        3  0.2265851292
## 308       2        1  0.2248998416
## 306       2        1  0.2181480429
## 305       2        1  0.2106108633
## 547       2        3  0.2095791845
## 541       2        3  0.2064121467
## 304       2        1  0.2035234967
## 548       2        3  0.1967800131
## 546       2        3  0.1927265437
## 303       2        1  0.1884663856
## 302       2        1  0.1807692385
## 550       2        3  0.1726767348
## 301       2        1  0.1669246277
## 551       2        3  0.1666254611
## 549       2        3  0.1604467025
## 299       2        1  0.1562986242
## 553       2        3  0.1491129038
## 298       2        1  0.1471999897
## 300       2        1  0.1459476770
## 297       2        1  0.1338059872
## 555       2        3  0.1315898935
## 296       2        1  0.1249153878
## 295       2        1  0.1161247021
## 556       2        3  0.1156352986
## 294       2        1  0.1034915396
## 558       2        3  0.0936044782
## 293       2        1  0.0927161700
## 554       2        3  0.0867693303
## 559       2        3  0.0851964873
## 292       2        1  0.0835713912
## 560       2        3  0.0744546834
## 291       2        1  0.0731096819
## 561       2        3  0.0670041178
## 290       2        1  0.0599920941
## 552       2        3  0.0559482429
## 562       2        3  0.0551334404
## 533       2        3  0.0519289034
## 289       2        1  0.0435272602
## 563       2        3  0.0426269358
## 557       2        3  0.0411716490
## 288       2        1  0.0382001149
## 564       2        3  0.0329861459
## 287       2        1  0.0266779050
## 565       2        3  0.0197233273
## 286       2        1  0.0153588310
## 566       2        3  0.0098459070
## 285       2        1  0.0060929131
## 567       2        3 -0.0007751113
## 284       2        1 -0.0084480629
## 283       2        1 -0.0123534441
## 568       2        3 -0.0156220565
## 282       2        1 -0.0162448313
## 569       2        3 -0.0226545342
## 570       2        3 -0.0384696095
## 281       2        1 -0.0437069957
## 571       2        3 -0.0502647663
## 745       3        2  0.7416632919
## 753       3        2  0.7402527124
## 739       3        2  0.7400910727
## 750       3        2  0.7400573509
## 740       3        2  0.7398577312
## 748       3        2  0.7395990155
## 768       3        2  0.7384201119
## 730       3        2  0.7380800554
## 741       3        2  0.7376529890
## 752       3        2  0.7365647152
## 734       3        2  0.7362360686
## 754       3        2  0.7362320136
## 738       3        2  0.7361184418
## 769       3        2  0.7360084516
## 744       3        2  0.7357094243
## 757       3        2  0.7351579175
## 728       3        2  0.7348917201
## 727       3        2  0.7344467665
## 775       3        2  0.7340825167
## 733       3        2  0.7340786521
## 778       3        2  0.7329412201
## 724       3        2  0.7328797686
## 756       3        2  0.7328352968
## 755       3        2  0.7320622956
## 762       3        2  0.7320146172
## 774       3        2  0.7319964922
## 722       3        2  0.7317468104
## 746       3        2  0.7316006497
## 782       3        2  0.7312147717
## 736       3        2  0.7311588283
## 783       3        2  0.7306461420
## 751       3        2  0.7306288979
## 760       3        2  0.7306058870
## 725       3        2  0.7298942425
## 781       3        2  0.7293605081
## 784       3        2  0.7292294242
## 773       3        2  0.7290930490
## 772       3        2  0.7286405032
## 743       3        2  0.7285878915
## 717       3        2  0.7285381577
## 729       3        2  0.7283732043
## 779       3        2  0.7279560615
## 758       3        2  0.7279382453
## 763       3        2  0.7276429144
## 767       3        2  0.7274817644
## 723       3        2  0.7270478036
## 721       3        2  0.7266445560
## 737       3        2  0.7261950141
## 788       3        2  0.7260907033
## 715       3        2  0.7256673800
## 719       3        2  0.7254467548
## 786       3        2  0.7252870679
## 765       3        2  0.7245117120
## 790       3        2  0.7244185397
## 771       3        2  0.7242278626
## 776       3        2  0.7241219297
## 787       3        2  0.7240282539
## 789       3        2  0.7240187710
## 764       3        2  0.7226147663
## 749       3        2  0.7221235838
## 780       3        2  0.7221220667
## 731       3        2  0.7216042748
## 712       3        2  0.7210903551
## 766       3        2  0.7209385656
## 791       3        2  0.7192899922
## 798       3        2  0.7169633581
## 796       3        2  0.7163410872
## 799       3        2  0.7160364339
## 759       3        2  0.7153399609
## 732       3        2  0.7150887750
## 770       3        2  0.7144550269
## 777       3        2  0.7140863188
## 797       3        2  0.7138482600
## 702       3        2  0.7136801951
## 800       3        2  0.7135632129
## 805       3        2  0.7127767044
## 703       3        2  0.7117985138
## 716       3        2  0.7117030618
## 795       3        2  0.7113834266
## 793       3        2  0.7106081183
## 801       3        2  0.7105293274
## 742       3        2  0.7096964334
## 710       3        2  0.7093758524
## 708       3        2  0.7093445294
## 804       3        2  0.7089740203
## 807       3        2  0.7082563564
## 707       3        2  0.7080667002
## 713       3        2  0.7065915454
## 808       3        2  0.7049255750
## 696       3        2  0.7047098545
## 811       3        2  0.7037607545
## 698       3        2  0.7035998923
## 806       3        2  0.7035888699
## 701       3        2  0.7030959718
## 785       3        2  0.7029536189
## 803       3        2  0.7026207664
## 814       3        2  0.7024499813
## 704       3        2  0.7017226756
## 699       3        2  0.7015038121
## 705       3        2  0.7007904922
## 816       3        2  0.7004409256
## 815       3        2  0.6989316507
## 817       3        2  0.6987379027
## 813       3        2  0.6985428353
## 820       3        2  0.6979224820
## 819       3        2  0.6979192516
## 809       3        2  0.6977063900
## 692       3        2  0.6975499412
## 706       3        2  0.6971811815
## 693       3        2  0.6971451535
## 720       3        2  0.6967167081
## 818       3        2  0.6964997671
## 810       3        2  0.6964187440
## 709       3        2  0.6963839958
## 812       3        2  0.6954675598
## 695       3        2  0.6947046682
## 700       3        2  0.6940628735
## 794       3        2  0.6932338349
## 821       3        2  0.6929884992
## 822       3        2  0.6917874823
## 697       3        2  0.6913111173
## 824       3        2  0.6889119996
## 690       3        2  0.6881524765
## 689       3        2  0.6877138992
## 825       3        2  0.6873395113
## 823       3        2  0.6858640508
## 686       3        2  0.6857547304
## 830       3        2  0.6852509497
## 694       3        2  0.6840383700
## 761       3        2  0.6822592706
## 833       3        2  0.6815334710
## 828       3        2  0.6811433979
## 683       3        2  0.6806343628
## 829       3        2  0.6800363795
## 831       3        2  0.6795221182
## 834       3        2  0.6793844606
## 691       3        2  0.6791440817
## 835       3        2  0.6791191707
## 681       3        2  0.6790576683
## 827       3        2  0.6774262056
## 832       3        2  0.6770214934
## 680       3        2  0.6767596035
## 685       3        2  0.6759173484
## 688       3        2  0.6739959264
## 836       3        2  0.6737894992
## 687       3        2  0.6736337361
## 837       3        2  0.6724544056
## 839       3        2  0.6713073662
## 679       3        2  0.6711367349
## 838       3        2  0.6705142718
## 677       3        2  0.6699887557
## 840       3        2  0.6696321542
## 678       3        2  0.6691995061
## 841       3        2  0.6686293822
## 682       3        2  0.6681346778
## 843       3        2  0.6678734206
## 844       3        2  0.6669743879
## 711       3        2  0.6655065771
## 845       3        2  0.6653437308
## 847       3        2  0.6633194716
## 842       3        2  0.6632640403
## 846       3        2  0.6627302695
## 802       3        2  0.6611549367
## 675       3        2  0.6607206574
## 849       3        2  0.6589976014
## 670       3        2  0.6542566699
## 672       3        2  0.6526639770
## 848       3        2  0.6495223926
## 850       3        2  0.6493224544
## 674       3        2  0.6482329689
## 669       3        2  0.6435149358
## 668       3        2  0.6427144867
## 665       3        2  0.6405706182
## 671       3        2  0.6401024213
## 666       3        2  0.6399180159
## 747       3        2  0.6327417515
## 826       3        2  0.6320293116
## 662       3        2  0.6248261160
## 714       3        2  0.6246625955
## 661       3        2  0.6245013182
## 684       3        2  0.6230834384
## 660       3        2  0.6229330738
## 667       3        2  0.6131076381
## 657       3        2  0.6125562261
## 656       3        2  0.6089377116
## 663       3        2  0.6077943908
## 718       3        2  0.6021735698
## 735       3        2  0.6006125699
## 655       3        2  0.5994680456
## 659       3        2  0.5987128916
## 652       3        2  0.5966920846
## 658       3        2  0.5960426287
## 650       3        2  0.5924804298
## 649       3        2  0.5853644738
## 654       3        2  0.5817594481
## 651       3        2  0.5802385844
## 726       3        2  0.5788238094
## 648       3        2  0.5771664808
## 646       3        2  0.5709803283
## 644       3        2  0.5669638082
## 676       3        2  0.5599540840
## 639       3        2  0.5503251930
## 642       3        2  0.5496623740
## 641       3        2  0.5445916792
## 645       3        2  0.5427479723
## 664       3        2  0.5399722292
## 637       3        2  0.5395285087
## 636       3        2  0.5295901004
## 634       3        2  0.5224404570
## 632       3        2  0.5170911629
## 640       3        2  0.5167400106
## 638       3        2  0.5097755358
## 653       3        2  0.5062743573
## 633       3        2  0.5029059436
## 631       3        2  0.5001866827
## 627       3        2  0.4885540450
## 629       3        2  0.4871144190
## 626       3        2  0.4863945057
## 628       3        2  0.4825427359
## 625       3        2  0.4712871534
## 624       3        2  0.4665707594
## 623       3        2  0.4651681215
## 622       3        2  0.4643668903
## 620       3        2  0.4570009698
## 619       3        2  0.4504993645
## 635       3        2  0.4477168709
## 647       3        2  0.4430176507
## 618       3        2  0.4426346360
## 617       3        2  0.4364196322
## 616       3        2  0.4331444991
## 621       3        2  0.4273843530
## 615       3        2  0.4228083552
## 614       3        2  0.4193357346
## 612       3        2  0.4047518179
## 613       3        2  0.4044777549
## 611       3        2  0.3992912789
## 610       3        2  0.3950562307
## 609       3        2  0.3856216613
## 608       3        2  0.3795949084
## 607       3        2  0.3716998788
## 630       3        2  0.3713266675
## 605       3        2  0.3572322300
## 606       3        2  0.3564713509
## 792       3        2  0.3452460382
## 673       3        2  0.3359964601
## 602       3        2  0.3353540944
## 643       3        2  0.3322339744
## 603       3        2  0.3320795168
## 601       3        2  0.3299627389
## 604       3        2  0.3254478963
## 600       3        2  0.3202725022
## 598       3        2  0.2962233049
## 597       3        2  0.2874025340
## 596       3        2  0.2867647892
## 599       3        2  0.2825624151
## 594       3        2  0.2716512382
## 595       3        2  0.2683906918
## 593       3        2  0.2612115289
## 591       3        2  0.2480003795
## 590       3        2  0.2286727813
## 589       3        2  0.2279665166
## 592       3        2  0.2258391823
## 588       3        2  0.2191353548
## 587       3        2  0.2103358308
## 586       3        2  0.1908361377
## 585       3        2  0.1900729421
## 584       3        2  0.1815464928
## 583       3        2  0.1721128054
## 582       3        2  0.1618672168
## 581       3        2  0.1420352072
## 580       3        2  0.1368256762
## 579       3        2  0.1305669012
## 578       3        2  0.1206903077
## 577       3        2  0.1085001932
## 576       3        2  0.0979783381
## 575       3        2  0.0883789197
## 574       3        2  0.0763775654
## 573       3        2  0.0663045202
## 572       3        2  0.0150286840
## Average silhouette width per cluster:
## [1] 0.5928479 0.4447609 0.5946901
## Average silhouette width of total data set:
## [1] 0.5427545
## 
## Available components:
##  [1] "membership"  "coeff"       "memb.exp"    "clustering"  "k.crisp"    
##  [6] "objective"   "convergence" "diss"        "call"        "silinfo"    
## [11] "data"
head(cliente_agrupa$clustering)
## [1] 1 1 1 1 1 1
plot(cliente_agrupa)

En el gráfico existe un 68.86% de variabilidad entre los puntos. En la silhouette se tiene un 0.34 Para obtener una representación gráfica del clustering se puede emplear la función fviz_cluster().

library(factoextra)
fviz_cluster(object = cliente_agrupa, repel = TRUE, ellipse.type = "norm",
             pallete = "jco") + theme_bw() + labs(title = "Fuzzy Cluster plot")