library(stats)
library( psych )
library(readxl)
library(MASS)
library(ISLR)
base=read_xlsx("mlp.xlsx")
describe(base)
## vars n mean sd median trimmed mad min max range skew kurtosis
## z 1 39 1.43 0.76 1.74 1.46 0.59 0.07 2.48 2.41 -0.50 -1.33
## y 2 39 0.41 0.50 0.00 0.39 0.00 0.00 1.00 1.00 0.35 -1.92
## se
## z 0.12
## y 0.08
modelolp <- lm(formula =y ~ ., data = base )
summary(modelolp)
##
## Call:
## lm(formula = y ~ ., data = base)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.93878 -0.18488 -0.06348 0.13711 0.77831
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.02465 0.13128 7.805 2.47e-09 ***
## z -0.42868 0.08109 -5.286 5.81e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3812 on 37 degrees of freedom
## Multiple R-squared: 0.4303, Adjusted R-squared: 0.4149
## F-statistic: 27.94 on 1 and 37 DF, p-value: 5.809e-06
solicitud=data.frame(z=1.9)
predict(modelolp,solicitud)
## 1
## 0.2101575