#install.packages("readr")
library(readr)
library(knitr)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
NewVoterData<-read_csv("/Users/meiminshan/Desktop/Voter Data 2018.csv")
## Parsed with column specification:
## cols(
##   .default = col_double(),
##   weight_latino = col_logical(),
##   weight_18_24 = col_logical(),
##   town_open_2018 = col_character(),
##   redovote2016_t_2017 = col_character(),
##   job_title_t_2017 = col_character(),
##   presvote16post_t_2016 = col_character(),
##   second_chance_t_2016 = col_character(),
##   race_other_2016 = col_character(),
##   healthcov_t_2016 = col_character(),
##   employ_t_2016 = col_character(),
##   pid3_t_2016 = col_character(),
##   religpew_t_2016 = col_character(),
##   votemeth16_rnd_2016 = col_character(),
##   presvote16post_rnd_2016 = col_character(),
##   vote2016_cand2_rnd_2016 = col_character(),
##   Clinton_Rubio_rnd_2016 = col_character(),
##   Clinton_Cruz_rnd_2016 = col_character(),
##   Sanders_Trump_rnd_2016 = col_character(),
##   Sanders_Rubio_rnd_2016 = col_character(),
##   second_chance_rnd_2016 = col_character()
##   # ... with 132 more columns
## )
## See spec(...) for full column specifications.
## Warning: 1319 parsing failures.
##  row                      col           expected actual                                            file
## 1424 religpew_muslim_baseline 1/0/T/F/TRUE/FALSE     90 '/Users/meiminshan/Desktop/Voter Data 2018.csv'
## 1537 child_age7_1_baseline    1/0/T/F/TRUE/FALSE     6  '/Users/meiminshan/Desktop/Voter Data 2018.csv'
## 1537 child_age8_1_baseline    1/0/T/F/TRUE/FALSE     4  '/Users/meiminshan/Desktop/Voter Data 2018.csv'
## 1537 child_age9_1_baseline    1/0/T/F/TRUE/FALSE     2  '/Users/meiminshan/Desktop/Voter Data 2018.csv'
## 2958 religpew_muslim_baseline 1/0/T/F/TRUE/FALSE     2  '/Users/meiminshan/Desktop/Voter Data 2018.csv'
## .... ........................ .................. ...... ...............................................
## See problems(...) for more details.
head(NewVoterData)
## # A tibble: 6 x 1,074
##   case_identifier  caseid weight_panel weight_latino weight_18_24
##             <dbl>   <dbl>        <dbl> <lgl>         <lgl>       
## 1             779  3.82e8        0.503 NA            NA          
## 2            2108  3.82e8        0.389 NA            NA          
## 3            2597  3.82e8        0.684 NA            NA          
## 4            4148 NA            NA     NA            NA          
## 5            4460  3.82e8        0.322 NA            NA          
## 6            5225  3.82e8        0.594 NA            NA          
## # … with 1,069 more variables: weight_overall <dbl>, cassfullcd <dbl>,
## #   add_confirm_2018 <dbl>, inputzip_2018 <dbl>, votereg_2018 <dbl>,
## #   votereg_f_2018 <dbl>, regzip_2018 <dbl>, inputstate2_2018 <dbl>,
## #   vote18_2018 <dbl>, vote18_other_2018 <dbl>, trumpapp_2018 <dbl>,
## #   trumpfeel_2018 <dbl>, fav_trump_2018 <dbl>, fav_ryan_2018 <dbl>,
## #   fav_obama_2018 <dbl>, fav_hrc_2018 <dbl>, fav_sanders_2018 <dbl>,
## #   fav_putin_2018 <dbl>, fav_schumer_2018 <dbl>, fav_pelosi_2018 <dbl>,
## #   fav_comey_2018 <dbl>, fav_mueller_2018 <dbl>,
## #   fav_mcconnell_2018 <dbl>, systems_leader_2018 <dbl>,
## #   systems_army_2018 <dbl>, systems_democ_2018 <dbl>,
## #   governed_2018 <dbl>, view1_2018 <dbl>, satisf_dem_2018 <dbl>,
## #   view2_2018 <dbl>, inst_court_2018 <dbl>, inst_media_2018 <dbl>,
## #   inst_congress_2018 <dbl>, inst_justice_2018 <dbl>,
## #   inst_FBI_2018 <dbl>, inst_military_2018 <dbl>, inst_church_2018 <dbl>,
## #   inst_business_2018 <dbl>, track_2018 <dbl>, persfinretro_2018 <dbl>,
## #   econtrend_2018 <dbl>, life_2018 <dbl>, stranger_2018 <dbl>,
## #   trustgovt_2018 <dbl>, immi_contribution_2018 <dbl>,
## #   immi_naturalize_2018 <dbl>, immi_makedifficult_2018 <dbl>,
## #   immi_muslim_2018 <dbl>, immi_stay_2018 <dbl>, immi_num_2018 <dbl>,
## #   immi_region_eur_2018 <dbl>, immi_region_latin_2018 <dbl>,
## #   immi_region_mid_2018 <dbl>, immi_region_india_2018 <dbl>,
## #   immi_region_china_2018 <dbl>, immi_region_afr_2018 <dbl>,
## #   immi_legal_2018 <dbl>, tax_2018 <dbl>, tax_class_you_2018 <dbl>,
## #   tax_class_economy_2018 <dbl>, tax_class_poor_2018 <dbl>,
## #   tax_class_wealthy_2018 <dbl>, tax_class_middle_2018 <dbl>,
## #   tax_self_2018 <dbl>, tax_goal_growth_2018 <dbl>,
## #   tax_goal_corpor_2018 <dbl>, tax_goal_wealthy_2018 <dbl>,
## #   tax_goal_middle_2018 <dbl>, tax_goal_poor_2018 <dbl>,
## #   tax_goal_federal_2018 <dbl>, tax_goal_you_2018 <dbl>,
## #   tax_corp_2018 <dbl>, tax_rich_2018 <dbl>, taxdoug_2018 <dbl>,
## #   tax_sys_2018 <dbl>, regula_2018 <dbl>, marij_2018 <dbl>,
## #   nkorea_2018 <dbl>, speech_2018 <dbl>, amendment_2018 <dbl>,
## #   anthem_2018 <dbl>, CR_touch_2018 <dbl>, CR_careA_2018 <dbl>,
## #   CR_careB_2018 <dbl>, CR_careC_2018 <dbl>, CR_careD_2018 <dbl>,
## #   CR_careE_2018 <dbl>, CR_careF_2018 <dbl>, CR_careG_2018 <dbl>,
## #   CR_careH_2018 <dbl>, parties_2018 <dbl>, represent_dem_2018 <dbl>,
## #   represent_rep_2018 <dbl>, prio_dem_2018 <dbl>, prio_rep_2018 <dbl>,
## #   third_econ_2018 <dbl>, third_soc_2018 <dbl>, third_immi_2018 <dbl>,
## #   democracy_2018 <dbl>, elect_2018 <dbl>, …

Research Question: How do different regions think that immigration should be increased, decreased or kept the same?

Variable 1. Europe, immi_region_eur_2018

unique(NewVoterData$immi_region_eur_2018)
## [1]  2  1 NA  3
library(dplyr)
NewVoterData<-NewVoterData %>%
  mutate(immi = ifelse(immi_region_eur_2018==1, "Increase",
                    ifelse(immi_region_eur_2018==2, "Keep about the same", 
                           ifelse(immi_region_eur_2018==3, "Decrease", NA))))
unique(NewVoterData$immi)
## [1] "Keep about the same" "Increase"            NA                   
## [4] "Decrease"
table(NewVoterData$immi_region_eur_2018)
## 
##    1    2    3 
##  953 3929 1041

Variable 2. Mexico, immi_region_latin_2018

unique(NewVoterData$immi_region_latin_2018)
## [1]  2 NA  3  1
library(dplyr)
NewVoterData<-NewVoterData %>%
  mutate(immi = ifelse(immi_region_latin_2018==1, "Increase",
                    ifelse(immi_region_latin_2018==2, "Keep about the same",
                           ifelse(immi_region_latin_2018==3, "Decrease", NA))))
unique(NewVoterData$immi)
## [1] "Keep about the same" NA                    "Decrease"           
## [4] "Increase"
table(NewVoterData$immi_region_latin_2018)
## 
##    1    2    3 
##  808 2986 2128

Variable 3. Middle East, immi_region_mid_2018

unique(NewVoterData$immi_region_mid_2018)
## [1]  2  3 NA  1
library(dplyr)
NewVoterData<-NewVoterData %>%
  mutate(immi = ifelse(immi_region_mid_2018==1, "Increase",
                    ifelse(immi_region_mid_2018==2, "Keep about the same",
                           ifelse(immi_region_mid_2018==3, "Decrease", NA))))
unique(NewVoterData$immi)
## [1] "Keep about the same" "Decrease"            NA                   
## [4] "Increase"
table(NewVoterData$immi_region_mid_2018)
## 
##    1    2    3 
##  590 2635 2702

Variable 4. India, immi_region_india_2018

unique(NewVoterData$immi_region_india_2018)
## [1]  2  1 NA  3
library(dplyr)
NewVoterData<-NewVoterData %>%
  mutate(immi = ifelse(immi_region_india_2018==1, "Increase",
                    ifelse(immi_region_india_2018==2, "Keep about the same",
                           ifelse(immi_region_india_2018==3, "Decrease", NA))))
unique(NewVoterData$immi)
## [1] "Keep about the same" "Increase"            NA                   
## [4] "Decrease"
table(NewVoterData$immi_region_india_2018)
## 
##    1    2    3 
##  695 3601 1611

Variable 5. China, immi_region_china_2018

unique(NewVoterData$immi_region_china_2018)
## [1]  2 NA  3  1
library(dplyr)
NewVoterData<-NewVoterData %>%
  mutate(immi = ifelse(immi_region_china_2018==1, "Increase",
                    ifelse(immi_region_china_2018==2, "Keep about the same",
                           ifelse(immi_region_china_2018==3, "Decrease", NA))))
unique(NewVoterData$immi)
## [1] "Keep about the same" NA                    "Decrease"           
## [4] "Increase"
table(NewVoterData$immi_region_china_2018)
## 
##    1    2    3 
##  619 3443 1867

Variable 6. Africa, immi_region_afr_2018

unique(NewVoterData$immi_region_afr_2018)
## [1]  2 NA  3  1
library(dplyr)
NewVoterData<-NewVoterData %>%
  mutate(immi = ifelse(immi_region_afr_2018==1, "Increase",
                    ifelse(immi_region_afr_2018==2, "Keep about the same",
                           ifelse(immi_region_afr_2018==3, "Decrease", NA))))
unique(NewVoterData$immi)
## [1] "Keep about the same" NA                    "Decrease"           
## [4] "Increase"
table(NewVoterData$immi_region_afr_2018)
## 
##    1    2    3 
##  748 3385 1788