The statistical model:

\(y_t = \beta_0 + \beta_1 * (Elevation_s)_t + \beta_2 * Slope_t + (b_s)_t + \epsilon_t\)

Where:

Let’s define the parameters:

nstand = 5
nplot = 4
b0 = -1
b1 = .005
b2 = .1
sds = 2
sd = 1

Simulate other variables:

set.seed(16)
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep( rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand*nplot, 0, sd)

Simulate elevation and slope:

elevation = rep( runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand*nplot, 2, 75)

Simulate response variable:

resp2 = b0 + b1*elevation + b2*slope + standeff + ploteff 

Your tasks (complete each task in its’ own code chunk, make sure to use echo=TRUE so I can see your code):

  1. Fit a linear mixed model with the response variable as a function of elevation and slope with stand as a random effect. Are the estimated parameters similar to the intial parameters as we defined them?
library(lme4)
## Loading required package: Matrix
fit1 = lmer(resp2 ~ elevation + slope + (1|stand))
fit1
## Linear mixed model fit by REML ['lmerMod']
## Formula: resp2 ~ elevation + slope + (1 | stand)
## REML criterion at convergence: 81.9874
## Random effects:
##  Groups   Name        Std.Dev.
##  stand    (Intercept) 1.099   
##  Residual             1.165   
## Number of obs: 20, groups:  stand, 5
## Fixed Effects:
## (Intercept)    elevation        slope  
##   -21.31463      0.02060      0.09511
summary(fit1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: resp2 ~ elevation + slope + (1 | stand)
## 
## REML criterion at convergence: 82
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.65583 -0.62467 -0.01693  0.53669  1.41736 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  stand    (Intercept) 1.208    1.099   
##  Residual             1.358    1.165   
## Number of obs: 20, groups:  stand, 5
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept) -21.314628   6.602053  -3.228
## elevation     0.020600   0.004916   4.190
## slope         0.095105   0.016441   5.785
## 
## Correlation of Fixed Effects:
##           (Intr) elevtn
## elevation -0.991       
## slope      0.049 -0.148

Estimated β0 is -21.3146, which is far from the initial parameter -1. Estimated β1 is 0.0206, which is not close to initial parameter 0.005. Estimated β2 is 0.0951, which is much close to the initial parameter 0.1

  1. Create a function for your model and run 1000 simulations of that model.
library(purrr)
set.seed(18)
mixed_fun = function(nstand = 5, nplot = 4, b0 = -1, b1 = 0.005, b2 = 0.1, sds = 2, sd = 1) {
                     stand = rep(LETTERS[1:nstand], each = nplot)
                     standeff = rep(rnorm(nstand, 0, sds), each = nplot)
                     ploteff = rnorm(nstand * nplot, 0, sd)
                     elevation = rep(runif(nstand, 1000, 1500), each = nplot)
                     slope = runif(nstand * nplot, 2, 75)
                     resp2 = b0 + b1 * elevation + b2 * slope + standeff + ploteff
                     dframe = data.frame(resp2, elevation, slope, stand)
                     fit1 = lmer(resp2~elevation+slope+(1|stand), data = dframe)
}
mixed_fun()
simsthousand = rerun(1000, mixed_fun())
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
  1. Extract the stand and residual variances from this simulation run. Print the first 6 rows of the data.
library(tidyverse)
## ── Attaching packages ────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.2.0     ✔ readr   1.3.1
## ✔ tibble  2.1.3     ✔ dplyr   0.8.3
## ✔ tidyr   1.0.0     ✔ stringr 1.4.0
## ✔ ggplot2 3.2.0     ✔ forcats 0.4.0
## ── Conflicts ───────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ tidyr::expand() masks Matrix::expand()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ✖ tidyr::pack()   masks Matrix::pack()
## ✖ tidyr::unpack() masks Matrix::unpack()
library(broom)
library(purrr)
variances = simsthousand %>% map_dfr(tidy, effects = "ran_pars", scales = "vcov")
head(variances,6)
## # A tibble: 6 x 3
##   term                     group    estimate
##   <chr>                    <chr>       <dbl>
## 1 var_(Intercept).stand    stand       2.02 
## 2 var_Observation.Residual Residual    1.03 
## 3 var_(Intercept).stand    stand       1.03 
## 4 var_Observation.Residual Residual    0.812
## 5 var_(Intercept).stand    stand       5.76 
## 6 var_Observation.Residual Residual    1.22
  1. Choose three different sample sizes (your choice) and run 1000 model simulations with each sample size. Create 3 visualizations that compare distributions of the variances for each of the 3 sample sizes. Make sure that the axes are labelled correctly. What do these graphs say about the relationship between sample size and variance?
library(ggplot2)
library(dplyr)
stand_sims = c(10, 20, 100) %>%
set_names() %>%
map(~replicate(1000, mixed_fun(nstand = .x)))

stand_vars = stand_sims %>%
modify_depth(2, ~tidy(.x, effects = "ran_pars", scales = "vcov")) %>%
map_dfr(bind_rows, .id = "id") %>%
filter(group == "stand")

ggplot(stand_vars, aes(x = estimate)) +
  geom_density(fill = "orange", alpha = "0.25") +
  facet_wrap(~id) +
  geom_vline(xintercept = 4) +theme(legend.position = "bottom", legend.key.width = unit(.1, "cm")) +
  labs(x = "Estimated Variance", y = "Density")

As shown in the graphs, when sample size increases, variance will decrease.

  1. Plot the coefficients of the estimates of elevation and slope. Hint: the x-axis should have 1000 values. Discuss the graphs.
coef = simsthousand %>%
map_dfr(tidy, effects="fixed") %>%
filter(term %in% c("elevation", "slope"))
coef$sequence = rep(1:1000, each=2)

coefmed = coef %>%
group_by(term) %>%
summarise(med=median(estimate))

plot2 = ggplot(coef, aes(sequence, estimate))+
  geom_point(size=0.2)+
  facet_wrap(~term)+
  geom_hline(data=coefmed, aes(yintercept=med), size=0.4)+
  labs(x="Replicated numbers", y="Estimate of coefficients")+
  theme_bw()
plot2

As shown in the graphs, the median estimated coefficients values are 0.0047 and 0.0998, which are much close to initial parameters 0.005 and 0.1. But the estimated β1 and β2 are scattered, some β1 value are negative. The model does not fit well.

  1. Submit a link to this document in R Pubs to your Moodle. This assignment is worth 25 points.