0.1 Results

Factor

Detalis

Total

N=

185

Gender

F

22 (11.9%)

M

163 (88.1%)

Age

μ ±DS

68.83 ±8.15

M (min:max)

70 (45.2:86.1)

Year of diagnosis

μ ±DS

2014.95 ±3.1

M (min:max)

2015.5 (2008:2019)

Survival

μ ±DS

23.11 ±23.0

M (min:max)

15 (0:114)

Status

0

62 (34.4%)

1

110 (61.1%)

2

8 (4.4%)

MRI_diagnosis

57 (30.8%)

CT_Diagnosis

111 (60.0%)

US_Diagnosis

60 (32.4%)

HCC_Screening_18months_before

60 (32.8%)

US_Screening

41 (27.7%)

MRI_Screening

17 (11.5%)

CT_Screening

27 (18.2%)

ASH

130 (70.3%)

NAFLD

106 (57.3%)

Cirrhosis

156 (84.3%)

HCV

no

185 (100%)

HBc

no

185 (100%)

Diagnosis

NASH

55 (29.7%)

ASH

79 (42.7%)

BASH

51 (27.6%)

Diabetes

79 (42.7%)

Hipertension

109 (61.6%)

Hiperlipidemia

41 (23.2%)

Smoking

0

94 (51.1%)

1

76 (41.3%)

2

14 (7.6%)

Alcohol_Consume

0

97 (52.7%)

1

70 (38.0%)

2

17 (9.2%)

BMI

μ ±DS

28.63 ±5.12

M (min:max)

28.41 (18.48:48.32)

Encephalopathy (acc. to CP score)

1

170 (93.9%)

2-3

11 (6.1%)

Ascites (acc. to CP score)

1

143 (79.4%)

2

21 (11.7%)

3

16 (8.9%)

Bilirubin total (µmol/L)

μ ±DS

28.10 ±42.3

M (min:max)

17 (3:413)

INR

μ ±DS

1.18 ±0.195

M (min:max)

1.14 (0.8:2.07)

Albumin (g/L)

μ ±DS

32.12 ±5.78

M (min:max)

32 (17:49.8)

CHILD

1

103 (58.9%)

2

61 (34.9%)

3

11 (6.3%)

CHILD_A

103 (58.9%)

CHILD_B

61 (34.9%)

CHILD_C

11 (6.3%)

BCLC

0

13 (7.1%)

1

63 (34.2%)

2

57 (31.0%)

3

36 (19.6%)

4

15 (8.2%)

BCLC_0

13 (7.1%)

BCLC_1

63 (34.2%)

BCLC_2

57 (31.0%)

BCLC_3

36 (19.6%)

BCLC_4

15 (8.2%)

Resection

35 (18.9%)

Transplant

5 (2.7%)

TACE

24 (13.0%)

TAE

15 (8.2%)

RFA

3 (1.6%)

MWA

35 (19.0%)

SIRT

5 (2.7%)

Sistemic_therapy

43 (23.4%)

Curative_treatment

66 (35.9%)

Loco_regional_therapies

41 (22.3%)

No_treatment

29 (15.8%)

Treatment

Curative

66 (35.9%)

Transplant

5 (2.7%)

Loco-regional

41 (22.3%)

Systemic

43 (23.4%)

No treatment

29 (15.8%)

Performance Status

0

110 (60.1%)

1

46 (25.1%)

2

17 (9.3%)

3

9 (4.9%)

4

1 (0.5%)

PS_0

110 (60.1%)

PS_1

46 (25.1%)

PS_2

17 (9.3%)

PS_3

9 (4.9%)

PS_4

1 (0.5%)

μ ±DS = Mean (standard deviation); M (min:max) = Median (min:max);

0.1.1 by diagnosis

Factor

Detalis

NASH

ASH

BASH

Total

Statistics

Diagnosis

55 (29.7%)

79 (42.7%)

51 (27.6%)

185

Gender

F

9 (16.4%)

11 (13.9%)

2 (3.9%)

22 (11.9%)

V=0.16 (p=0.108)

M

46 (83.6%)

68 (86.1%)

49 (96.1%)

163 (88.1%)

Age

μ ±DS

70.83 ±7.01

67.28 ±8.81

69.07 ±7.89

68.83 ±8.15

1-way ANOVA: p=0.044

M (min:max)

71.1 (50.9:86.1)

67.6 (45.2:86)

69.7 (53.5:83.9)

70 (45.2:86.1)

Year of diagnosis

μ ±DS

2014.87 ±3.23

2015.05 ±3.22

2014.86 ±2.78

2014.95 ±3.1

Kruskal-Wallis: p=0.816

M (min:max)

2015 (2008:2019)

2016 (2008:2019)

2015 (2009:2019)

2015.5 (2008:2019)

Survival

μ ±DS

21.93 ±23.9

23.50 ±23.6

23.80 ±21.7

23.11 ±23.0

Kruskal-Wallis: p=0.872

M (min:max)

14 (0:110)

15 (0:114)

19.5 (0:85)

15 (0:114)

Status

0

22 (40.7%)

29 (38.2%)

11 (22.0%)

62 (34.4%)

V=0.13 (p=0.226)

1

29 (53.7%)

45 (59.2%)

36 (72.0%)

110 (61.1%)

2

3 (5.6%)

2 (2.6%)

3 (6.0%)

8 (4.4%)

MRI_diagnosis

18 (32.7%)

24 (30.4%)

15 (29.4%)

57 (30.8%)

V=0.03 (p=0.928)

CT_Diagnosis

33 (60.0%)

47 (59.5%)

31 (60.8%)

111 (60.0%)

V=0.01 (p=0.989)

US_Diagnosis

20 (36.4%)

25 (31.6%)

15 (29.4%)

60 (32.4%)

V=0.06 (p=0.733)

HCC_Screening_18months_before

23 (41.8%)

23 (29.1%)

14 (28.6%)

60 (32.8%)

V=0.13 (p=0.233)

US_Screening

17 (30.9%)

14 (17.7%)

10 (71.4%)

41 (27.7%)

V=0.34 (p<0.001)

MRI_Screening

6 (10.9%)

7 (8.9%)

4 (28.6%)

17 (11.5%)

V=0.18 (p=0.102)

CT_Screening

9 (16.4%)

14 (17.7%)

4 (28.6%)

27 (18.2%)

V=0.09 (p=0.564)

ASH

0

79 (100%)

51 (100%)

130 (70.3%)

V=1.00 (p<0.001)

NAFLD

55 (100%)

0

51 (100%)

106 (57.3%)

V=1.00 (p<0.001)

Cirrhosis

42 (76.4%)

70 (88.6%)

44 (86.3%)

156 (84.3%)

V=0.14 (p=0.144)

HCV

no

55 (100%)

79 (100%)

51 (100%)

185 (100%)

V=NaN (p=1.000)

HBc

no

55 (100%)

79 (100%)

51 (100%)

185 (100%)

V=NaN (p=1.000)

Diabetes

35 (63.6%)

18 (22.8%)

26 (51.0%)

79 (42.7%)

V=0.36 (p<0.001)

Hipertension

35 (68.6%)

35 (46.1%)

39 (78.0%)

109 (61.6%)

V=0.29 (p<0.001)

Hiperlipidemia

16 (31.4%)

12 (15.8%)

13 (26.0%)

41 (23.2%)

V=0.16 (p=0.107)

Smoking

0

38 (70.4%)

31 (39.2%)

25 (49.0%)

94 (51.1%)

V=0.39 (p<0.001)

1

16 (29.6%)

48 (60.8%)

12 (23.5%)

76 (41.3%)

2

0

0

14 (27.5%)

14 (7.6%)

Alcohol_Consume

0

47 (87.0%)

31 (39.2%)

19 (37.3%)

97 (52.7%)

V=0.47 (p<0.001)

1

7 (13.0%)

48 (60.8%)

15 (29.4%)

70 (38.0%)

2

0

0

17 (33.3%)

17 (9.2%)

BMI

μ ±DS

30.61 ±4.98

26.26 ±4.15

30.35 ±5.22

28.63 ±5.12

Kruskal-Wallis: p<0.001

M (min:max)

30.44 (18.48:42.17)

25.98 (18.63:38.74)

29.68 (20.34:48.32)

28.41 (18.48:48.32)

Encephalopathy (acc. to CP score)

1

51 (96.2%)

73 (92.4%)

46 (93.9%)

170 (93.9%)

V=0.07 (p=0.666)

2-3

2 (3.8%)

6 (7.6%)

3 (6.1%)

11 (6.1%)

Ascites (acc. to CP score)

1

44 (84.6%)

59 (74.7%)

40 (81.6%)

143 (79.4%)

V=0.12 (p=0.253)

2

7 (13.5%)

10 (12.7%)

4 (8.2%)

21 (11.7%)

3

1 (1.9%)

10 (12.7%)

5 (10.2%)

16 (8.9%)

Bilirubin total (µmol/L)

μ ±DS

23.88 ±18.2

27.42 ±37.6

33.12 ±61.2

28.10 ±42.3

Kruskal-Wallis: p=0.753

M (min:max)

18 (5:104)

16 (3:286)

18 (6:413)

17 (3:413)

INR

μ ±DS

1.16 ±0.162

1.19 ±0.222

1.19 ±0.184

1.18 ±0.195

Kruskal-Wallis: p=0.648

M (min:max)

1.14 (0.99:1.78)

1.11 (0.8:2.07)

1.15 (0.99:1.96)

1.14 (0.8:2.07)

Albumin (g/L)

μ ±DS

33.01 ±4.59

31.73 ±6.24

31.79 ±6.14

32.12 ±5.78

Kruskal-Wallis: p=0.552

M (min:max)

33 (24:42)

32.5 (20:42)

32 (17:49.8)

32 (17:49.8)

CHILD

1

31 (64.6%)

44 (55.7%)

28 (58.3%)

103 (58.9%)

V=0.08 (p=0.698)

2

15 (31.2%)

28 (35.4%)

18 (37.5%)

61 (34.9%)

3

2 (4.2%)

7 (8.9%)

2 (4.2%)

11 (6.3%)

CHILD_A

31 (64.6%)

44 (55.7%)

28 (58.3%)

103 (58.9%)

V=0.07 (p=0.612)

CHILD_B

15 (31.2%)

28 (35.4%)

18 (37.5%)

61 (34.9%)

V=0.05 (p=0.805)

CHILD_C

2 (4.2%)

7 (8.9%)

2 (4.2%)

11 (6.3%)

V=0.10 (p=0.445)

BCLC

0

2 (3.7%)

9 (11.4%)

2 (3.9%)

13 (7.1%)

V=0.14 (p=0.500)

1

21 (38.9%)

26 (32.9%)

16 (31.4%)

63 (34.2%)

2

15 (27.8%)

22 (27.8%)

20 (39.2%)

57 (31.0%)

3

13 (24.1%)

14 (17.7%)

9 (17.6%)

36 (19.6%)

4

3 (5.6%)

8 (10.1%)

4 (7.8%)

15 (8.2%)

BCLC_0

2 (3.7%)

9 (11.4%)

2 (3.9%)

13 (7.1%)

V=0.15 (p=0.139)

BCLC_1

21 (38.9%)

26 (32.9%)

16 (31.4%)

63 (34.2%)

V=0.06 (p=0.682)

BCLC_2

15 (27.8%)

22 (27.8%)

20 (39.2%)

57 (31.0%)

V=0.11 (p=0.326)

BCLC_3

13 (24.1%)

14 (17.7%)

9 (17.6%)

36 (19.6%)

V=0.07 (p=0.610)

BCLC_4

3 (5.6%)

8 (10.1%)

4 (7.8%)

15 (8.2%)

V=0.07 (p=0.636)

Resection

12 (21.8%)

17 (21.5%)

6 (11.8%)

35 (18.9%)

V=0.11 (p=0.309)

Transplant

0

3 (3.8%)

2 (3.9%)

5 (2.7%)

V=0.11 (p=0.334)

TACE

7 (12.7%)

9 (11.5%)

8 (15.7%)

24 (13.0%)

V=0.05 (p=0.789)

TAE

5 (9.1%)

5 (6.4%)

5 (10.0%)

15 (8.2%)

V=0.06 (p=0.739)

RFA

2 (3.7%)

1 (1.3%)

0

3 (1.6%)

V=0.11 (p=0.311)

MWA

11 (20.0%)

13 (16.7%)

11 (21.6%)

35 (19.0%)

V=0.05 (p=0.767)

SIRT

1 (1.8%)

2 (2.6%)

2 (3.9%)

5 (2.7%)

V=0.05 (p=0.797)

Sistemic_therapy

12 (21.8%)

16 (20.5%)

15 (29.4%)

43 (23.4%)

V=0.09 (p=0.480)

Curative_treatment

25 (45.5%)

27 (34.6%)

14 (27.5%)

66 (35.9%)

V=0.14 (p=0.148)

Loco_regional_therapies

12 (21.8%)

16 (20.5%)

13 (25.5%)

41 (22.3%)

V=0.05 (p=0.798)

No_treatment

6 (10.9%)

16 (20.5%)

7 (13.7%)

29 (15.8%)

V=0.12 (p=0.292)

Treatment

Curative

25 (45.5%)

27 (34.6%)

14 (27.5%)

66 (35.9%)

V=0.15 (p=0.421)

Transplant

0

3 (3.8%)

2 (3.9%)

5 (2.7%)

Loco-regional

12 (21.8%)

16 (20.5%)

13 (25.5%)

41 (22.3%)

Systemic

12 (21.8%)

16 (20.5%)

15 (29.4%)

43 (23.4%)

No treatment

6 (10.9%)

16 (20.5%)

7 (13.7%)

29 (15.8%)

Performance Status

0

34 (64.2%)

45 (57.0%)

31 (60.8%)

110 (60.1%)

V=0.08 (p=0.965)

1

13 (24.5%)

20 (25.3%)

13 (25.5%)

46 (25.1%)

2

4 (7.5%)

8 (10.1%)

5 (9.8%)

17 (9.3%)

3

2 (3.8%)

5 (6.3%)

2 (3.9%)

9 (4.9%)

4

0

1 (1.3%)

0

1 (0.5%)

PS_0

34 (64.2%)

45 (57.0%)

31 (60.8%)

110 (60.1%)

V=0.06 (p=0.706)

PS_1

13 (24.5%)

20 (25.3%)

13 (25.5%)

46 (25.1%)

V=<0.01 (p=0.992)

PS_2

4 (7.5%)

8 (10.1%)

5 (9.8%)

17 (9.3%)

V=0.04 (p=0.873)

PS_3

2 (3.8%)

5 (6.3%)

2 (3.9%)

9 (4.9%)

V=0.06 (p=0.743)

PS_4

0

1 (1.3%)

0

1 (0.5%)

V=0.09 (p=0.516)

μ ±DS = Mean (standard deviation); M (min:max) = Median (min:max); MW = Mann-WhitneyTest; OR/RR = odds-ratio / risc-ratio [95% CI] and p value from Fisher test); V = Cramer V (p value from Chi² test);

0.1.2 by diagnosis: NASH vs others

Factor

Detalis

NASH

Other

Total

Statistics

Diagnosis

55 (29.7%)

130 (70.3%)

185

Gender

F

9 (16.4%)

13 (10.0%)

22 (11.9%)

OR=1.76 [0.70, 4.40] (p=0.224)

M

46 (83.6%)

117 (90.0%)

163 (88.1%)

Age

μ ±DS

70.83 ±7.01

67.98 ±8.48

68.83 ±8.15

T-test: p=0.030

M (min:max)

71.1 (50.9:86.1)

68.25 (45.2:86)

70 (45.2:86.1)

Year of diagnosis

μ ±DS

2014.87 ±3.23

2014.98 ±3.05

2014.95 ±3.1

MW: p=0.904

M (min:max)

2015 (2008:2019)

2016 (2008:2019)

2015.5 (2008:2019)

Survival

μ ±DS

21.93 ±23.9

23.62 ±22.8

23.11 ±23.0

MW: p=0.687

M (min:max)

14 (0:110)

17 (0:114)

15 (0:114)

Status

0

22 (40.7%)

40 (31.7%)

62 (34.4%)

V=0.10 (p=0.408)

1

29 (53.7%)

81 (64.3%)

110 (61.1%)

2

3 (5.6%)

5 (4.0%)

8 (4.4%)

MRI_diagnosis

18 (32.7%)

39 (30.0%)

57 (30.8%)

OR=1.14 [0.58, 2.23] (p=0.730)

CT_Diagnosis

33 (60.0%)

78 (60.0%)

111 (60.0%)

OR=1.00 [0.53, 1.90] (p=1.000)

US_Diagnosis

20 (36.4%)

40 (30.8%)

60 (32.4%)

OR=1.29 [0.66, 2.50] (p=0.494)

HCC_Screening_18months_before

23 (41.8%)

37 (28.9%)

60 (32.8%)

OR=1.77 [0.92, 3.41] (p=0.122)

US_Screening

17 (30.9%)

24 (25.8%)

41 (27.7%)

OR=1.29 [0.62, 2.69] (p=0.570)

MRI_Screening

6 (10.9%)

11 (11.8%)

17 (11.5%)

OR=0.91 [0.32, 2.62] (p=1.000)

CT_Screening

9 (16.4%)

18 (19.4%)

27 (18.2%)

OR=0.82 [0.34, 1.97] (p=0.826)

ASH

0

130 (100%)

130 (70.3%)

OR=0.00 [0.00, 0.00] (p<0.001)

NAFLD

55 (100%)

51 (39.2%)

106 (57.3%)

OR=171.35 [10.35, 2 835.45] (p<0.001)

Cirrhosis

42 (76.4%)

114 (87.7%)

156 (84.3%)

OR=0.45 [0.20, 1.02] (p=0.075)

HCV

no

55 (100%)

130 (100%)

185 (100%)

V=NaN (p=1.000)

HBc

no

55 (100%)

130 (100%)

185 (100%)

V=NaN (p=1.000)

Diabetes

35 (63.6%)

44 (33.8%)

79 (42.7%)

OR=3.42 [1.77, 6.61] (p<0.001)

Hipertension

35 (68.6%)

74 (58.7%)

109 (61.6%)

OR=1.54 [0.77, 3.06] (p=0.237)

Hiperlipidemia

16 (31.4%)

25 (19.8%)

41 (23.2%)

OR=1.85 [0.88, 3.86] (p=0.117)

Smoking

0

38 (70.4%)

56 (43.1%)

94 (51.1%)

V=0.27 (p<0.001)

1

16 (29.6%)

60 (46.2%)

76 (41.3%)

2

0

14 (10.8%)

14 (7.6%)

Alcohol_Consume

0

47 (87.0%)

50 (38.5%)

97 (52.7%)

V=0.45 (p<0.001)

1

7 (13.0%)

63 (48.5%)

70 (38.0%)

2

0

17 (13.1%)

17 (9.2%)

BMI

μ ±DS

30.61 ±4.98

27.79 ±4.97

28.63 ±5.12

MW: p<0.001

M (min:max)

30.44 (18.48:42.17)

27.34 (18.63:48.32)

28.41 (18.48:48.32)

Encephalopathy (acc. to CP score)

1

51 (96.2%)

119 (93.0%)

170 (93.9%)

OR=1.93 [0.40, 9.24] (p=0.513)

2-3

2 (3.8%)

9 (7.0%)

11 (6.1%)

Ascites (acc. to CP score)

1

44 (84.6%)

99 (77.3%)

143 (79.4%)

V=0.16 (p=0.109)

2

7 (13.5%)

14 (10.9%)

21 (11.7%)

3

1 (1.9%)

15 (11.7%)

16 (8.9%)

Bilirubin total (µmol/L)

μ ±DS

23.88 ±18.2

29.69 ±48.3

28.10 ±42.3

MW: p=0.701

M (min:max)

18 (5:104)

17 (3:413)

17 (3:413)

INR

μ ±DS

1.16 ±0.162

1.19 ±0.207

1.18 ±0.195

MW: p=0.461

M (min:max)

1.14 (0.99:1.78)

1.14 (0.8:2.07)

1.14 (0.8:2.07)

Albumin (g/L)

μ ±DS

33.01 ±4.59

31.75 ±6.18

32.12 ±5.78

MW: p=0.279

M (min:max)

33 (24:42)

32 (17:49.8)

32 (17:49.8)

CHILD

1

31 (64.6%)

72 (56.7%)

103 (58.9%)

V=0.08 (p=0.580)

2

15 (31.2%)

46 (36.2%)

61 (34.9%)

3

2 (4.2%)

9 (7.1%)

11 (6.3%)

CHILD_A

31 (64.6%)

72 (56.7%)

103 (58.9%)

OR=1.39 [0.70, 2.77] (p=0.392)

CHILD_B

15 (31.2%)

46 (36.2%)

61 (34.9%)

OR=0.80 [0.39, 1.63] (p=0.597)

CHILD_C

2 (4.2%)

9 (7.1%)

11 (6.3%)

OR=0.57 [0.12, 2.74] (p=0.729)

BCLC

0

2 (3.7%)

11 (8.5%)

13 (7.1%)

V=0.14 (p=0.496)

1

21 (38.9%)

42 (32.3%)

63 (34.2%)

2

15 (27.8%)

42 (32.3%)

57 (31.0%)

3

13 (24.1%)

23 (17.7%)

36 (19.6%)

4

3 (5.6%)

12 (9.2%)

15 (8.2%)

BCLC_0

2 (3.7%)

11 (8.5%)

13 (7.1%)

OR=0.42 [0.09, 1.94] (p=0.351)

BCLC_1

21 (38.9%)

42 (32.3%)

63 (34.2%)

OR=1.33 [0.69, 2.58] (p=0.399)

BCLC_2

15 (27.8%)

42 (32.3%)

57 (31.0%)

OR=0.81 [0.40, 1.62] (p=0.602)

BCLC_3

13 (24.1%)

23 (17.7%)

36 (19.6%)

OR=1.48 [0.68, 3.18] (p=0.316)

BCLC_4

3 (5.6%)

12 (9.2%)

15 (8.2%)

OR=0.58 [0.16, 2.14] (p=0.559)

Resection

12 (21.8%)

23 (17.7%)

35 (18.9%)

OR=1.30 [0.59, 2.84] (p=0.541)

Transplant

0

5 (3.9%)

5 (2.7%)

OR=0.20 [0.01, 3.75] (p=0.324)

TACE

7 (12.7%)

17 (13.2%)

24 (13.0%)

OR=0.96 [0.37, 2.47] (p=1.000)

TAE

5 (9.1%)

10 (7.8%)

15 (8.2%)

OR=1.18 [0.38, 3.63] (p=0.774)

RFA

2 (3.7%)

1 (0.8%)

3 (1.6%)

OR=4.92 [0.44, 55.47] (p=0.208)

MWA

11 (20.0%)

24 (18.6%)

35 (19.0%)

OR=1.09 [0.49, 2.42] (p=0.839)

SIRT

1 (1.8%)

4 (3.1%)

5 (2.7%)

OR=0.58 [0.06, 5.30] (p=1.000)

Sistemic_therapy

12 (21.8%)

31 (24.0%)

43 (23.4%)

OR=0.88 [0.41, 1.88] (p=0.850)

Curative_treatment

25 (45.5%)

41 (31.8%)

66 (35.9%)

OR=1.79 [0.94, 3.42] (p=0.093)

Loco_regional_therapies

12 (21.8%)

29 (22.5%)

41 (22.3%)

OR=0.96 [0.45, 2.06] (p=1.000)

No_treatment

6 (10.9%)

23 (17.8%)

29 (15.8%)

OR=0.56 [0.22, 1.47] (p=0.276)

Treatment

Curative

25 (45.5%)

41 (31.8%)

66 (35.9%)

V=0.17 (p=0.249)

Transplant

0

5 (3.9%)

5 (2.7%)

Loco-regional

12 (21.8%)

29 (22.5%)

41 (22.3%)

Systemic

12 (21.8%)

31 (24.0%)

43 (23.4%)

No treatment

6 (10.9%)

23 (17.8%)

29 (15.8%)

Performance Status

0

34 (64.2%)

76 (58.5%)

110 (60.1%)

V=0.08 (p=0.900)

1

13 (24.5%)

33 (25.4%)

46 (25.1%)

2

4 (7.5%)

13 (10.0%)

17 (9.3%)

3

2 (3.8%)

7 (5.4%)

9 (4.9%)

4

0

1 (0.8%)

1 (0.5%)

PS_0

34 (64.2%)

76 (58.5%)

110 (60.1%)

OR=1.27 [0.66, 2.46] (p=0.509)

PS_1

13 (24.5%)

33 (25.4%)

46 (25.1%)

OR=0.96 [0.46, 2.00] (p=1.000)

PS_2

4 (7.5%)

13 (10.0%)

17 (9.3%)

OR=0.73 [0.23, 2.37] (p=0.781)

PS_3

2 (3.8%)

7 (5.4%)

9 (4.9%)

OR=0.69 [0.14, 3.43] (p=1.000)

PS_4

0

1 (0.8%)

1 (0.5%)

OR=0.81 [0.03, 20.12] (p=1.000)

μ ±DS = Mean (standard deviation); M (min:max) = Median (min:max); MW = Mann-WhitneyTest; OR/RR = odds-ratio / risc-ratio [95% CI] and p value from Fisher test); V = Cramer V (p value from Chi² test);

0.1.3 by diagnosis: ASH vs others

Factor

Detalis

ASH

Other

Total

Statistics

Diagnosis

55 (29.7%)

130 (70.3%)

185

Gender

F

9 (16.4%)

13 (10.0%)

22 (11.9%)

OR=1.76 [0.70, 4.40] (p=0.224)

M

46 (83.6%)

117 (90.0%)

163 (88.1%)

Age

μ ±DS

70.83 ±7.01

67.98 ±8.48

68.83 ±8.15

T-test: p=0.030

M (min:max)

71.1 (50.9:86.1)

68.25 (45.2:86)

70 (45.2:86.1)

Year of diagnosis

μ ±DS

2014.87 ±3.23

2014.98 ±3.05

2014.95 ±3.1

MW: p=0.904

M (min:max)

2015 (2008:2019)

2016 (2008:2019)

2015.5 (2008:2019)

Survival

μ ±DS

21.93 ±23.9

23.62 ±22.8

23.11 ±23.0

MW: p=0.687

M (min:max)

14 (0:110)

17 (0:114)

15 (0:114)

Status

0

22 (40.7%)

40 (31.7%)

62 (34.4%)

V=0.10 (p=0.408)

1

29 (53.7%)

81 (64.3%)

110 (61.1%)

2

3 (5.6%)

5 (4.0%)

8 (4.4%)

MRI_diagnosis

18 (32.7%)

39 (30.0%)

57 (30.8%)

OR=1.14 [0.58, 2.23] (p=0.730)

CT_Diagnosis

33 (60.0%)

78 (60.0%)

111 (60.0%)

OR=1.00 [0.53, 1.90] (p=1.000)

US_Diagnosis

20 (36.4%)

40 (30.8%)

60 (32.4%)

OR=1.29 [0.66, 2.50] (p=0.494)

HCC_Screening_18months_before

23 (41.8%)

37 (28.9%)

60 (32.8%)

OR=1.77 [0.92, 3.41] (p=0.122)

US_Screening

17 (30.9%)

24 (25.8%)

41 (27.7%)

OR=1.29 [0.62, 2.69] (p=0.570)

MRI_Screening

6 (10.9%)

11 (11.8%)

17 (11.5%)

OR=0.91 [0.32, 2.62] (p=1.000)

CT_Screening

9 (16.4%)

18 (19.4%)

27 (18.2%)

OR=0.82 [0.34, 1.97] (p=0.826)

ASH

0

130 (100%)

130 (70.3%)

OR=0.00 [0.00, 0.00] (p<0.001)

NAFLD

55 (100%)

51 (39.2%)

106 (57.3%)

OR=171.35 [10.35, 2 835.45] (p<0.001)

Cirrhosis

42 (76.4%)

114 (87.7%)

156 (84.3%)

OR=0.45 [0.20, 1.02] (p=0.075)

HCV

no

55 (100%)

130 (100%)

185 (100%)

V=NaN (p=1.000)

HBc

no

55 (100%)

130 (100%)

185 (100%)

V=NaN (p=1.000)

Diabetes

35 (63.6%)

44 (33.8%)

79 (42.7%)

OR=3.42 [1.77, 6.61] (p<0.001)

Hipertension

35 (68.6%)

74 (58.7%)

109 (61.6%)

OR=1.54 [0.77, 3.06] (p=0.237)

Hiperlipidemia

16 (31.4%)

25 (19.8%)

41 (23.2%)

OR=1.85 [0.88, 3.86] (p=0.117)

Smoking

0

38 (70.4%)

56 (43.1%)

94 (51.1%)

V=0.27 (p<0.001)

1

16 (29.6%)

60 (46.2%)

76 (41.3%)

2

0

14 (10.8%)

14 (7.6%)

Alcohol_Consume

0

47 (87.0%)

50 (38.5%)

97 (52.7%)

V=0.45 (p<0.001)

1

7 (13.0%)

63 (48.5%)

70 (38.0%)

2

0

17 (13.1%)

17 (9.2%)

BMI

μ ±DS

30.61 ±4.98

27.79 ±4.97

28.63 ±5.12

MW: p<0.001

M (min:max)

30.44 (18.48:42.17)

27.34 (18.63:48.32)

28.41 (18.48:48.32)

Encephalopathy (acc. to CP score)

1

51 (96.2%)

119 (93.0%)

170 (93.9%)

OR=1.93 [0.40, 9.24] (p=0.513)

2-3

2 (3.8%)

9 (7.0%)

11 (6.1%)

Ascites (acc. to CP score)

1

44 (84.6%)

99 (77.3%)

143 (79.4%)

V=0.16 (p=0.109)

2

7 (13.5%)

14 (10.9%)

21 (11.7%)

3

1 (1.9%)

15 (11.7%)

16 (8.9%)

Bilirubin total (µmol/L)

μ ±DS

23.88 ±18.2

29.69 ±48.3

28.10 ±42.3

MW: p=0.701

M (min:max)

18 (5:104)

17 (3:413)

17 (3:413)

INR

μ ±DS

1.16 ±0.162

1.19 ±0.207

1.18 ±0.195

MW: p=0.461

M (min:max)

1.14 (0.99:1.78)

1.14 (0.8:2.07)

1.14 (0.8:2.07)

Albumin (g/L)

μ ±DS

33.01 ±4.59

31.75 ±6.18

32.12 ±5.78

MW: p=0.279

M (min:max)

33 (24:42)

32 (17:49.8)

32 (17:49.8)

CHILD

1

31 (64.6%)

72 (56.7%)

103 (58.9%)

V=0.08 (p=0.580)

2

15 (31.2%)

46 (36.2%)

61 (34.9%)

3

2 (4.2%)

9 (7.1%)

11 (6.3%)

CHILD_A

31 (64.6%)

72 (56.7%)

103 (58.9%)

OR=1.39 [0.70, 2.77] (p=0.392)

CHILD_B

15 (31.2%)

46 (36.2%)

61 (34.9%)

OR=0.80 [0.39, 1.63] (p=0.597)

CHILD_C

2 (4.2%)

9 (7.1%)

11 (6.3%)

OR=0.57 [0.12, 2.74] (p=0.729)

BCLC

0

2 (3.7%)

11 (8.5%)

13 (7.1%)

V=0.14 (p=0.496)

1

21 (38.9%)

42 (32.3%)

63 (34.2%)

2

15 (27.8%)

42 (32.3%)

57 (31.0%)

3

13 (24.1%)

23 (17.7%)

36 (19.6%)

4

3 (5.6%)

12 (9.2%)

15 (8.2%)

BCLC_0

2 (3.7%)

11 (8.5%)

13 (7.1%)

OR=0.42 [0.09, 1.94] (p=0.351)

BCLC_1

21 (38.9%)

42 (32.3%)

63 (34.2%)

OR=1.33 [0.69, 2.58] (p=0.399)

BCLC_2

15 (27.8%)

42 (32.3%)

57 (31.0%)

OR=0.81 [0.40, 1.62] (p=0.602)

BCLC_3

13 (24.1%)

23 (17.7%)

36 (19.6%)

OR=1.48 [0.68, 3.18] (p=0.316)

BCLC_4

3 (5.6%)

12 (9.2%)

15 (8.2%)

OR=0.58 [0.16, 2.14] (p=0.559)

Resection

12 (21.8%)

23 (17.7%)

35 (18.9%)

OR=1.30 [0.59, 2.84] (p=0.541)

Transplant

0

5 (3.9%)

5 (2.7%)

OR=0.20 [0.01, 3.75] (p=0.324)

TACE

7 (12.7%)

17 (13.2%)

24 (13.0%)

OR=0.96 [0.37, 2.47] (p=1.000)

TAE

5 (9.1%)

10 (7.8%)

15 (8.2%)

OR=1.18 [0.38, 3.63] (p=0.774)

RFA

2 (3.7%)

1 (0.8%)

3 (1.6%)

OR=4.92 [0.44, 55.47] (p=0.208)

MWA

11 (20.0%)

24 (18.6%)

35 (19.0%)

OR=1.09 [0.49, 2.42] (p=0.839)

SIRT

1 (1.8%)

4 (3.1%)

5 (2.7%)

OR=0.58 [0.06, 5.30] (p=1.000)

Sistemic_therapy

12 (21.8%)

31 (24.0%)

43 (23.4%)

OR=0.88 [0.41, 1.88] (p=0.850)

Curative_treatment

25 (45.5%)

41 (31.8%)

66 (35.9%)

OR=1.79 [0.94, 3.42] (p=0.093)

Loco_regional_therapies

12 (21.8%)

29 (22.5%)

41 (22.3%)

OR=0.96 [0.45, 2.06] (p=1.000)

No_treatment

6 (10.9%)

23 (17.8%)

29 (15.8%)

OR=0.56 [0.22, 1.47] (p=0.276)

Treatment

Curative

25 (45.5%)

41 (31.8%)

66 (35.9%)

V=0.17 (p=0.249)

Transplant

0

5 (3.9%)

5 (2.7%)

Loco-regional

12 (21.8%)

29 (22.5%)

41 (22.3%)

Systemic

12 (21.8%)

31 (24.0%)

43 (23.4%)

No treatment

6 (10.9%)

23 (17.8%)

29 (15.8%)

Performance Status

0

34 (64.2%)

76 (58.5%)

110 (60.1%)

V=0.08 (p=0.900)

1

13 (24.5%)

33 (25.4%)

46 (25.1%)

2

4 (7.5%)

13 (10.0%)

17 (9.3%)

3

2 (3.8%)

7 (5.4%)

9 (4.9%)

4

0

1 (0.8%)

1 (0.5%)

PS_0

34 (64.2%)

76 (58.5%)

110 (60.1%)

OR=1.27 [0.66, 2.46] (p=0.509)

PS_1

13 (24.5%)

33 (25.4%)

46 (25.1%)

OR=0.96 [0.46, 2.00] (p=1.000)

PS_2

4 (7.5%)

13 (10.0%)

17 (9.3%)

OR=0.73 [0.23, 2.37] (p=0.781)

PS_3

2 (3.8%)

7 (5.4%)

9 (4.9%)

OR=0.69 [0.14, 3.43] (p=1.000)

PS_4

0

1 (0.8%)

1 (0.5%)

OR=0.81 [0.03, 20.12] (p=1.000)

μ ±DS = Mean (standard deviation); M (min:max) = Median (min:max); MW = Mann-WhitneyTest; OR/RR = odds-ratio / risc-ratio [95% CI] and p value from Fisher test); V = Cramer V (p value from Chi² test);

0.1.4 by diagnosis: BASH vs others

Factor

Detalis

BASH

Other

Total

Statistics

Diagnosis

55 (29.7%)

130 (70.3%)

185

Gender

F

9 (16.4%)

13 (10.0%)

22 (11.9%)

OR=1.76 [0.70, 4.40] (p=0.224)

M

46 (83.6%)

117 (90.0%)

163 (88.1%)

Age

μ ±DS

70.83 ±7.01

67.98 ±8.48

68.83 ±8.15

T-test: p=0.030

M (min:max)

71.1 (50.9:86.1)

68.25 (45.2:86)

70 (45.2:86.1)

Year of diagnosis

μ ±DS

2014.87 ±3.23

2014.98 ±3.05

2014.95 ±3.1

MW: p=0.904

M (min:max)

2015 (2008:2019)

2016 (2008:2019)

2015.5 (2008:2019)

Survival

μ ±DS

21.93 ±23.9

23.62 ±22.8

23.11 ±23.0

MW: p=0.687

M (min:max)

14 (0:110)

17 (0:114)

15 (0:114)

Status

0

22 (40.7%)

40 (31.7%)

62 (34.4%)

V=0.10 (p=0.408)

1

29 (53.7%)

81 (64.3%)

110 (61.1%)

2

3 (5.6%)

5 (4.0%)

8 (4.4%)

MRI_diagnosis

18 (32.7%)

39 (30.0%)

57 (30.8%)

OR=1.14 [0.58, 2.23] (p=0.730)

CT_Diagnosis

33 (60.0%)

78 (60.0%)

111 (60.0%)

OR=1.00 [0.53, 1.90] (p=1.000)

US_Diagnosis

20 (36.4%)

40 (30.8%)

60 (32.4%)

OR=1.29 [0.66, 2.50] (p=0.494)

HCC_Screening_18months_before

23 (41.8%)

37 (28.9%)

60 (32.8%)

OR=1.77 [0.92, 3.41] (p=0.122)

US_Screening

17 (30.9%)

24 (25.8%)

41 (27.7%)

OR=1.29 [0.62, 2.69] (p=0.570)

MRI_Screening

6 (10.9%)

11 (11.8%)

17 (11.5%)

OR=0.91 [0.32, 2.62] (p=1.000)

CT_Screening

9 (16.4%)

18 (19.4%)

27 (18.2%)

OR=0.82 [0.34, 1.97] (p=0.826)

ASH

0

130 (100%)

130 (70.3%)

OR=0.00 [0.00, 0.00] (p<0.001)

NAFLD

55 (100%)

51 (39.2%)

106 (57.3%)

OR=171.35 [10.35, 2 835.45] (p<0.001)

Cirrhosis

42 (76.4%)

114 (87.7%)

156 (84.3%)

OR=0.45 [0.20, 1.02] (p=0.075)

HCV

no

55 (100%)

130 (100%)

185 (100%)

V=NaN (p=1.000)

HBc

no

55 (100%)

130 (100%)

185 (100%)

V=NaN (p=1.000)

Diabetes

35 (63.6%)

44 (33.8%)

79 (42.7%)

OR=3.42 [1.77, 6.61] (p<0.001)

Hipertension

35 (68.6%)

74 (58.7%)

109 (61.6%)

OR=1.54 [0.77, 3.06] (p=0.237)

Hiperlipidemia

16 (31.4%)

25 (19.8%)

41 (23.2%)

OR=1.85 [0.88, 3.86] (p=0.117)

Smoking

0

38 (70.4%)

56 (43.1%)

94 (51.1%)

V=0.27 (p<0.001)

1

16 (29.6%)

60 (46.2%)

76 (41.3%)

2

0

14 (10.8%)

14 (7.6%)

Alcohol_Consume

0

47 (87.0%)

50 (38.5%)

97 (52.7%)

V=0.45 (p<0.001)

1

7 (13.0%)

63 (48.5%)

70 (38.0%)

2

0

17 (13.1%)

17 (9.2%)

BMI

μ ±DS

30.61 ±4.98

27.79 ±4.97

28.63 ±5.12

MW: p<0.001

M (min:max)

30.44 (18.48:42.17)

27.34 (18.63:48.32)

28.41 (18.48:48.32)

Encephalopathy (acc. to CP score)

1

51 (96.2%)

119 (93.0%)

170 (93.9%)

OR=1.93 [0.40, 9.24] (p=0.513)

2-3

2 (3.8%)

9 (7.0%)

11 (6.1%)

Ascites (acc. to CP score)

1

44 (84.6%)

99 (77.3%)

143 (79.4%)

V=0.16 (p=0.109)

2

7 (13.5%)

14 (10.9%)

21 (11.7%)

3

1 (1.9%)

15 (11.7%)

16 (8.9%)

Bilirubin total (µmol/L)

μ ±DS

23.88 ±18.2

29.69 ±48.3

28.10 ±42.3

MW: p=0.701

M (min:max)

18 (5:104)

17 (3:413)

17 (3:413)

INR

μ ±DS

1.16 ±0.162

1.19 ±0.207

1.18 ±0.195

MW: p=0.461

M (min:max)

1.14 (0.99:1.78)

1.14 (0.8:2.07)

1.14 (0.8:2.07)

Albumin (g/L)

μ ±DS

33.01 ±4.59

31.75 ±6.18

32.12 ±5.78

MW: p=0.279

M (min:max)

33 (24:42)

32 (17:49.8)

32 (17:49.8)

CHILD

1

31 (64.6%)

72 (56.7%)

103 (58.9%)

V=0.08 (p=0.580)

2

15 (31.2%)

46 (36.2%)

61 (34.9%)

3

2 (4.2%)

9 (7.1%)

11 (6.3%)

CHILD_A

31 (64.6%)

72 (56.7%)

103 (58.9%)

OR=1.39 [0.70, 2.77] (p=0.392)

CHILD_B

15 (31.2%)

46 (36.2%)

61 (34.9%)

OR=0.80 [0.39, 1.63] (p=0.597)

CHILD_C

2 (4.2%)

9 (7.1%)

11 (6.3%)

OR=0.57 [0.12, 2.74] (p=0.729)

BCLC

0

2 (3.7%)

11 (8.5%)

13 (7.1%)

V=0.14 (p=0.496)

1

21 (38.9%)

42 (32.3%)

63 (34.2%)

2

15 (27.8%)

42 (32.3%)

57 (31.0%)

3

13 (24.1%)

23 (17.7%)

36 (19.6%)

4

3 (5.6%)

12 (9.2%)

15 (8.2%)

BCLC_0

2 (3.7%)

11 (8.5%)

13 (7.1%)

OR=0.42 [0.09, 1.94] (p=0.351)

BCLC_1

21 (38.9%)

42 (32.3%)

63 (34.2%)

OR=1.33 [0.69, 2.58] (p=0.399)

BCLC_2

15 (27.8%)

42 (32.3%)

57 (31.0%)

OR=0.81 [0.40, 1.62] (p=0.602)

BCLC_3

13 (24.1%)

23 (17.7%)

36 (19.6%)

OR=1.48 [0.68, 3.18] (p=0.316)

BCLC_4

3 (5.6%)

12 (9.2%)

15 (8.2%)

OR=0.58 [0.16, 2.14] (p=0.559)

Resection

12 (21.8%)

23 (17.7%)

35 (18.9%)

OR=1.30 [0.59, 2.84] (p=0.541)

Transplant

0

5 (3.9%)

5 (2.7%)

OR=0.20 [0.01, 3.75] (p=0.324)

TACE

7 (12.7%)

17 (13.2%)

24 (13.0%)

OR=0.96 [0.37, 2.47] (p=1.000)

TAE

5 (9.1%)

10 (7.8%)

15 (8.2%)

OR=1.18 [0.38, 3.63] (p=0.774)

RFA

2 (3.7%)

1 (0.8%)

3 (1.6%)

OR=4.92 [0.44, 55.47] (p=0.208)

MWA

11 (20.0%)

24 (18.6%)

35 (19.0%)

OR=1.09 [0.49, 2.42] (p=0.839)

SIRT

1 (1.8%)

4 (3.1%)

5 (2.7%)

OR=0.58 [0.06, 5.30] (p=1.000)

Sistemic_therapy

12 (21.8%)

31 (24.0%)

43 (23.4%)

OR=0.88 [0.41, 1.88] (p=0.850)

Curative_treatment

25 (45.5%)

41 (31.8%)

66 (35.9%)

OR=1.79 [0.94, 3.42] (p=0.093)

Loco_regional_therapies

12 (21.8%)

29 (22.5%)

41 (22.3%)

OR=0.96 [0.45, 2.06] (p=1.000)

No_treatment

6 (10.9%)

23 (17.8%)

29 (15.8%)

OR=0.56 [0.22, 1.47] (p=0.276)

Treatment

Curative

25 (45.5%)

41 (31.8%)

66 (35.9%)

V=0.17 (p=0.249)

Transplant

0

5 (3.9%)

5 (2.7%)

Loco-regional

12 (21.8%)

29 (22.5%)

41 (22.3%)

Systemic

12 (21.8%)

31 (24.0%)

43 (23.4%)

No treatment

6 (10.9%)

23 (17.8%)

29 (15.8%)

Performance Status

0

34 (64.2%)

76 (58.5%)

110 (60.1%)

V=0.08 (p=0.900)

1

13 (24.5%)

33 (25.4%)

46 (25.1%)

2

4 (7.5%)

13 (10.0%)

17 (9.3%)

3

2 (3.8%)

7 (5.4%)

9 (4.9%)

4

0

1 (0.8%)

1 (0.5%)

PS_0

34 (64.2%)

76 (58.5%)

110 (60.1%)

OR=1.27 [0.66, 2.46] (p=0.509)

PS_1

13 (24.5%)

33 (25.4%)

46 (25.1%)

OR=0.96 [0.46, 2.00] (p=1.000)

PS_2

4 (7.5%)

13 (10.0%)

17 (9.3%)

OR=0.73 [0.23, 2.37] (p=0.781)

PS_3

2 (3.8%)

7 (5.4%)

9 (4.9%)

OR=0.69 [0.14, 3.43] (p=1.000)

PS_4

0

1 (0.8%)

1 (0.5%)

OR=0.81 [0.03, 20.12] (p=1.000)

μ ±DS = Mean (standard deviation); M (min:max) = Median (min:max); MW = Mann-WhitneyTest; OR/RR = odds-ratio / risc-ratio [95% CI] and p value from Fisher test); V = Cramer V (p value from Chi² test);

0.2 Charts:

0.2.1 Year

vs. Diagnosis

Year of diagnosis

NASH

ASH

BASH

(total)

2008

1 (50.0% / 1.8%)

1 (50.0% / 1.3%)

0

2 (1.1%)

2009

2 (33.3% / 3.6%)

3 (50.0% / 3.8%)

1 (16.7% / 2.0%)

6 (3.3%)

2010

5 (35.7% / 9.1%)

6 (42.9% / 7.6%)

3 (21.4% / 6.0%)

14 (7.6%)

2011

2 (22.2% / 3.6%)

4 (44.4% / 5.1%)

3 (33.3% / 6.0%)

9 (4.9%)

2012

6 (30.0% / 10.9%)

7 (35.0% / 8.9%)

7 (35.0% / 14.0%)

20 (10.9%)

2013

2 (22.2% / 3.6%)

5 (55.6% / 6.3%)

2 (22.2% / 4.0%)

9 (4.9%)

2014

4 (33.3% / 7.3%)

5 (41.7% / 6.3%)

3 (25.0% / 6.0%)

12 (6.5%)

2015

6 (30.0% / 10.9%)

6 (30.0% / 7.6%)

8 (40.0% / 16.0%)

20 (10.9%)

2016

6 (27.3% / 10.9%)

10 (45.5% / 12.7%)

6 (27.3% / 12.0%)

22 (12.0%)

2017

6 (31.6% / 10.9%)

8 (42.1% / 10.1%)

5 (26.3% / 10.0%)

19 (10.3%)

2018

7 (25.0% / 12.7%)

11 (39.3% / 13.9%)

10 (35.7% / 20.0%)

28 (15.2%)

2019

8 (34.8% / 14.5%)

13 (56.5% / 16.5%)

2 (8.7% / 4.0%)

23 (12.5%)

(total)

55 (29.7%)

79 (42.7%)

51 (27.6%)

184 (100%)

V=0.17 (p=0.982)

vs. Diagnosis

Year of diagnosis

NASH

ASH

BASH

(total)

2008

1 (50.0% / 1.8%)

1 (50.0% / 1.3%)

0

2 (1.1%)

2009

2 (33.3% / 3.6%)

3 (50.0% / 3.8%)

1 (16.7% / 2.0%)

6 (3.3%)

2010

5 (35.7% / 9.1%)

6 (42.9% / 7.6%)

3 (21.4% / 6.0%)

14 (7.6%)

2011

2 (22.2% / 3.6%)

4 (44.4% / 5.1%)

3 (33.3% / 6.0%)

9 (4.9%)

2012

6 (30.0% / 10.9%)

7 (35.0% / 8.9%)

7 (35.0% / 14.0%)

20 (10.9%)

2013

2 (22.2% / 3.6%)

5 (55.6% / 6.3%)

2 (22.2% / 4.0%)

9 (4.9%)

2014

4 (33.3% / 7.3%)

5 (41.7% / 6.3%)

3 (25.0% / 6.0%)

12 (6.5%)

2015

6 (30.0% / 10.9%)

6 (30.0% / 7.6%)

8 (40.0% / 16.0%)

20 (10.9%)

2016

6 (27.3% / 10.9%)

10 (45.5% / 12.7%)

6 (27.3% / 12.0%)

22 (12.0%)

2017

6 (31.6% / 10.9%)

8 (42.1% / 10.1%)

5 (26.3% / 10.0%)

19 (10.3%)

2018

7 (25.0% / 12.7%)

11 (39.3% / 13.9%)

10 (35.7% / 20.0%)

28 (15.2%)

2019

8 (34.8% / 14.5%)

13 (56.5% / 16.5%)

2 (8.7% / 4.0%)

23 (12.5%)

(total)

55 (29.7%)

79 (42.7%)

51 (27.6%)

184 (100%)

V=0.17 (p=0.982)

Chi-squared Test for Trend in Proportions

data: t\(NASH out of t\)total , using scores: 1 2 3 4 5 6 7 8 9 10 X-squared = 0.2, df = 1, p-value = 0.7

Cochran-Armitage test for trend

data: rbind(t\(NASH, t\)not NASH) Z = -0.4, dim = 10, p-value = 0.7 alternative hypothesis: two.sided

Chi-squared Test for Trend in Proportions

data: t\(ASH out of t\)total , using scores: 1 2 3 4 5 6 7 8 9 10 X-squared = 0.08, df = 1, p-value = 0.8

Cochran-Armitage test for trend

data: rbind(t\(ASH, t\)not ASH) Z = -0.3, dim = 10, p-value = 0.8 alternative hypothesis: two.sided

Chi-squared Test for Trend in Proportions

data: t\(BASH out of t\)total , using scores: 1 2 3 4 5 6 7 8 9 10 X-squared = 0.5, df = 1, p-value = 0.5

Cochran-Armitage test for trend

data: rbind(t\(BASH, t\)not BASH) Z = 0.7, dim = 10, p-value = 0.5 alternative hypothesis: two.sided

0.3 Cox

LR Chisq Df Pr(>Chisq)
Treatment 20.808 4 0.000
Diagnosis 1.868 2 0.393
Age 2.194 1 0.139
Gender 0.275 1 0.600
Diabetes 0.324 1 0.569
Hipertension 0.682 1 0.409
Hiperlipidemia 0.209 1 0.648
Smoking 6.419 2 0.040
Alcohol_Consume 1.800 2 0.407
BMI 3.342 1 0.068
Bilirubin.total..µmol.L. 9.904 1 0.002
INR 1.552 1 0.213
Albumin..g.L. 2.486 1 0.115
BCLC 6.099 4 0.192
CHILD 0.078 2 0.962
Encephalopathy..according.to.Child.Pugh.score. 0.275 1 0.600
Ascites..according.to.Child.Pugh.score. 2.120 2 0.346
Performance.Status 4.082 4 0.395

0.4 Univariate:

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    make.names(by)))

                Treatment=Curative 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     48       7    0.879  0.0429        0.799        0.967
   36     19      16    0.529  0.0733        0.403        0.694
   60      8       5    0.346  0.0836        0.215        0.555

                Treatment=Transplant 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      5       0     1.00   0.000        1.000            1
   36      3       1     0.75   0.217        0.426            1
   60      3       0     0.75   0.217        0.426            1

                Treatment=Loco-regional 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     31       4   0.8885  0.0526        0.791        0.998
   36      9      18   0.2993  0.0838        0.173        0.518
   60      2       6   0.0748  0.0504        0.020        0.280

                Treatment=Systemic 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     18      17    0.563  0.0816        0.424        0.748
   36      8       7    0.313  0.0842        0.185        0.530
   60      3       3    0.179  0.0758        0.078        0.410

                Treatment=No treatment 
        time       n.risk      n.event     survival      std.err 
     12.0000       4.0000      18.0000       0.2376       0.0907 
lower 95% CI upper 95% CI 
      0.1125       0.5019 


    Pairwise comparisons using Log-Rank test 

data:  db and Treatment 

              Curative          Transplant        Loco-regional    
Transplant    0.142             -                 -                
Loco-regional 0.026             0.019             -                
Systemic      0.004             0.015             0.536            
No treatment  0.000000000000006 0.000503418254664 0.000000000340592
              Systemic         
Transplant    -                
Loco-regional -                
Systemic      -                
No treatment  0.000011587640641

P value adjustment method: BH 
Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    make.names(by)))

                Diagnosis=NASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     29      11    0.772  0.0609       0.6617        0.901
   36     10      13    0.388  0.0826       0.2560        0.589
   60      4       5    0.175  0.0744       0.0759        0.403

                Diagnosis=ASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     45      21    0.698  0.0555        0.597        0.816
   36     17      15    0.406  0.0667        0.294        0.561
   60      8       7    0.221  0.0635        0.126        0.388

                Diagnosis=BASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     32      15    0.687  0.0672        0.567        0.832
   36     12      18    0.263  0.0672        0.159        0.434
   60      4       2    0.203  0.0642        0.109        0.377


    Pairwise comparisons using Log-Rank test 

data:  db and Diagnosis 

     NASH ASH
ASH  1.0  -  
BASH 0.8  0.8

P value adjustment method: BH 
Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    make.names(by)))

                Gender=F 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     14       6    0.707   0.101        0.535        0.936
   36      3       6    0.283   0.117        0.126        0.636
   60      3       0    0.283   0.117        0.126        0.636

                Gender=M 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     92      41    0.718  0.0376        0.648        0.796
   36     36      40    0.362  0.0448        0.284        0.461
   60     13      14    0.190  0.0413        0.124        0.291


    Pairwise comparisons using Log-Rank test 

data:  db and Gender 

  F  
M 0.7

P value adjustment method: BH 
Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    make.names(by)))

                Diabetes=yes 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     42      23    0.687  0.0546       0.5875        0.802
   36     13      20    0.300  0.0629       0.1985        0.452
   60      6       5    0.177  0.0564       0.0952        0.331

                Diabetes=no 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     64      24    0.742  0.0458        0.657        0.837
   36     26      26    0.391  0.0561        0.295        0.518
   60     10       9    0.219  0.0540        0.135        0.355


    Pairwise comparisons using Log-Rank test 

data:  db and Diabetes 

   yes
no 0.3

P value adjustment method: BH 
Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    make.names(by)))

                Hipertension=yes 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     66      22    0.772  0.0430        0.693        0.861
   36     21      30    0.356  0.0564        0.261        0.485
   60     10       6    0.232  0.0553        0.145        0.370

                Hipertension=no 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     38      24    0.630  0.0603        0.522        0.760
   36     17      15    0.342  0.0642        0.237        0.494
   60      6       7    0.177  0.0563        0.095        0.330


    Pairwise comparisons using Log-Rank test 

data:  db and Hipertension 

   yes
no 0.3

P value adjustment method: BH 
Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    make.names(by)))

                Hiperlipidemia=yes 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     21       8    0.783  0.0683       0.6603        0.929
   36      7      11    0.339  0.0950       0.1961        0.588
   60      3       3    0.175  0.0847       0.0674        0.452

                Hiperlipidemia=no 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     83      38    0.697  0.0413        0.621        0.783
   36     31      34    0.354  0.0474        0.273        0.461
   60     13      10    0.217  0.0451        0.144        0.326


    Pairwise comparisons using Log-Rank test 

data:  db and Hiperlipidemia 

   yes
no 0.8

P value adjustment method: BH 
Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    make.names(by)))

                Smoking=0 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     63      20    0.771  0.0451        0.688        0.865
   36     31      25    0.443  0.0562        0.346        0.568
   60     14      11    0.260  0.0539        0.174        0.391

                Smoking=1 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     34      22    0.657  0.0608       0.5478        0.787
   36      5      15    0.250  0.0722       0.1420        0.440
   60      2       3    0.100  0.0619       0.0297        0.337

                Smoking=2 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      8       5    0.619   0.134       0.4045        0.947
   36      3       5    0.181   0.114       0.0524        0.622


    Pairwise comparisons using Log-Rank test 

data:  db and Smoking 

  0    1   
1 0.02 -   
2 0.18 0.94

P value adjustment method: BH 
Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    make.names(by)))

                Alcohol_Consume=0 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     64      19    0.790  0.0431        0.710        0.879
   36     31      27    0.438  0.0560        0.341        0.563
   60     13      12    0.240  0.0525        0.156        0.368

                Alcohol_Consume=1 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     30      23    0.610  0.0647       0.4955        0.751
   36      6      10    0.297  0.0797       0.1756        0.503
   60      3       2    0.198  0.0781       0.0915        0.429

                Alcohol_Consume=2 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     11       5    0.680  0.1189       0.4824        0.958
   36      2       8    0.136  0.0892       0.0376        0.492


    Pairwise comparisons using Log-Rank test 

data:  db and Alcohol_Consume 

  0    1   
1 0.07 -   
2 0.07 0.84

P value adjustment method: BH 
Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    make.names(by)))

                BCLC=0 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     10       1    0.923  0.0739        0.789        1.000
   36      4       3    0.538  0.1766        0.283        1.000
   60      3       1    0.404  0.1765        0.172        0.951

                BCLC=1 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     43       9    0.835  0.0504        0.742        0.940
   36     12      18    0.424  0.0749        0.300        0.599
   60      5       2    0.303  0.0900        0.169        0.542

                BCLC=2 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     36      10    0.792  0.0590        0.684        0.916
   36     18      16    0.408  0.0753        0.284        0.586
   60      6       8    0.196  0.0638        0.104        0.371

                BCLC=3 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     15      15    0.552  0.0874       0.4043        0.752
   36      5       7    0.255  0.0880       0.1300        0.502
   60      2       3    0.102  0.0661       0.0287        0.363

                BCLC=4 
        time       n.risk      n.event     survival      std.err 
     12.0000       1.0000      12.0000       0.2000       0.1033 
lower 95% CI upper 95% CI 
      0.0727       0.5503 


    Pairwise comparisons using Log-Rank test 

data:  db and BCLC 

  0     1           2           3    
1 0.638 -           -           -    
2 0.357 0.678       -           -    
3 0.064 0.016       0.034       -    
4 0.001 0.000000002 0.000000002 0.001

P value adjustment method: BH 
Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    make.names(by)))

                CHILD=1 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     71      12    0.868  0.0356        0.801        0.941
   36     30      27    0.483  0.0597        0.379        0.615
   60     14      10    0.293  0.0593        0.197        0.436

                CHILD=2 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     28      24    0.563  0.0683        0.444        0.714
   36      7      15    0.198  0.0611        0.108        0.363
   60      2       3    0.106  0.0515        0.041        0.275

                CHILD=3 
        time       n.risk      n.event     survival      std.err 
      12.000        3.000        8.000        0.273        0.134 
lower 95% CI upper 95% CI 
       0.104        0.716 


    Pairwise comparisons using Log-Rank test 

data:  db and CHILD 

  1           2   
2 0.000009990 -   
3 0.000000001 0.02

P value adjustment method: BH 
Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    make.names(by)))

                Encephalopathy..according.to.Child.Pugh.score.=1 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     99      40    0.736  0.0361        0.669        0.811
   36     38      40    0.384  0.0450        0.305        0.483
   60     15      14    0.214  0.0427        0.145        0.316

                Encephalopathy..according.to.Child.Pugh.score.=2-3 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      5       6   0.4545  0.1501        0.238        0.868
   36      1       4   0.0909  0.0867        0.014        0.589
   60      1       0   0.0909  0.0867        0.014        0.589


    Pairwise comparisons using Log-Rank test 

data:  db and Encephalopathy..according.to.Child.Pugh.score. 

    1    
2-3 0.006

P value adjustment method: BH 
Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    make.names(by)))

                Ascites..according.to.Child.Pugh.score.=1 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     90      26    0.798  0.0356        0.731        0.871
   36     36      38    0.412  0.0492        0.326        0.521
   60     15      12    0.243  0.0478        0.166        0.358

                Ascites..according.to.Child.Pugh.score.=2 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      7      11    0.368   0.122        0.192        0.706
   36      2       1    0.295   0.118        0.135        0.646

                Ascites..according.to.Child.Pugh.score.=3 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      7       9   0.4375   0.124       0.2510        0.763
   36      1       5   0.0833   0.077       0.0136        0.510
   60      1       0   0.0833   0.077       0.0136        0.510


    Pairwise comparisons using Log-Rank test 

data:  db and Ascites..according.to.Child.Pugh.score. 

  1      2  
2 0.0009 -  
3 0.0009 0.7

P value adjustment method: BH 
Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    make.names(by)))

                Performance.Status=0 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     63      20    0.784  0.0431        0.704        0.873
   36     26      20    0.486  0.0600        0.382        0.619
   60      9       9    0.269  0.0642        0.168        0.430

                Performance.Status=1 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     35       9    0.788  0.0628        0.674        0.921
   36     12      20    0.296  0.0715        0.184        0.475
   60      7       4    0.192  0.0626        0.101        0.364

                Performance.Status=2 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      6       9    0.471   0.121        0.284        0.779
   36      1       4    0.118   0.101        0.022        0.630

                Performance.Status=3 
        time       n.risk      n.event     survival      std.err 
     12.0000       1.0000       7.0000       0.2222       0.1386 
lower 95% CI upper 95% CI 
      0.0655       0.7544 

                Performance.Status=4 
     time n.risk n.event survival std.err lower 95% CI upper 95% CI


    Pairwise comparisons using Log-Rank test 

data:  db and Performance.Status 

  0         1         2     3    
1 0.389     -         -     -    
2 0.0002116 0.008     -     -    
3 0.0000001 0.0001380 0.216 -    
4 0.0002116 0.005     0.643 0.820

P value adjustment method: BH 

0.5 Survival: Treatment x Diagnosis

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                Treatment=Curative 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     48       7    0.879  0.0429        0.799        0.967
   36     19      16    0.529  0.0733        0.403        0.694
   60      8       5    0.346  0.0836        0.215        0.555

                Treatment=Transplant 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      5       0     1.00   0.000        1.000            1
   36      3       1     0.75   0.217        0.426            1
   60      3       0     0.75   0.217        0.426            1

                Treatment=Loco-regional 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     31       4   0.8885  0.0526        0.791        0.998
   36      9      18   0.2993  0.0838        0.173        0.518
   60      2       6   0.0748  0.0504        0.020        0.280

                Treatment=Systemic 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     18      17    0.563  0.0816        0.424        0.748
   36      8       7    0.313  0.0842        0.185        0.530
   60      3       3    0.179  0.0758        0.078        0.410

                Treatment=No treatment 
        time       n.risk      n.event     survival      std.err 
     12.0000       4.0000      18.0000       0.2376       0.0907 
lower 95% CI upper 95% CI 
      0.1125       0.5019 
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
Treatment=Curative 66 66 66 29 46.17 4.41 39 26 NA
Treatment=Transplant 5 5 5 1 69.00 11.26 NA 30 NA
Treatment=Loco-regional 39 39 39 28 31.23 3.41 30 20 37
Treatment=Systemic 43 43 43 29 28.94 4.64 22 10 40
Treatment=No treatment 26 26 26 22 6.69 1.72 3 2 14


    Pairwise comparisons using Log-Rank test 

data:  db and Treatment 

              Curative          Transplant        Loco-regional    
Transplant    0.142             -                 -                
Loco-regional 0.026             0.019             -                
Systemic      0.004             0.015             0.536            
No treatment  0.000000000000006 0.000503418254664 0.000000000340592
              Systemic         
Transplant    -                
Loco-regional -                
Systemic      -                
No treatment  0.000011587640641

P value adjustment method: BH 

    Pairwise comparisons using Log-Rank test 

data:  db2 and Treatment 

              Curative          Loco-regional     Systemic         
Loco-regional 0.025             -                 -                
Systemic      0.003             0.536             -                
No treatment  0.000000000000004 0.000000000204355 0.000006952584384

P value adjustment method: BH 

0.5.1 Diagnosis == “ASH”

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                Treatment=Curative 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     21       2    0.913  0.0588        0.805        1.000
   36      6       7    0.523  0.1176        0.336        0.812
   60      3       1    0.418  0.1327        0.225        0.779

                Treatment=Transplant 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      3       0        1       0            1            1
   36      2       0        1       0            1            1
   60      2       0        1       0            1            1

                Treatment=Loco-regional 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     13       0    1.000   0.000       1.0000        1.000
   36      4       7    0.417   0.142       0.2133        0.814
   60      1       3    0.104   0.097       0.0168        0.646

                Treatment=Systemic 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      8       7    0.521   0.132       0.3166        0.857
   36      5       1    0.434   0.136       0.2351        0.801
   60      2       3    0.174   0.110       0.0504        0.598

                Treatment=No treatment 
     time n.risk n.event survival std.err lower 95% CI upper 95% CI
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
Treatment=Curative 27 27 27 11 46.09 6.539 39.0 28 NA
Treatment=Transplant 3 3 3 0 76.00 0.000 NA NA NA
Treatment=Loco-regional 16 16 16 10 38.48 4.823 33.0 27 NA
Treatment=Systemic 16 16 16 12 28.49 6.742 13.0 7 NA
Treatment=No treatment 13 13 13 11 3.33 0.584 2.5 2 NA


    Pairwise comparisons using Log-Rank test 

data:  db and Treatment 

              Curative      Transplant Loco-regional Systemic     
Transplant    0.20          -          -             -            
Loco-regional 0.53          0.07       -             -            
Systemic      0.05          0.04       0.48          -            
No treatment  0.00000000005 0.01       0.00000011027 0.00008204834

P value adjustment method: BH 

    Pairwise comparisons using Log-Rank test 

data:  db2 and Treatment 

              Curative      Loco-regional Systemic     
Loco-regional 0.53          -             -            
Systemic      0.04          0.52          -            
No treatment  0.00000000003 0.00000006616 0.00004922900

P value adjustment method: BH 

0.5.2 Diagnosis == “NASH”

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                Treatment=Curative 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     18       1    0.955  0.0444        0.871        1.000
   36      9       6    0.607  0.1174        0.415        0.887
   60      4       4    0.308  0.1227        0.141        0.673

                Treatment=Loco-regional 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      8       2    0.818   0.116       0.6192        1.000
   36      1       5    0.184   0.153       0.0359        0.944

                Treatment=Systemic 
        time       n.risk      n.event     survival      std.err 
      12.000        1.000        6.000        0.333        0.175 
lower 95% CI upper 95% CI 
       0.119        0.932 

                Treatment=No treatment 
        time       n.risk      n.event     survival      std.err 
      12.000        2.000        2.000        0.625        0.213 
lower 95% CI upper 95% CI 
       0.320        1.000 
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
Treatment=Curative 25 25 25 11 29.7 2.32 50.0 23 NA
Treatment=Loco-regional 11 11 11 8 21.2 3.54 17.0 14 NA
Treatment=Systemic 12 12 12 6 17.3 5.04 10.5 8 NA
Treatment=No treatment 6 6 6 4 12.8 4.09 16.0 3 NA


    Pairwise comparisons using Log-Rank test 

data:  db and Treatment 

              Curative Loco-regional Systemic
Loco-regional 0.02     -             -       
Systemic      0.01     0.35          -       
No treatment  0.01     0.35          0.88    

P value adjustment method: BH 

    Pairwise comparisons using Log-Rank test 

data:  db2 and Treatment 

              Curative Loco-regional Systemic
Loco-regional 0.02     -             -       
Systemic      0.01     0.35          -       
No treatment  0.01     0.35          0.88    

P value adjustment method: BH 

0.5.3 Diagnosis == “BASH”

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                Treatment=Curative 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      9       4    0.692   0.128        0.482        0.995
   36      4       3    0.404   0.149        0.196        0.831
   60      1       0    0.404   0.149        0.196        0.831

                Treatment=Transplant 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      2       0      1.0   0.000        1.000            1
   36      1       1      0.5   0.354        0.125            1
   60      1       0      0.5   0.354        0.125            1

                Treatment=Loco-regional 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     10       2   0.8182  0.1163        0.619        1.000
   36      4       6   0.2727  0.1343        0.104        0.716
   60      1       2   0.0909  0.0867        0.014        0.589

                Treatment=Systemic 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      9       4    0.733   0.114       0.5405        0.995
   36      3       6    0.244   0.121       0.0924        0.647
   60      1       0    0.244   0.121       0.0924        0.647

                Treatment=No treatment 
        time       n.risk      n.event     survival      std.err 
     12.0000       2.0000       5.0000       0.2857       0.1707 
lower 95% CI upper 95% CI 
      0.0886       0.9218 
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
Treatment=Curative 14 14 14 7 38.56 8.80 24 11 NA
Treatment=Transplant 2 2 2 1 52.00 15.56 30 30 NA
Treatment=Loco-regional 12 12 12 10 28.82 5.53 27 17 NA
Treatment=Systemic 15 15 15 11 32.58 7.07 25 22 NA
Treatment=No treatment 7 7 7 7 6.57 3.59 2 0 NA


    Pairwise comparisons using Log-Rank test 

data:  db and Treatment 

              Curative Transplant Loco-regional Systemic
Transplant    0.70     -          -             -       
Loco-regional 0.69     0.50       -             -       
Systemic      0.80     0.50       0.81          -       
No treatment  0.01     0.07       0.01          0.01    

P value adjustment method: BH 

    Pairwise comparisons using Log-Rank test 

data:  db2 and Treatment 

              Curative Loco-regional Systemic
Loco-regional 0.723    -             -       
Systemic      0.808    0.808         -       
No treatment  0.008    0.008         0.008   

P value adjustment method: BH 

0.6 Survival: Diagnosis x Treatment

Factor

Detalis

Curative

Transplant

Loco-regional

Systemic

No treatment

Total

Statistics

Treatment

66 (35.9%)

5 (2.7%)

41 (22.3%)

43 (23.4%)

29 (15.8%)

184

Gender

F

11 (16.7%)

1 (20.0%)

3 (7.3%)

2 (4.7%)

5 (17.2%)

22 (12.0%)

V=0.17 (p=0.241)

M

55 (83.3%)

4 (80.0%)

38 (92.7%)

41 (95.3%)

24 (82.8%)

162 (88.0%)

Age

μ ±DS

68.55 ±8.16

60.32 ±7.03

71.25 ±7.78

69.46 ±8.2

67.02 ±7.51

68.83 ±8.15

1-way ANOVA: p=0.026

M (min:max)

70.45 (45.2:83.2)

61.7 (53.5:70.5)

71.1 (50.9:86)

70.2 (48.3:86.1)

66.7 (49.2:83.9)

70 (45.2:86.1)

Year of diagnosis

μ ±DS

2015.45 ±2.99

2013.20 ±2.17

2013.55 ±3.34

2015.44 ±2.75

2015.14 ±3.07

2014.95 ±3.1

Kruskal-Wallis: p=0.022

M (min:max)

2016 (2009:2019)

2012 (2012:2017)

2013 (2008:2019)

2016 (2009:2019)

2016 (2010:2019)

2015.5 (2008:2019)

Survival

μ ±DS

28.82 ±25.8

59.40 ±29.5

25.18 ±16.9

19.53 ±20.7

5.31 ±7.15

23.11 ±23.0

Kruskal-Wallis: p<0.001

M (min:max)

20.5 (1:114)

74 (25:85)

21 (2:76)

10 (1:82)

2 (0:27)

15 (0:114)

Status

0

33 (50.0%)

4 (80.0%)

9 (23.1%)

13 (30.2%)

3 (11.5%)

62 (34.6%)

V=0.25 (p=0.004)

1

29 (43.9%)

1 (20.0%)

28 (71.8%)

29 (67.4%)

22 (84.6%)

109 (60.9%)

2

4 (6.1%)

0

2 (5.1%)

1 (2.3%)

1 (3.8%)

8 (4.5%)

MRI_diagnosis

25 (37.9%)

1 (20.0%)

13 (31.7%)

6 (14.0%)

12 (41.4%)

57 (31.0%)

V=0.22 (p=0.060)

CT_Diagnosis

34 (51.5%)

3 (60.0%)

23 (56.1%)

31 (72.1%)

19 (65.5%)

110 (59.8%)

V=0.17 (p=0.266)

US_Diagnosis

18 (27.3%)

0

19 (46.3%)

15 (34.9%)

8 (27.6%)

60 (32.6%)

V=0.20 (p=0.124)

HCC_Screening_18months_before

33 (50.8%)

2 (40.0%)

13 (32.5%)

5 (11.6%)

7 (24.1%)

60 (33.0%)

V=0.33 (p<0.001)

US_Screening

24 (41.4%)

1 (25.0%)

7 (21.9%)

3 (10.3%)

6 (25.0%)

41 (27.9%)

V=0.27 (p=0.035)

MRI_Screening

9 (15.5%)

1 (25.0%)

5 (15.6%)

0

2 (8.3%)

17 (11.6%)

V=0.20 (p=0.189)

CT_Screening

12 (20.7%)

1 (25.0%)

8 (25.0%)

3 (10.3%)

3 (12.5%)

27 (18.4%)

V=0.14 (p=0.548)

ASH

41 (62.1%)

5 (100%)

29 (70.7%)

31 (72.1%)

23 (79.3%)

129 (70.1%)

V=0.17 (p=0.249)

NAFLD

39 (59.1%)

2 (40.0%)

25 (61.0%)

27 (62.8%)

13 (44.8%)

106 (57.6%)

V=0.13 (p=0.509)

Cirrhosis

54 (81.8%)

5 (100%)

35 (85.4%)

35 (81.4%)

26 (89.7%)

155 (84.2%)

V=0.11 (p=0.705)

HCV

no

66 (100%)

5 (100%)

41 (100%)

43 (100%)

29 (100%)

184 (100%)

V=NaN (p=1.000)

HBc

no

66 (100%)

5 (100%)

41 (100%)

43 (100%)

29 (100%)

184 (100%)

V=NaN (p=1.000)

Diagnosis

NASH

25 (37.9%)

0

12 (29.3%)

12 (27.9%)

6 (20.7%)

55 (29.9%)

V=0.15 (p=0.421)

ASH

27 (40.9%)

3 (60.0%)

16 (39.0%)

16 (37.2%)

16 (55.2%)

78 (42.4%)

BASH

14 (21.2%)

2 (40.0%)

13 (31.7%)

15 (34.9%)

7 (24.1%)

51 (27.7%)

Diabetes

28 (42.4%)

1 (20.0%)

15 (36.6%)

19 (44.2%)

16 (55.2%)

79 (42.9%)

V=0.14 (p=0.470)

Hipertension

41 (64.1%)

3 (60.0%)

28 (73.7%)

26 (60.5%)

11 (42.3%)

109 (61.9%)

V=0.19 (p=0.156)

Hiperlipidemia

17 (26.6%)

1 (20.0%)

8 (21.1%)

12 (27.9%)

3 (11.5%)

41 (23.3%)

V=0.13 (p=0.551)

Smoking

0

33 (50.8%)

3 (60.0%)

27 (65.9%)

19 (44.2%)

12 (41.4%)

94 (51.4%)

V=0.13 (p=0.596)

1

26 (40.0%)

2 (40.0%)

12 (29.3%)

20 (46.5%)

15 (51.7%)

75 (41.0%)

2

6 (9.2%)

0

2 (4.9%)

4 (9.3%)

2 (6.9%)

14 (7.7%)

Alcohol_Consume

0

32 (49.2%)

3 (60.0%)

28 (68.3%)

23 (53.5%)

11 (37.9%)

97 (53.0%)

V=0.16 (p=0.322)

1

28 (43.1%)

1 (20.0%)

9 (22.0%)

16 (37.2%)

15 (51.7%)

69 (37.7%)

2

5 (7.7%)

1 (20.0%)

4 (9.8%)

4 (9.3%)

3 (10.3%)

17 (9.3%)

BMI

μ ±DS

28.57 ±5.0

25.71 ±3.9

28.32 ±6.25

28.92 ±4.29

29.22 ±5.2

28.63 ±5.12

Kruskal-Wallis: p=0.590

M (min:max)

27.76 (20.9:42.17)

26.59 (19.75:30.37)

28.45 (18.48:48.32)

29.44 (20.34:37.8)

28.72 (19.84:46.65)

28.41 (18.48:48.32)

Encephalopathy (acc. to CP score)

1

63 (96.9%)

4 (80.0%)

38 (95.0%)

41 (100%)

23 (79.3%)

169 (93.9%)

V=0.30 (p=0.003)

2-3

2 (3.1%)

1 (20.0%)

2 (5.0%)

0

6 (20.7%)

11 (6.1%)

Ascites (acc. to CP score)

1

59 (90.8%)

3 (60.0%)

33 (84.6%)

35 (85.4%)

13 (44.8%)

143 (79.9%)

V=0.35 (p<0.001)

2

4 (6.2%)

0

6 (15.4%)

4 (9.8%)

6 (20.7%)

20 (11.2%)

3

2 (3.1%)

2 (40.0%)

0

2 (4.9%)

10 (34.5%)

16 (8.9%)

Bilirubin total (µmol/L)

μ ±DS

20.30 ±15.0

27.20 ±14.5

20.05 ±15.2

28.71 ±62.6

56.21 ±62.0

28.10 ±42.3

Kruskal-Wallis: p<0.001

M (min:max)

15.5 (5:77)

24 (16:52)

16 (4:67)

15 (3:413)

36 (6:286)

17 (3:413)

INR

μ ±DS

1.15 ±0.174

1.41 ±0.12

1.16 ±0.168

1.14 ±0.176

1.28 ±0.251

1.18 ±0.195

Kruskal-Wallis: p<0.001

M (min:max)

1.12 (0.8:1.96)

1.43 (1.29:1.56)

1.12 (0.99:1.64)

1.1 (0.8:1.83)

1.26 (1:2.07)

1.14 (0.8:2.07)

Albumin (g/L)

μ ±DS

34.20 ±4.8

29.20 ±5.93

33.46 ±5.49

32.46 ±5.45

26.19 ±4.04

32.12 ±5.78

Kruskal-Wallis: p<0.001

M (min:max)

34 (21:42)

28 (24:38)

32 (24:49.8)

32 (17:41)

26 (20:34)

32 (17:49.8)

CHILD

1

45 (72.6%)

2 (40.0%)

27 (69.2%)

25 (62.5%)

4 (14.3%)

103 (59.2%)

V=0.34 (p<0.001)

2

15 (24.2%)

2 (40.0%)

12 (30.8%)

14 (35.0%)

17 (60.7%)

60 (34.5%)

3

2 (3.2%)

1 (20.0%)

0

1 (2.5%)

7 (25.0%)

11 (6.3%)

CHILD_A

45 (72.6%)

2 (40.0%)

27 (69.2%)

25 (62.5%)

4 (14.3%)

103 (59.2%)

V=0.42 (p<0.001)

CHILD_B

15 (24.2%)

2 (40.0%)

12 (30.8%)

14 (35.0%)

17 (60.7%)

60 (34.5%)

V=0.26 (p=0.019)

CHILD_C

2 (3.2%)

1 (20.0%)

0

1 (2.5%)

7 (25.0%)

11 (6.3%)

V=0.36 (p<0.001)

BCLC

0

11 (16.9%)

1 (20.0%)

0

0

0

12 (6.6%)

V=0.40 (p<0.001)

1

39 (60.0%)

2 (40.0%)

15 (36.6%)

3 (7.0%)

4 (13.8%)

63 (34.4%)

2

12 (18.5%)

1 (20.0%)

20 (48.8%)

18 (41.9%)

6 (20.7%)

57 (31.1%)

3

3 (4.6%)

1 (20.0%)

4 (9.8%)

20 (46.5%)

8 (27.6%)

36 (19.7%)

4

0

0

2 (4.9%)

2 (4.7%)

11 (37.9%)

15 (8.2%)

BCLC_0

11 (16.9%)

1 (20.0%)

0

0

0

12 (6.6%)

V=0.34 (p<0.001)

BCLC_1

39 (60.0%)

2 (40.0%)

15 (36.6%)

3 (7.0%)

4 (13.8%)

63 (34.4%)

V=0.46 (p<0.001)

BCLC_2

12 (18.5%)

1 (20.0%)

20 (48.8%)

18 (41.9%)

6 (20.7%)

57 (31.1%)

V=0.29 (p=0.005)

BCLC_3

3 (4.6%)

1 (20.0%)

4 (9.8%)

20 (46.5%)

8 (27.6%)

36 (19.7%)

V=0.42 (p<0.001)

BCLC_4

0

0

2 (4.9%)

2 (4.7%)

11 (37.9%)

15 (8.2%)

V=0.48 (p<0.001)

Resection

34 (51.5%)

1 (20.0%)

0

0

0

35 (19.0%)

V=0.62 (p<0.001)

Transplant

0

5 (100%)

0

0

0

5 (2.7%)

V=1.00 (p<0.001)

TACE

1 (1.5%)

1 (20.0%)

22 (53.7%)

0

0

24 (13.0%)

V=0.65 (p<0.001)

TAE

0

0

14 (34.1%)

0

1 (3.4%)

15 (8.2%)

V=0.51 (p<0.001)

RFA

3 (4.5%)

0

0

0

0

3 (1.6%)

V=0.17 (p=0.248)

MWA

35 (53.0%)

0

0

0

0

35 (19.0%)

V=0.65 (p<0.001)

SIRT

0

0

5 (12.2%)

0

0

5 (2.7%)

V=0.31 (p=0.001)

Sistemic_therapy

0

0

0

43 (100%)

0

43 (23.4%)

V=1.00 (p<0.001)

Curative_treatment

66 (100%)

0

0

0

0

66 (35.9%)

V=1.00 (p<0.001)

Loco_regional_therapies

0

0

41 (100%)

0

0

41 (22.3%)

V=1.00 (p<0.001)

No_treatment

0

0

0

0

29 (100%)

29 (15.8%)

V=1.00 (p<0.001)

Performance Status

0

51 (78.5%)

3 (60.0%)

19 (46.3%)

27 (64.3%)

9 (31.0%)

109 (59.9%)

V=0.29 (p<0.001)

1

13 (20.0%)

1 (20.0%)

18 (43.9%)

10 (23.8%)

4 (13.8%)

46 (25.3%)

2

1 (1.5%)

1 (20.0%)

2 (4.9%)

4 (9.5%)

9 (31.0%)

17 (9.3%)

3

0

0

2 (4.9%)

1 (2.4%)

6 (20.7%)

9 (4.9%)

4

0

0

0

0

1 (3.4%)

1 (0.5%)

PS_0

51 (78.5%)

3 (60.0%)

19 (46.3%)

27 (64.3%)

9 (31.0%)

109 (59.9%)

V=0.35 (p<0.001)

PS_1

13 (20.0%)

1 (20.0%)

18 (43.9%)

10 (23.8%)

4 (13.8%)

46 (25.3%)

V=0.24 (p=0.031)

PS_2

1 (1.5%)

1 (20.0%)

2 (4.9%)

4 (9.5%)

9 (31.0%)

17 (9.3%)

V=0.35 (p<0.001)

PS_3

0

0

2 (4.9%)

1 (2.4%)

6 (20.7%)

9 (4.9%)

V=0.33 (p<0.001)

PS_4

0

0

0

0

1 (3.4%)

1 (0.5%)

V=0.17 (p=0.257)

μ ±DS = Mean (standard deviation); M (min:max) = Median (min:max); MW = Mann-WhitneyTest; OR/RR = odds-ratio / risc-ratio [95% CI] and p value from Fisher test); V = Cramer V (p value from Chi² test);

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                Diagnosis=NASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     29      11    0.772  0.0609       0.6617        0.901
   36     10      13    0.388  0.0826       0.2560        0.589
   60      4       5    0.175  0.0744       0.0759        0.403

                Diagnosis=ASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     45      20    0.708  0.0555        0.607        0.825
   36     17      15    0.412  0.0674        0.299        0.568
   60      8       7    0.224  0.0643        0.128        0.393

                Diagnosis=BASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     32      15    0.687  0.0672        0.567        0.832
   36     12      18    0.263  0.0672        0.159        0.434
   60      4       2    0.203  0.0642        0.109        0.377
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
Diagnosis=NASH 54 54 54 29 38.7 6.43 23 17 50
Diagnosis=ASH 75 75 75 44 41.0 5.32 28 24 40
Diagnosis=BASH 50 50 50 36 33.9 5.49 25 17 32


    Pairwise comparisons using Log-Rank test 

data:  db and Diagnosis 

     NASH ASH
ASH  0.9  -  
BASH 0.8  0.8

P value adjustment method: BH 
[1] " Exclude: Transplant >>> "

    Pairwise comparisons using Log-Rank test 

data:  db2 and Diagnosis 

     NASH ASH
ASH  0.8  -  
BASH 0.6  0.6

P value adjustment method: BH 
[1] " Exclude: No treatment >>> "

    Pairwise comparisons using Log-Rank test 

data:  db3 and Diagnosis 

     NASH ASH
ASH  0.5  -  
BASH 0.8  0.5

P value adjustment method: BH 

0.6.1 Treatment == “Curative”

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                Diagnosis=NASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     18       1    0.955  0.0444        0.871        1.000
   36      9       6    0.607  0.1174        0.415        0.887
   60      4       4    0.308  0.1227        0.141        0.673

                Diagnosis=ASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     21       2    0.913  0.0588        0.805        1.000
   36      6       7    0.523  0.1176        0.336        0.812
   60      3       1    0.418  0.1327        0.225        0.779

                Diagnosis=BASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      9       4    0.692   0.128        0.482        0.995
   36      4       3    0.404   0.149        0.196        0.831
   60      1       0    0.404   0.149        0.196        0.831
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
Diagnosis=NASH 25 25 25 11 56.3 9.72 50 23 NA
Diagnosis=ASH 27 27 27 11 60.3 10.95 39 28 NA
Diagnosis=BASH 14 14 14 7 53.1 14.09 24 11 NA


    Pairwise comparisons using Log-Rank test 

data:  db and Diagnosis 

     NASH ASH
ASH  0.9  -  
BASH 0.7  0.7

P value adjustment method: BH 

0.6.2 Treatment == “Transplant”

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                Diagnosis=ASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      3       0        1       0            1            1
   36      2       0        1       0            1            1
   60      2       0        1       0            1            1

                Diagnosis=BASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      2       0      1.0   0.000        1.000            1
   36      1       1      0.5   0.354        0.125            1
   60      1       0      0.5   0.354        0.125            1
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
Diagnosis=ASH 3 3 3 0 84 0.0 NA NA NA
Diagnosis=BASH 2 2 2 1 57 19.1 30 30 NA


    Pairwise comparisons using Log-Rank test 

data:  db and Diagnosis 

     ASH
BASH 0.3

P value adjustment method: BH 

0.6.3 Treatment == “Loco-regional”

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                Diagnosis=NASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      8       2    0.818   0.116       0.6192        1.000
   36      1       5    0.184   0.153       0.0359        0.944

                Diagnosis=ASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     13       0    1.000   0.000       1.0000        1.000
   36      4       7    0.417   0.142       0.2133        0.814
   60      1       3    0.104   0.097       0.0168        0.646

                Diagnosis=BASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     10       2   0.8182  0.1163        0.619        1.000
   36      4       6   0.2727  0.1343        0.104        0.716
   60      1       2   0.0909  0.0867        0.014        0.589
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
Diagnosis=NASH 11 11 11 8 22.2 4.08 17 14 NA
Diagnosis=ASH 16 16 16 10 37.4 4.09 33 27 NA
Diagnosis=BASH 12 12 12 10 28.1 5.01 27 17 NA


    Pairwise comparisons using Log-Rank test 

data:  db and Diagnosis 

     NASH ASH 
ASH  0.05 -   
BASH 0.43 0.41

P value adjustment method: BH 

0.6.4 Treatment == “Systemic”

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                Diagnosis=NASH 
        time       n.risk      n.event     survival      std.err 
      12.000        1.000        6.000        0.333        0.175 
lower 95% CI upper 95% CI 
       0.119        0.932 

                Diagnosis=ASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      8       7    0.521   0.132       0.3166        0.857
   36      5       1    0.434   0.136       0.2351        0.801
   60      2       3    0.174   0.110       0.0504        0.598

                Diagnosis=BASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      9       4    0.733   0.114       0.5405        0.995
   36      3       6    0.244   0.121       0.0924        0.647
   60      1       0    0.244   0.121       0.0924        0.647
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
Diagnosis=NASH 12 12 12 6 27.0 10.07 10.5 8 NA
Diagnosis=ASH 16 16 16 12 28.5 6.74 13.0 7 NA
Diagnosis=BASH 15 15 15 11 30.6 6.20 25.0 22 NA


    Pairwise comparisons using Log-Rank test 

data:  db and Diagnosis 

     NASH ASH
ASH  0.7  -  
BASH 0.7  0.7

P value adjustment method: BH 

1 References

  1. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.