The statistical model:
\(y_t = \beta_0 + \beta_1 * (Elevation_s)_t + \beta_2 * Slope_t + (b_s)_t + \epsilon_t\)
Where:
Let’s define the parameters:
nstand = 5
nplot = 4
b0 = -1
b1 = .005
b2 = .1
sds = 2
sd = 1
Simulate other variables:
set.seed(16)
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep( rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand*nplot, 0, sd)
Simulate elevation and slope:
elevation = rep( runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand*nplot, 2, 75)
Simulate response variable:
resp2 = b0 + b1*elevation + b2*slope + standeff + ploteff
Your tasks (complete each task in its’ own code chunk, make sure to use echo=TRUE so I can see your code):
# use this chunk to answer question 1
library(lme4)
## Loading required package: Matrix
library(lmerTest)
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
p1 <- lmer(resp2 ~ 1 + elevation + slope + (1|stand))
summary(p1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: resp2 ~ 1 + elevation + slope + (1 | stand)
##
## REML criterion at convergence: 82
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.65583 -0.62467 -0.01693 0.53669 1.41736
##
## Random effects:
## Groups Name Variance Std.Dev.
## stand (Intercept) 1.208 1.099
## Residual 1.358 1.165
## Number of obs: 20, groups: stand, 5
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -21.314628 6.602053 3.001313 -3.228 0.0482 *
## elevation 0.020600 0.004916 3.113482 4.190 0.0230 *
## slope 0.095105 0.016441 15.868032 5.785 2.88e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) elevtn
## elevation -0.991
## slope 0.049 -0.148
cat("b0 = ", b0, sep = "")
## b0 = -1
cat("b1 = ", b1, sep = "")
## b1 = 0.005
cat("b2 = ", b2, sep = "")
## b2 = 0.1
# use this chunk to answer question 2
ta<-function(nstand = 5,nplot = 4,b0 = -1,b1 = .005,b2 = .1,sds = 2,sd = 1)
{
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep( rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand*nplot, 0, sd)
elevation = rep( runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand*nplot, 2, 75)
resp2 = b0 + b1*elevation + b2*slope + standeff + ploteff
fit1=lm(resp2~ elevation + slope)
}
set.seed(8)
sim=ta()
#for some reasons, rerun functon cannot run #
sims=replicate(1000,ta())
# use this chunk to answer question 3
library(broom)
# use this chunk to answer question 4
library(ggplot2)
set.seed(15)
x1=ta(5)
x2=ta(15)
x3=ta(100)
ggplot(x1,aes(x=elevation))+
geom_density(fill ="red",alpha=0.25)
ggplot(x2,aes(x=elevation))+
geom_density(fill ="red",alpha=0.25)
ggplot(x3,aes(x=elevation))+
geom_density(fill ="red",alpha=0.25)
# use this chunk to answer question 5
#library(furrr)
#simsest <- sims %>%
#future_map(tidy, effects = "fixed") %>%
#bind_rows()
#simsest %>%
#dplyr::filter(term %in% c("elevation", "slope")) %>%
#group_by(term) %>%
#mutate(x = 1 : 1000) %>%
#ungroup() %>%
#mutate(real_value = ifelse(term == "elevation", 0.005, 0.1)) %>%
#ggplot(aes(x = x, y = estimate)) +
#geom_line() +
#facet_wrap(~term) +
#geom_hline(aes(yintercept = real_value, color = term), linetype = 4, size = 0.5) +
#theme_bw()