library(nlme)
bookstore<-read.csv("bookstore.txt",sep="")
(b)
ac<-acf(bookstore$Sales,96)

print(head(ac,n=10))
##
## Autocorrelations of series 'bookstore$Sales', by lag
##
## 1 2 3 4 5 6
## 0.109 -0.131 -0.084 -0.145 -0.148 -0.096
ac[[1]][2]^2
## [1] 0.01181258
m2<-gls(Sales~Time+Advert+Lag1Advert,bookstore,method='ML')
summary(m2)
## Generalized least squares fit by maximum likelihood
## Model: Sales ~ Time + Advert + Lag1Advert
## Data: bookstore
## AIC BIC logLik
## 1262.395 1275.058 -626.1973
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 180.19576 56.30156 3.200547 0.0019
## Time -0.17294 0.80555 -0.214684 0.8305
## Advert 34.52651 5.17806 6.667847 0.0000
## Lag1Advert 33.11461 5.25264 6.304370 0.0000
##
## Correlation:
## (Intr) Time Advert
## Time -0.630
## Advert -0.388 -0.071
## Lag1Advert -0.411 -0.037 -0.170
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -2.87480719 -0.50916284 -0.01937113 0.48037314 4.62658755
##
## Residual standard error: 203.2356
## Degrees of freedom: 93 total; 89 residual
plot(m2)

m3<-gls(Sales~Time+Advert+Lag1Advert,bookstore,correlation = corAR1())
plot(m3)
