Skim summary statistics
n obs: 463
n variables: 4
-- Variable type:factor ----------------------------------------------------
variable missing complete n n_unique top_counts ordered
gender 0 463 463 2 mal: 268, fem: 195, NA: 0 FALSE
-- Variable type:integer ---------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100
age 0 463 463 48.37 9.8 29 42 48 57 73
ID 0 463 463 232 133.8 1 116.5 232 347.5 463
hist
<U+2585><U+2585><U+2585><U+2587><U+2585><U+2587><U+2582><U+2581>
<U+2587><U+2587><U+2587><U+2587><U+2587><U+2587><U+2587><U+2587>
-- Variable type:numeric ---------------------------------------------------
variable missing complete n mean sd p0 p25 p50 p75 p100 hist
score 0 463 463 4.17 0.54 2.3 3.8 4.3 4.6 5 <U+2581><U+2581><U+2582><U+2583><U+2585><U+2587><U+2587><U+2586>
Credit card debt is more correlated to credit rating than age.
# A tibble: 3 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 intercept -270. 44.8 -6.02 0 -358. -181.
2 credit_rating 2.59 0.074 34.8 0 2.45 2.74
3 age -2.35 0.668 -3.52 0 -3.66 -1.04
The do not match up well because age and credit rating are not closely related.
# A tibble: 2 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 intercept 39.9 0.717 55.7 0 38.5 41.3
2 horsepower -0.158 0.006 -24.5 0 -0.171 -0.145
Yes, horsepower and mpg are correlated.
Strong, considering the intercept is so low at 39.936.
Negative
# A tibble: 2 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 intercept 23.5 0.396 59.3 0 22.7 24.2
2 "horsepower == \"~ -3.21 5.54 -0.580 0.562 -14.1 7.68
mpg cylinders displacement horsepower weight acceleration
mpg 1.000 -0.778 -0.805 -0.778 -0.832 0.423
cylinders -0.778 1.000 0.951 0.843 0.898 -0.505
displacement -0.805 0.951 1.000 0.897 0.933 -0.544
horsepower -0.778 0.843 0.897 1.000 0.865 -0.689
weight -0.832 0.898 0.933 0.865 1.000 -0.417
acceleration 0.423 -0.505 -0.544 -0.689 -0.417 1.000
# A tibble: 6 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 intercept 46.3 2.67 17.3 0 41.0 51.5
2 cylinders -0.398 0.411 -0.969 0.333 -1.20 0.409
3 displacement 0 0.009 -0.009 0.993 -0.018 0.018
4 horsepower -0.045 0.017 -2.72 0.007 -0.078 -0.012
5 weight -0.005 0.001 -6.35 0 -0.007 -0.004
6 acceleration -0.029 0.126 -0.231 0.817 -0.276 0.218
Yes, the results are consistent.
# A tibble: 3 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 intercept 33.3 1.06 31.4 0 31.2 35.4
2 horsepower -0.133 0.007 -19.9 0 -0.146 -0.12
3 origin 2.58 0.321 8.04 0 1.95 3.21
# A tibble: 4 x 7
term estimate std_error statistic p_value lower_ci upper_ci
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 intercept 26.8 1.70 15.8 0 23.5 30.1
2 horsepower -0.059 0.017 -3.57 0 -0.092 -0.027
3 origin 7.87 1.14 6.91 0 5.63 10.1
4 horsepower:origin -0.063 0.013 -4.83 0 -0.089 -0.038