The statistical model:

\(y_t = \beta_0 + \beta_1 * (Elevation_s)_t + \beta_2 * Slope_t + (b_s)_t + \epsilon_t\)

Where:

Let’s define the parameters:

nstand = 5
nplot = 4
b0 = -1
b1 = .005
b2 = .1
sds = 2
sd = 1

Simulate other variables:

set.seed(16)
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep( rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand*nplot, 0, sd)

Simulate elevation and slope:

elevation = rep( runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand*nplot, 2, 75)

Simulate response variable:

resp2 = b0 + b1*elevation + b2*slope + standeff + ploteff 

Your tasks (complete each task in its’ own code chunk, make sure to use echo=TRUE so I can see your code):

  1. Fit a linear mixed model with the response variable as a function of elevation and slope with stand as a random effect. Are the estimated parameters similar to the intial parameters as we defined them? From the result, the b1 =0.005 and it is much smaller than the initial Parameter.The b2=0.1 and it is close to the initial parameter.The estimated intercept -21.31 is complete different from real value -1.
library(lme4)
## Loading required package: Matrix
Q1 <- lmer(resp2 ~ 1 + elevation + slope + (1|stand))
summary(Q1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: resp2 ~ 1 + elevation + slope + (1 | stand)
## 
## REML criterion at convergence: 82
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.65583 -0.62467 -0.01693  0.53669  1.41736 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  stand    (Intercept) 1.208    1.099   
##  Residual             1.358    1.165   
## Number of obs: 20, groups:  stand, 5
## 
## Fixed effects:
##               Estimate Std. Error t value
## (Intercept) -21.314628   6.602053  -3.228
## elevation     0.020600   0.004916   4.190
## slope         0.095105   0.016441   5.785
## 
## Correlation of Fixed Effects:
##           (Intr) elevtn
## elevation -0.991       
## slope      0.049 -0.148
library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
cat("b0 = ", b0, sep = "")
## b0 = -1
cat("b1 = ", b1, sep = "")
## b1 = 0.005
cat("b2 = ", b2, sep = "")
## b2 = 0.1
  1. Create a function for your model and run 1000 simulations of that model.
library(purrr)
mix_fun = function(nstand = 5, nplot = 4, b0 = -1, b1 = 0.005, b2 = 0.1, sds = 2, sd = 1) {
  stand = rep(LETTERS[1:nstand], each = nplot)
  standeff = rep(rnorm(nstand, 0, sds), each = nplot)
  ploteff = rnorm(nstand * nplot, 0, sd)
  elevation = rep(runif(nstand, 1000, 1500), each = nplot)
  slope = runif(nstand * nplot, 2, 75)
  resp2 = b0 + b1 * elevation + b2 * slope + standeff + ploteff
  dat = data.frame(resp2, elevation, slope, stand)
  lmer(resp2 ~ 1 + elevation + slope + (1|stand), data = dat)
}
mix_fun()
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: resp2 ~ 1 + elevation + slope + (1 | stand)
##    Data: dat
## REML criterion at convergence: 80.9781
## Random effects:
##  Groups   Name        Std.Dev.
##  stand    (Intercept) 2.3573  
##  Residual             0.9754  
## Number of obs: 20, groups:  stand, 5
## Fixed Effects:
## (Intercept)    elevation        slope  
##   10.584601    -0.005464     0.086839
simsmix = rerun(1000, mix_fun())
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
  1. Extract the stand and residual variances from this simulation run. Print the first 6 rows of the data.
library(tidyverse)
## -- Attaching packages -------------------------------------------------------------------------------------------------------------------------------- tidyverse 1.2.1 --
## √ ggplot2 3.2.0     √ readr   1.3.1
## √ tibble  2.1.3     √ dplyr   0.8.3
## √ tidyr   0.8.3     √ stringr 1.4.0
## √ ggplot2 3.2.0     √ forcats 0.4.0
## -- Conflicts ----------------------------------------------------------------------------------------------------------------------------------- tidyverse_conflicts() --
## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
library(broom)
library(broom.mixed)
## Registered S3 methods overwritten by 'broom.mixed':
##   method         from 
##   augment.lme    broom
##   augment.merMod broom
##   glance.lme     broom
##   glance.merMod  broom
##   glance.stanreg broom
##   tidy.brmsfit   broom
##   tidy.gamlss    broom
##   tidy.lme       broom
##   tidy.merMod    broom
##   tidy.rjags     broom
##   tidy.stanfit   broom
##   tidy.stanreg   broom
## 
## Attaching package: 'broom.mixed'
## The following object is masked from 'package:broom':
## 
##     tidyMCMC
variances <- simsmix %>% map_dfr(tidy, effects = "ran_pars", scales = "vcov")
variances %>% print(n = 6)
## # A tibble: 2,000 x 4
##   effect   group    term             estimate
##   <chr>    <chr>    <chr>               <dbl>
## 1 ran_pars stand    var__(Intercept)    2.61 
## 2 ran_pars Residual var__Observation    1.11 
## 3 ran_pars stand    var__(Intercept)    9.73 
## 4 ran_pars Residual var__Observation    1.36 
## 5 ran_pars stand    var__(Intercept)    0.827
## 6 ran_pars Residual var__Observation    0.914
## # ... with 1,994 more rows
  1. Choose three different sample sizes (your choice) and run 1000 model simulations with each sample size. Create 3 visualizations that compare distributions of the variances for each of the 3 sample sizes. Make sure that the axes are labelled correctly. What do these graphs say about the relationship between sample size and variance? The real variance of stand is 4. The estimate becomes more accurate as the sample size increases as We can see from the plot.The variance decrease as the sample size increases
library(ggplot2)
library(dplyr)
stand_sims = c(10, 50, 200) %>%
  set_names() %>%
  map(~replicate(1000, mix_fun(nstand = .x)))
## boundary (singular) fit: see ?isSingular
stand_vars = stand_sims %>%
  modify_depth(2, ~tidy(.x, effects = "ran_pars", scales = "vcov")) %>%
  map_dfr(bind_rows, .id = "id") %>%
  filter(group == "stand")

ggplot(stand_vars, aes(x = estimate)) +
  geom_density(fill = "orange", alpha = "0.25") +
  facet_wrap(~id) +
  geom_vline(xintercept = 4)

  1. Plot the coefficients of the estimates of elevation and slope. Hint: the x-axis should have 1000 values. Discuss the graphs. From the graph ,we can tell Defined Elevation(0.005) and slope(0.1) and mean of Elevation is exact same.
library(furrr)
## Loading required package: future
simsest <- simsmix %>% 
  future_map(tidy, effects = "fixed") %>% 
  bind_rows()

simsest %>% 
  dplyr::filter(term %in% c("elevation", "slope")) %>% 
  group_by(term) %>% 
  mutate(x = 1 : 1000) %>%
  ungroup() %>% 
  mutate(real_value = ifelse(term == "elevation", 0.005, 0.1)) %>% 
  ggplot(aes(x = x, y = estimate)) +
  geom_line() +
  facet_wrap(~term) +
  geom_hline(aes(yintercept = real_value, color = term), linetype = 4, size = 0.5) +
  theme_bw()

  1. Submit a link to this document in R Pubs to your Moodle. This assignment is worth 25 points.