we treat sires as a random effect becasue we know that the possible mates for these bulls are part of a larger population, and were randomly selected as mates. This means if we were to perform the experiment again we would get different mates for these bulls.
Yij= Mu + alphai +eij
Where Mu is the mean, alphai is the random effect and eij is the random error. In this model, the sires would be the alphai, or random effect.
library(Matrix)
library(lme4)
Weight <- c(1.46, 1.23, 1.12, 1.23, 1.02, 1.15, 1.17, 1.08, 1.20, 1.08, 1.01, 0.86, 0.98, 1.06, 1.15, 1.11, 0.83, 0.86, 0.95, 1.10, 1.07, 1.11, 0.89, 1.12)
Sired <- c("A", "A", "A", "A", "A", "A", "B", "B", "B", "B", "B", "B", "C", "C", "C", "C", "C", "C", "D", "D", "D", "D", "D", "D")
calves<- data.frame(Sired, Weight)
head(calves)
## Sired Weight
## 1 A 1.46
## 2 A 1.23
## 3 A 1.12
## 4 A 1.23
## 5 A 1.02
## 6 A 1.15
modC<-lmer(Weight~1+(1|Sired), data=calves)
summary(modC)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Weight ~ 1 + (1 | Sired)
## Data: calves
##
## REML criterion at convergence: -23.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6639 -0.5601 0.1081 0.5645 2.3859
##
## Random effects:
## Groups Name Variance Std.Dev.
## Sired (Intercept) 0.005078 0.07126
## Residual 0.015945 0.12627
## Number of obs: 24, groups: Sired, 4
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.07667 0.04397 24.48
modD <- lm(Weight ~ 1, data = calves)
summary(modD)
##
## Call:
## lm(formula = Weight ~ 1, data = calves)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.24667 -0.07417 0.01333 0.07333 0.38333
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.07667 0.02881 37.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1411 on 23 degrees of freedom
anova(modC, modD)
## refitting model(s) with ML (instead of REML)
## Data: calves
## Models:
## modD: Weight ~ 1
## modC: Weight ~ 1 + (1 | Sired)
## Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
## modD 2 -22.898 -20.542 13.449 -26.898
## modC 3 -22.095 -18.561 14.047 -28.095 1.1962 1 0.2741
We should not include the random effect as there is no signifigant difference between the two models. Therefore, by adding sires we do not create a better model, nor do we better explain variance, instead we just complicate it.
modC <- lmer(Weight ~ 1 + (1|Sired), data = calves)
summary(modC)
## Linear mixed model fit by REML ['lmerMod']
## Formula: Weight ~ 1 + (1 | Sired)
## Data: calves
##
## REML criterion at convergence: -23.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6639 -0.5601 0.1081 0.5645 2.3859
##
## Random effects:
## Groups Name Variance Std.Dev.
## Sired (Intercept) 0.005078 0.07126
## Residual 0.015945 0.12627
## Number of obs: 24, groups: Sired, 4
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 1.07667 0.04397 24.48
We see that the variance component estimates for sired is 0.005078, whereas the residual variance is 0.015945
confint(modC)
## Computing profile confidence intervals ...
## 2.5 % 97.5 %
## .sig01 0.00000000 0.1795777
## .sigma 0.09534633 0.1783855
## (Intercept) 0.97994356 1.1733897
The 95 percent CI for the error standard deviation is [0.09534633, 0.1783855] and for sire to sire SD it is [0.00000000, 0.1795777]