The estimated mean difference is
\[\begin{equation} \widehat\mu_k = \widehat\mu_{ek} - \widehat\mu_{ck},~~~~~k \in \{1,2,\dots,K\} \tag{1.1} \end{equation}\] with the variance
\[\begin{equation} \widehat{Var}(\widehat\mu_k) = \frac{s^2_{ek}}{n_{ek}}+\frac{s^2_{ck}}{n_{ck}} \tag{1.2} \end{equation}\]
Thus, we can obtain confidence interval
\[\begin{equation} \widehat{\mu}_{ek}-\widehat\mu_{ck} \pm z_{1-\alpha/2}\sqrt{\widehat{Var}(\widehat\mu_k)} \tag{1.3} \end{equation}\]
dat1 = read.csv("meta analysis with R dataset/dataset01.csv", as.is = TRUE)
head(dat1)
## author year Ne Me Se Nc Mc Sc
## 1 Boner 1988 13 13.54 13.85 13 20.77 21.46
## 2 Boner 1989 20 15.70 13.10 20 22.70 16.47
## 3 Chudry 1987 12 21.30 13.10 12 39.70 12.90
## 4 Comis 1993 12 14.50 12.20 12 31.30 15.10
## 5 DeBenedictis 1994a 17 14.40 11.10 17 27.40 17.30
## 6 DeBenedictis 1994b 8 14.80 18.60 8 31.40 20.60
with(dat1[2,],{
MD = Me - Mc
seMD = sqrt((Se)^2/Ne + Sc^2/Nc)
return(MD + c(-1,1)*qnorm(0.975)*seMD)
})
## [1] -16.222988 2.222988
or
library(meta)
library(metafor)
metacont(Ne,Me,Se,Nc,Mc,Sc, data = dat1, subset = 1)
## MD 95%-CI z p-value
## -7.2300 [-21.1141; 6.6541] -1.02 0.3074
##
## Details:
## - Inverse variance method
\(\Rightarrow\) Used when different studies use different outcome scales.
We calculate a dimentionless effect measure from each study and use them for pooling. There are a number of formulae, we shall consider one of them which is called Hedges’s g.
\[ \begin{equation} \widehat{g}_k = \bigg(1-\frac{3}{4n_k-9} \bigg)\frac{\widehat\mu_{ek}-\widehat\mu_{ck}}{\sqrt{[(n_{ek}-1)s^2_{ek}+(n_{ck}-1)s^2_{ck}]/(n_k-2)}} \tag{1.4} \end{equation} \] and \[ \begin{equation} \widehat{Var}(\widehat{g}_k) = \frac{n_k}{n_{ek}n_{ck}}+\frac{\widehat{g}^2_k}{2(n_k-3.94)} \tag{1.5} \end{equation} \]
dat2 = read.csv("meta analysis with R dataset/dataset02.csv", as.is = TRUE)
head(dat2)
## author Ne Me Se Nc Mc Sc
## 1 Blashki(75%150) 13 6.4 5.4 18 11.4 9.6
## 2 Hormazabal(86) 17 11.0 8.2 16 19.0 8.2
## 3 Jacobson(75-100) 10 17.5 8.8 6 23.0 8.8
## 4 Jenkins(75) 7 12.3 9.9 7 20.0 10.5
## 5 Lecrubier(100) 73 15.7 10.6 73 18.7 10.6
## 6 Murphy(100) 26 8.5 11.0 28 14.5 11.0
metacont(Ne,Me,Se,Nc,Mc,Sc, sm = "SMD",data = dat2, subset = 1)
## SMD 95%-CI z p-value
## -0.5990 [-1.3300; 0.1320] -1.61 0.1083
##
## Details:
## - Inverse variance method
## - Hedges' g (bias corrected standardised mean difference)
mc1 = metacont(Ne,Me,Se,Nc,Mc,Sc, data = dat1, studlab = paste0(author,"(",year,")"))
mc1
## MD 95%-CI %W(fixed) %W(random)
## Boner(1988) -7.2300 [-21.1141; 6.6541] 2.8 3.1
## Boner(1989) -7.0000 [-16.2230; 2.2230] 6.4 6.6
## Chudry(1987) -18.4000 [-28.8023; -7.9977] 5.0 5.3
## Comis(1993) -16.8000 [-27.7835; -5.8165] 4.5 4.8
## DeBenedictis(1994a) -13.0000 [-22.7710; -3.2290] 5.7 5.9
## DeBenedictis(1994b) -16.6000 [-35.8326; 2.6326] 1.5 1.6
## DeBenedictis(1995) -13.9000 [-27.6461; -0.1539] 2.9 3.1
## Debelic(1986) -18.2500 [-30.6692; -5.8308] 3.5 3.8
## Henriksen(1988) -29.7000 [-41.6068; -17.7932] 3.8 4.1
## Konig(1987) -14.2000 [-25.0013; -3.3987] 4.7 4.9
## Morton(1992) -22.5300 [-33.5382; -11.5218] 4.5 4.8
## Novembre(1994f) -13.0400 [-19.5067; -6.5733] 13.0 12.1
## Novembre(1994s) -15.1000 [-23.8163; -6.3837] 7.1 7.3
## Oseid(1995) -14.8000 [-23.7200; -5.8800] 6.8 7.0
## Roberts(1985) -20.0000 [-36.9171; -3.0829] 1.9 2.1
## Shaw(1985) -24.1600 [-33.1791; -15.1409] 6.7 6.9
## Todaro(1993) -13.4000 [-18.7042; -8.0958] 19.3 16.6
##
## Number of studies combined: k = 17
##
## MD 95%-CI z p-value
## Fixed effect model -15.5140 [-17.8435; -13.1845] -13.05 < 0.0001
## Random effects model -15.6436 [-18.1369; -13.1502] -12.30 < 0.0001
##
## Quantifying heterogeneity:
## tau^2 = 2.4374; H = 1.05 [1.00; 1.35]; I^2 = 8.9% [0.0%; 45.3%]
##
## Test of heterogeneity:
## Q d.f. p-value
## 17.57 16 0.3496
##
## Details on meta-analytical method:
## - Inverse variance method
## - DerSimonian-Laird estimator for tau^2
We can plot a forest
forest(mc1, fontsize = 6)
Under random effects model, \[ \widehat{\theta}_k = \theta +u_k+\sigma_k\epsilon_k, ~~~~~ \epsilon_k \stackrel{i.i.d}{\sim} N(0,1); u_k \stackrel{i.i.d}{\sim} N(0,\tau^2), \tag{1.9} \]
Define the weighted sum of squares about the fixed effect estimate with \(w_k = 1/\widehat{\sigma}^2_k\) as follows \[ Q = \sum_{k=1}^Kw_k(\widehat{\theta}_k-\widehat{\theta}_F)^2, \tag{1.10} \] this is referred to as either the homogeneity test statistic or the heterogeneity statistic. Also define \[ S = \sum_{k=1}^Kw_k - \frac{\sum_{k=1}^Kw_k^2}{\sum_{k=1}^Kw_k}. \] if \(Q < K-1\), then \(\widehat{\tau}^2 := 0\), so that \(\widehat{\theta}_R = \widehat{\theta}_F\). Otherwise, the between-study variance is defined as \[ \widehat{\tau}^2 = \frac{Q-(K-1)}{S}, \] and the random effects estimate and its variance are given by \[ \widehat{\theta}_R = \frac{\sum_{k=1}^Kw_k^*\widehat{\theta}_k}{\sum_{k=1}^Kw^*_k} \tag{1.11} \] \[ \widehat{Var}(\widehat{\theta}_R) = \frac{1}{\sum_{k=1}^Kw_k^*} \tag{1.12} \] where \(w^*_k = 1/(\widehat{\sigma}^2_k+\widehat{\tau}^2)\). This method is called “inverse variance method”.
While the above method is used popularly, Hartung nad Knapp introduced a new method in meta-analysis based on refined variance estimator in the random effects model. Instead of using (1.12), HK propose to use the following variance estimator for \(\widehat{\theta}_R\): \[ \widehat{Var}_{HK}(\widehat{\theta}_R) = \frac{1}{K-1}\sum_{k=1}^K\frac{w^*_k}{w^*}\bigg(\widehat{\theta}_k-\widehat{\theta}_R\bigg), \tag{1.13} \] where \(w^*_k\) as given in (1.12), anh \(w^* = \sum_{k=1}^Kw^*_k\). Also the author showed \[ \frac{\widehat{\theta}_R-\theta}{\sqrt{\widehat{Var}_{HK}(\widehat{\theta}_R)}} \sim t_{K-1} \]
A \((1-\alpha)\) prediction interval can be calculated as \[ \widehat{\theta}_R\pm t_{K-1,1-\alpha/2}\big[\widehat{Var}(\widehat{\theta}_R)+\widehat{\tau}^2\big]^{1/2} \]
Network meta-analysis (also known as multiple treatment comparison or mixed treatment comparison) seeks to combine information from all randomised compar- isons among a set of treatments for a given medical condition.
There are two studies in which the first one was comparison between treatment A and treatment C while the second one compared treatment B and treament C.
There are bunch of studies in which each study has more than two treatments.
Consider a muti-arm of \(p\) treatments with known variances. It requires to supply effects and standard error for each of \({p\choose2}\) comparisons.
Let \[ \boldsymbol{L^+_s} = -\frac{1}{2p^2_s}\boldsymbol{X^{\top}_sX_sV_sX^{\top}_sX_s} \tag{2.1} \] where \(\boldsymbol{L_s} = (\boldsymbol{L^+_s})^+\) that can be obtained by \(\boldsymbol{L^+} = (\boldsymbol{L}-\boldsymbol{J}/n)^{-1}+\boldsymbol{J}/n\). Also denote elements of \(\boldsymbol{L_s}\) by \(l_{sij}\).
It was shown we will obtain the same result when using adjusted variances of the comparison of treatment \(i\) and \(j\) are \(-1/l_{sij}^{-1}\).