ggplot2 Extensions v1.01

ggplot2 Extensions


ggpmisc

lindia

## [1] "residual_hist" "Passengers"    "Length"        "RPM"          
## [5] "res_fitted"    "qqplot"        "scalelocation" "resleverage"  
## [9] "cooksd"

sugrrants

##  [1] "Date_Time"     "Date"          "Year"          "Month"        
##  [5] "Mdate"         "Day"           "Time"          "Sensor_ID"    
##  [9] "Sensor_Name"   "Hourly_Counts"
## # A tibble: 78,755 x 10
##    Date_Time           Date        Year Month Mdate Day    Time Sensor_ID
##    <dttm>              <date>     <int> <ord> <int> <ord> <int>     <int>
##  1 2016-01-01 00:00:00 2016-01-01  2016 Janu~     1 Frid~     0        18
##  2 2016-01-01 00:00:00 2016-01-01  2016 Janu~     1 Frid~     0        13
##  3 2016-01-01 00:00:00 2016-01-01  2016 Janu~     1 Frid~     0         3
##  4 2016-01-01 00:00:00 2016-01-01  2016 Janu~     1 Frid~     0         9
##  5 2016-01-01 00:00:00 2016-01-01  2016 Janu~     1 Frid~     0         6
##  6 2016-01-01 00:00:00 2016-01-01  2016 Janu~     1 Frid~     0        25
##  7 2016-01-01 00:00:00 2016-01-01  2016 Janu~     1 Frid~     0        30
##  8 2016-01-01 01:00:00 2016-01-01  2016 Janu~     1 Frid~     1        18
##  9 2016-01-01 01:00:00 2016-01-01  2016 Janu~     1 Frid~     1        13
## 10 2016-01-01 01:00:00 2016-01-01  2016 Janu~     1 Frid~     1         3
## # ... with 78,745 more rows, and 2 more variables: Sensor_Name <chr>,
## #   Hourly_Counts <int>
## # A tibble: 8,880 x 12
##    Date_Time           Date        Year Month Mdate Day    Time Sensor_ID
##    <dttm>              <date>     <int> <ord> <int> <ord> <int> <fct>    
##  1 2016-01-01 00:00:00 2016-01-01  2016 Janu~     1 Frid~     0 3        
##  2 2016-01-01 01:00:00 2016-01-01  2016 Janu~     1 Frid~     1 3        
##  3 2016-01-01 02:00:00 2016-01-01  2016 Janu~     1 Frid~     2 3        
##  4 2016-01-01 03:00:00 2016-01-01  2016 Janu~     1 Frid~     3 3        
##  5 2016-01-01 04:00:00 2016-01-01  2016 Janu~     1 Frid~     4 3        
##  6 2016-01-01 05:00:00 2016-01-01  2016 Janu~     1 Frid~     5 3        
##  7 2016-01-01 06:00:00 2016-01-01  2016 Janu~     1 Frid~     6 3        
##  8 2016-01-01 07:00:00 2016-01-01  2016 Janu~     1 Frid~     7 3        
##  9 2016-01-01 08:00:00 2016-01-01  2016 Janu~     1 Frid~     8 3        
## 10 2016-01-01 09:00:00 2016-01-01  2016 Janu~     1 Frid~     9 3        
## # ... with 8,870 more rows, and 4 more variables: Sensor_Name <chr>,
## #   Hourly_Counts <int>, .Time <dbl>, .Hourly_Counts <dbl>

2019-11-13