Licença

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

License: CC BY-SA 4.0

Citação

Sugestão de citação: FIGUEIREDO, Adriano Marcos Rodrigues. Econometria: exercício crescimento municipal em Mato Grosso entre 2001 e 2010. Campo Grande-MS,Brasil: RStudio/Rpubs, 2019. Disponível em http://rpubs.com/amrofi/growth_mt2001_2010.

1 Introdução

Exemplo sobre crescimento municipal adaptado da dissertacao de William Marquezin (2014) na UFMT. Dados de 139 municipios de MT, em que 2001 é o ano base e o crescimento refere-se até 2010. A variável dependente do modelo é a taxa de crescimento da renda per capita municipal (barro) conforme Barro e Sala-i-Martin (1992)=“BARRO”. Outras variáveis são:
# “ordem” = ordenacao dos municipios
# “KEY” = ordem
# “MUNICIPIO” = nome do municipio
# “BARRO” = variavel dependente (acima descrita)
# “DASSOW” = alternativa para a variavel dependente (nao utilizada)
# Variáveis explicativas:
# 1) Renda per capita no ano inicial “LNYI_T_1”
# 2) Composição industrial (Sind): “SIND”
# 3) Composição da agropecuária (Sagro): “SAGRO”
# 4) Composição do setor de serviços (Sserv): “SSERV”
# 5) Composição da administração pública (Spub): “SPUB”
# 6) Capital humano (h): “H”
# 7) Densidade demográfica (dd): “DD”
# 8) Despesas orçamentárias (dorc): “DORC”
# 9) Operações de crédito (cred): “CRED”
# 10) Exportações Municipais (expor): “EXPOR”
# 11) Importações Municipais (impor): “IMPOR”
# 12) Mercado Regional (mreg): “MREG”
# 13) Carga tributária total municipal (t): “T”
# 14) Transferências Intergovernamentais do ICMS (ticms): “TICMS”
# 15) Transferências Intergovernamentais do FPM (tfpm): “TFPM”
# 16) O índice de GINI (gini): “GINI”
# 17) índice de THEIL (theil): “THEIL”
# variavel auxiliar não utilizada: “TMREG”
# variavel auxiliar não utilizada: “CCOM” corrente de comercio

Um data.frame com 139 observations para 24 variáveis.

Para reprodução, pode-se fazer o download prévio dos dados a partir de https://github.com/amrofi/crescimento_mt/blob/master/crescimento.rds, e armazenar no diretório do projeto.

library(readxl)
library(foreign)
library(dynlm)
library(car)
library(lmtest)
library(sandwich)
library(tseries)
library(kableExtra)
# o arquivo dados está em formato dput embeded no script, em um chunk oculto que
# o leitor tem acesso ao baixar o Rmd, clicando em code
summary(dados)
     ordem            KEY         MUNICIPIO             BARRO         
 Min.   :  1.0   Min.   :  1.0   Length:139         Min.   :-0.07986  
 1st Qu.: 35.5   1st Qu.: 35.5   Class :character   1st Qu.: 0.03466  
 Median : 70.0   Median : 70.0   Mode  :character   Median : 0.04971  
 Mean   : 70.0   Mean   : 70.0                      Mean   : 0.05413  
     DASSOW            LNYI_T_1           SIND              SAGRO         
 Min.   :-0.05696   Min.   : 8.219   Min.   :-0.14688   Min.   :-0.37391  
 1st Qu.: 0.04068   1st Qu.: 8.840   1st Qu.: 0.02745   1st Qu.: 0.09529  
 Median : 0.06269   Median : 9.077   Median : 0.05442   Median : 0.22181  
 Mean   : 0.08061   Mean   : 9.222   Mean   : 0.06737   Mean   : 0.22179  
     SSERV               SPUB                H                DD          
 Min.   :-0.56295   Min.   :0.006014   Min.   : 2.662   Min.   :  0.2792  
 1st Qu.: 0.07236   1st Qu.:0.077798   1st Qu.:12.590   1st Qu.:  1.1508  
 Median : 0.12822   Median :0.108222   Median :15.828   Median :  2.2449  
 Mean   : 0.14414   Mean   :0.127134   Mean   :17.684   Mean   :  7.2235  
      DORC             CRED            EXPOR              IMPOR         
 Min.   : 532.4   Min.   :   0.0   Min.   :    0.00   Min.   :    0.00  
 1st Qu.:1348.8   1st Qu.:   0.0   1st Qu.:    0.00   1st Qu.:    0.00  
 Median :1606.9   Median : 757.6   Median :   39.21   Median :    0.00  
 Mean   :1800.4   Mean   :1589.0   Mean   : 2128.94   Mean   :  205.89  
      CCOM               MREG             T                TFPM         
 Min.   :    0.00   Min.   : 5863   Min.   :0.03508   Min.   :   60.68  
 1st Qu.:    0.00   1st Qu.:11363   1st Qu.:0.04787   1st Qu.:  300.37  
 Median :   92.58   Median :13452   Median :0.05877   Median :  535.94  
 Mean   : 2334.82   Mean   :16629   Mean   :0.06865   Mean   :  973.11  
     TICMS             TMREG              GINI            THEIL       
 Min.   :  87.68   Min.   :0.00849   Min.   :0.3600   Min.   :0.1900  
 1st Qu.: 243.31   1st Qu.:0.03445   1st Qu.:0.5300   1st Qu.:0.4750  
 Median : 382.59   Median :0.04830   Median :0.5800   Median :0.5500  
 Mean   : 445.03   Mean   :0.04925   Mean   :0.5755   Mean   :0.5809  
 [ reached getOption("max.print") -- omitted 2 rows ]
attach(dados)
# algumas variaveis vou dividir por 1000000 para nivelar expor_6 impor_6 mreg_6
# tfpm_6 ticms_6 cred_6

Estimando o modelo linear de regressao multipla fazendo conforme a expressão do enunciado.

2 Resultados

2.1 Estimação

Fazendo as regressoes. Algumas variáveis foram construídas com uso de logaritmos e portanto, deve-se olhar a especificação destas.

# regressao multipla de
# BARRO~LNYI_T_1+SIND+SAGRO+SSERV+SPUB+H+DD+DORC+I(CRED*10^-6)+I(EXPOR*10^-6)+I(IMPOR*10^-6)+I(MREG*10^-6)+I(TFPM*10^-6)+I(TICMS*10^-6)+GINI
# variaveis transformadas
attach(dados)
Exporta <- I(EXPOR * 10^-6)
Importa <- I(IMPOR * 10^-6)
Mregio <- I(MREG * 10^-6)
FPM <- I(TFPM * 10^-6)
TICMSm <- I(TICMS * 10^-6)
credito <- I(CRED * 10^-6)
mod1 <- lm(BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DD + DORC + 
    T + Exporta + Importa + Mregio + FPM + TICMSm + credito, data = dados)

Vamos utilizar o pacote stargazer para organizar as saídas de resultados. Se a saída fosse apenas pelo comando summary, sairia da forma:

summary(mod1)

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + DD + DORC + T + Exporta + Importa + Mregio + FPM + TICMSm + 
    credito, data = dados)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.039810 -0.008103  0.000716  0.006618  0.031697 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.663e-01  3.869e-02  12.050  < 2e-16 ***
LNYI_T_1    -5.058e-02  4.582e-03 -11.037  < 2e-16 ***
SIND         1.284e-01  1.911e-02   6.721 6.00e-10 ***
SAGRO        1.075e-01  8.151e-03  13.187  < 2e-16 ***
SSERV        5.461e-02  1.970e-02   2.772  0.00644 ** 
SPUB        -1.438e-01  2.029e-02  -7.090 9.22e-11 ***
H            2.522e-04  2.098e-04   1.202  0.23177    
DD           4.799e-05  5.502e-05   0.872  0.38478    
DORC         4.773e-06  2.981e-06   1.601  0.11195    
T            2.015e-02  9.462e-02   0.213  0.83172    
Exporta     -2.968e-01  3.898e-01  -0.761  0.44784    
Importa      4.759e+00  1.377e+00   3.457  0.00075 ***
Mregio      -1.942e-01  1.898e-01  -1.023  0.30838    
FPM         -1.464e+00  8.606e-01  -1.701  0.09155 .  
TICMSm       4.507e+01  9.618e+00   4.686 7.27e-06 ***
credito      1.029e+00  9.060e-01   1.135  0.25843    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01302 on 123 degrees of freedom
Multiple R-squared:  0.8901,    Adjusted R-squared:  0.8767 
F-statistic: 66.39 on 15 and 123 DF,  p-value: < 2.2e-16

Agora, criando uma tabela com as várias saídas de modelos, com o pacote stargazer tem-se, com a geração de AIC e BIC:

mod1$AIC <- AIC(mod1)
mod1$BIC <- BIC(mod1)
library(stargazer)
stargazer(mod1, title = "Título: Resultado da Regressão", align = TRUE, type = "text", 
    style = "all", keep.stat = c("aic", "bic", "rsq", "adj.rsq", "n"))

Título: Resultado da Regressão
===============================================
                        Dependent variable:    
                    ---------------------------
                               BARRO           
-----------------------------------------------
LNYI_T_1                     -0.051***         
                              (0.005)          
                            t = -11.037        
                             p = 0.000         
SIND                         0.128***          
                              (0.019)          
                             t = 6.721         
                             p = 0.000         
SAGRO                        0.107***          
                              (0.008)          
                            t = 13.187         
                             p = 0.000         
SSERV                        0.055***          
                              (0.020)          
                             t = 2.772         
                             p = 0.007         
SPUB                         -0.144***         
                              (0.020)          
                            t = -7.090         
                             p = 0.000         
H                             0.0003           
                             (0.0002)          
                             t = 1.202         
                             p = 0.232         
DD                            0.00005          
                             (0.0001)          
                             t = 0.872         
                             p = 0.385         
DORC                          0.00000          
                             (0.00000)         
                             t = 1.601         
                             p = 0.112         
T                              0.020           
                              (0.095)          
                             t = 0.213         
                             p = 0.832         
Exporta                       -0.297           
                              (0.390)          
                            t = -0.761         
                             p = 0.448         
Importa                      4.759***          
                              (1.377)          
                             t = 3.457         
                             p = 0.001         
Mregio                        -0.194           
                              (0.190)          
                            t = -1.023         
                             p = 0.309         
FPM                           -1.464*          
                              (0.861)          
                            t = -1.701         
                             p = 0.092         
TICMSm                       45.070***         
                              (9.618)          
                             t = 4.686         
                            p = 0.00001        
credito                        1.029           
                              (0.906)          
                             t = 1.135         
                             p = 0.259         
Constant                     0.466***          
                              (0.039)          
                            t = 12.050         
                             p = 0.000         
-----------------------------------------------
Observations                    139            
R2                             0.890           
Adjusted R2                    0.877           
Akaike Inf. Crit.            -795.426          
Bayesian Inf. Crit.          -745.540          
===============================================
Note:               *p<0.1; **p<0.05; ***p<0.01

2.2 Correlação

library(corrplot)
corel <- cor(dados[, 6:24])  # somente var. explicativas
corrplot(corel, method = "number", type = "lower", number.digits = 2)

2.3 Teste de Multicolinearidade (vif)

library(car)
reg1.vif <- vif(mod1)
reg1.vif
LNYI_T_1     SIND    SAGRO    SSERV     SPUB        H       DD     DORC 
6.678067 1.759081 1.869240 4.760146 2.633731 2.731471 1.981365 4.035582 
       T  Exporta  Importa   Mregio      FPM   TICMSm  credito 
5.609833 3.865815 1.974317 1.891542 1.787013 7.008875 2.676959 

3 Regressoes auxiliares para a regra de Klein

reg1.LNYI_T_1 <- lm(LNYI_T_1 ~ SIND + SAGRO + SSERV + SPUB + H + DD + DORC + T + 
    I(EXPOR * 10^-6) + I(IMPOR * 10^-6) + I(MREG * 10^-6) + I(TFPM * 10^-6) + I(TICMS * 
    10^-6) + I(CRED * 10^-6), data = dados)
summary(reg1.LNYI_T_1)

Call:
lm(formula = LNYI_T_1 ~ SIND + SAGRO + SSERV + SPUB + H + DD + 
    DORC + T + I(EXPOR * 10^-6) + I(IMPOR * 10^-6) + I(MREG * 
    10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + I(CRED * 10^-6), 
    data = dados)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.48705 -0.15067 -0.02865  0.11092  0.89471 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)       8.334e+00  1.222e-01  68.187  < 2e-16 ***
SIND              5.504e-01  3.712e-01   1.483  0.14063    
SAGRO             2.255e-01  1.584e-01   1.423  0.15724    
SSERV            -1.699e+00  3.547e-01  -4.789 4.68e-06 ***
SPUB             -2.138e+00  3.481e-01  -6.142 1.02e-08 ***
H                 9.130e-03  4.030e-03   2.266  0.02521 *  
DD               -1.495e-03  1.070e-03  -1.398  0.16475    
DORC             -1.152e-06  5.842e-05  -0.020  0.98429    
T                 8.074e+00  1.707e+00   4.731 5.99e-06 ***
I(EXPOR * 10^-6)  2.171e+01  7.387e+00   2.939  0.00393 ** 
I(IMPOR * 10^-6) -6.258e+01  2.638e+01  -2.372  0.01923 *  
I(MREG * 10^-6)   8.905e+00  3.633e+00   2.451  0.01564 *  
I(TFPM * 10^-6)  -1.899e+01  1.678e+01  -1.132  0.25997    
I(TICMS * 10^-6)  8.754e+02  1.713e+02   5.110 1.19e-06 ***
I(CRED * 10^-6)   3.911e+01  1.740e+01   2.247  0.02639 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2551 on 124 degrees of freedom
Multiple R-squared:  0.8503,    Adjusted R-squared:  0.8333 
F-statistic: 50.29 on 14 and 124 DF,  p-value: < 2.2e-16
reg1.SIND <- lm(SIND ~ LNYI_T_1 + SAGRO + SSERV + SPUB + H + DD + DORC + T + I(EXPOR * 
    10^-6) + I(IMPOR * 10^-6) + I(MREG * 10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + 
    I(CRED * 10^-6), data = dados)
summary(reg1.SIND)

Call:
lm(formula = SIND ~ LNYI_T_1 + SAGRO + SSERV + SPUB + H + DD + 
    DORC + T + I(EXPOR * 10^-6) + I(IMPOR * 10^-6) + I(MREG * 
    10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + I(CRED * 10^-6), 
    data = dados)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.13361 -0.03714 -0.01083  0.02162  0.20721 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)      -2.462e-01  1.805e-01  -1.364 0.175144    
LNYI_T_1          3.166e-02  2.135e-02   1.483 0.140625    
SAGRO            -2.762e-02  3.823e-02  -0.723 0.471287    
SSERV             3.290e-01  8.776e-02   3.749 0.000271 ***
SPUB              3.043e-01  9.135e-02   3.331 0.001141 ** 
H                 4.966e-04  9.853e-04   0.504 0.615137    
DD               -6.609e-05  2.585e-04  -0.256 0.798648    
DORC              1.397e-05  1.396e-05   1.001 0.318613    
T                -5.123e-01  4.424e-01  -1.158 0.249015    
I(EXPOR * 10^-6)  2.436e+00  1.819e+00   1.339 0.182942    
I(IMPOR * 10^-6)  1.286e+01  6.366e+00   2.019 0.045607 *  
I(MREG * 10^-6)  -1.137e-02  8.922e-01  -0.013 0.989854    
I(TFPM * 10^-6)   5.287e+00  4.017e+00   1.316 0.190568    
I(TICMS * 10^-6) -1.494e+02  4.317e+01  -3.460 0.000740 ***
I(CRED * 10^-6)  -1.890e+00  4.255e+00  -0.444 0.657652    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.06119 on 124 degrees of freedom
Multiple R-squared:  0.4315,    Adjusted R-squared:  0.3673 
F-statistic: 6.723 on 14 and 124 DF,  p-value: 4.992e-10
reg1.SAGRO <- lm(SAGRO ~ SIND + LNYI_T_1 + SSERV + SPUB + H + DD + DORC + T + I(EXPOR * 
    10^-6) + I(IMPOR * 10^-6) + I(MREG * 10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + 
    I(CRED * 10^-6), data = dados)
summary(reg1.SAGRO)

Call:
lm(formula = SAGRO ~ SIND + LNYI_T_1 + SSERV + SPUB + H + DD + 
    DORC + T + I(EXPOR * 10^-6) + I(IMPOR * 10^-6) + I(MREG * 
    10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + I(CRED * 10^-6), 
    data = dados)

Residuals:
     Min       1Q   Median       3Q      Max 
-0.55310 -0.07118 -0.00489  0.06312  0.35643 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)      -3.185e-01  4.254e-01  -0.749   0.4554    
SIND             -1.518e-01  2.101e-01  -0.723   0.4713    
LNYI_T_1          7.126e-02  5.008e-02   1.423   0.1572    
SSERV             9.183e-01  2.008e-01   4.573 1.15e-05 ***
SPUB              5.272e-01  2.184e-01   2.413   0.0173 *  
H                 3.591e-04  2.312e-03   0.155   0.8768    
DD               -1.401e-04  6.060e-04  -0.231   0.8176    
DORC             -6.523e-08  3.285e-05  -0.002   0.9984    
T                -2.934e+00  1.009e+00  -2.909   0.0043 ** 
I(EXPOR * 10^-6) -8.076e+00  4.233e+00  -1.908   0.0587 .  
I(IMPOR * 10^-6) -8.829e+00  1.515e+01  -0.583   0.5610    
I(MREG * 10^-6)  -3.302e+00  2.070e+00  -1.595   0.1133    
I(TFPM * 10^-6)  -1.651e+00  9.481e+00  -0.174   0.8621    
I(TICMS * 10^-6) -2.231e+00  1.060e+02  -0.021   0.9832    
I(CRED * 10^-6)  -2.095e+01  9.802e+00  -2.138   0.0345 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1434 on 124 degrees of freedom
Multiple R-squared:  0.465, Adjusted R-squared:  0.4046 
F-statistic: 7.699 on 14 and 124 DF,  p-value: 1.779e-11
reg1.SSERV <- lm(SSERV ~ SAGRO + SIND + LNYI_T_1 + SPUB + H + DD + DORC + T + I(EXPOR * 
    10^-6) + I(IMPOR * 10^-6) + I(MREG * 10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + 
    I(CRED * 10^-6), data = dados)
summary(reg1.SSERV)

Call:
lm(formula = SSERV ~ SAGRO + SIND + LNYI_T_1 + SPUB + H + DD + 
    DORC + T + I(EXPOR * 10^-6) + I(IMPOR * 10^-6) + I(MREG * 
    10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + I(CRED * 10^-6), 
    data = dados)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.255771 -0.035530 -0.002765  0.034105  0.150766 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)       7.006e-01  1.648e-01   4.252 4.13e-05 ***
SAGRO             1.572e-01  3.437e-02   4.573 1.15e-05 ***
SIND              3.094e-01  8.253e-02   3.749 0.000271 ***
LNYI_T_1         -9.190e-02  1.919e-02  -4.789 4.68e-06 ***
SPUB              6.434e-02  9.229e-02   0.697 0.486993    
H                -2.921e-03  9.198e-04  -3.175 0.001888 ** 
DD               -1.229e-04  2.505e-04  -0.491 0.624474    
DORC             -1.360e-05  1.353e-05  -1.005 0.316746    
T                 2.776e+00  3.520e-01   7.886 1.38e-12 ***
I(EXPOR * 10^-6)  4.111e+00  1.738e+00   2.365 0.019581 *  
I(IMPOR * 10^-6)  1.021e+01  6.207e+00   1.644 0.102645    
I(MREG * 10^-6)   1.614e+00  8.530e-01   1.892 0.060854 .  
I(TFPM * 10^-6)  -3.455e+00  3.910e+00  -0.884 0.378645    
I(TICMS * 10^-6)  1.258e+02  4.236e+01   2.970 0.003576 ** 
I(CRED * 10^-6)   1.464e+01  3.914e+00   3.741 0.000279 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05934 on 124 degrees of freedom
Multiple R-squared:  0.7899,    Adjusted R-squared:  0.7662 
F-statistic:  33.3 on 14 and 124 DF,  p-value: < 2.2e-16
reg1.SPUB <- lm(SPUB ~ SSERV + SAGRO + SIND + LNYI_T_1 + H + DD + DORC + T + I(EXPOR * 
    10^-6) + I(IMPOR * 10^-6) + I(MREG * 10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + 
    I(CRED * 10^-6), data = dados)
summary(reg1.SPUB)

Call:
lm(formula = SPUB ~ SSERV + SAGRO + SIND + LNYI_T_1 + H + DD + 
    DORC + T + I(EXPOR * 10^-6) + I(IMPOR * 10^-6) + I(MREG * 
    10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + I(CRED * 10^-6), 
    data = dados)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.127622 -0.033520 -0.004577  0.024503  0.285854 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)       9.712e-01  1.474e-01   6.588 1.14e-09 ***
SSERV             6.069e-02  8.704e-02   0.697  0.48699    
SAGRO             8.510e-02  3.526e-02   2.413  0.01727 *  
SIND              2.699e-01  8.103e-02   3.331  0.00114 ** 
LNYI_T_1         -1.091e-01  1.776e-02  -6.142 1.02e-08 ***
H                 1.142e-03  9.233e-04   1.237  0.21860    
DD               -1.021e-05  2.435e-04  -0.042  0.96661    
DORC              2.831e-05  1.295e-05   2.186  0.03069 *  
T                 1.597e-01  4.186e-01   0.381  0.70357    
I(EXPOR * 10^-6) -2.695e-01  1.725e+00  -0.156  0.87615    
I(IMPOR * 10^-6) -1.027e+01  6.023e+00  -1.705  0.09077 .  
I(MREG * 10^-6)  -1.624e-01  8.402e-01  -0.193  0.84708    
I(TFPM * 10^-6)  -9.515e-01  3.809e+00  -0.250  0.80313    
I(TICMS * 10^-6)  8.983e+01  4.181e+01   2.149  0.03360 *  
I(CRED * 10^-6)   2.790e-01  4.010e+00   0.070  0.94465    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.05763 on 124 degrees of freedom
Multiple R-squared:  0.6203,    Adjusted R-squared:  0.5774 
F-statistic: 14.47 on 14 and 124 DF,  p-value: < 2.2e-16
reg1.H <- lm(H ~ SPUB + SSERV + SAGRO + SIND + LNYI_T_1 + DD + DORC + T + I(EXPOR * 
    10^-6) + I(IMPOR * 10^-6) + I(MREG * 10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + 
    I(CRED * 10^-6), data = dados)
summary(reg1.H)

Call:
lm(formula = H ~ SPUB + SSERV + SAGRO + SIND + LNYI_T_1 + DD + 
    DORC + T + I(EXPOR * 10^-6) + I(IMPOR * 10^-6) + I(MREG * 
    10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + I(CRED * 10^-6), 
    data = dados)

Residuals:
    Min      1Q  Median      3Q     Max 
-10.773  -3.610   0.288   3.172  15.032 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)      -3.832e+01  1.620e+01  -2.365 0.019558 *  
SPUB              1.067e+01  8.629e+00   1.237 0.218596    
SSERV            -2.575e+01  8.108e+00  -3.175 0.001888 ** 
SAGRO             5.418e-01  3.488e+00   0.155 0.876807    
SIND              4.117e+00  8.168e+00   0.504 0.615137    
LNYI_T_1          4.354e+00  1.922e+00   2.266 0.025215 *  
DD                2.879e-02  2.340e-02   1.230 0.220856    
DORC              6.823e-03  1.119e-03   6.097 1.26e-08 ***
T                 1.471e+02  3.828e+01   3.843 0.000193 ***
I(EXPOR * 10^-6)  3.319e+01  1.668e+02   0.199 0.842587    
I(IMPOR * 10^-6)  1.730e+03  5.682e+02   3.044 0.002853 ** 
I(MREG * 10^-6)   1.346e+01  8.123e+01   0.166 0.868613    
I(TFPM * 10^-6)  -1.075e+02  3.682e+02  -0.292 0.770786    
I(TICMS * 10^-6) -1.575e+04  3.865e+03  -4.075 8.15e-05 ***
I(CRED * 10^-6)   1.058e+03  3.759e+02   2.815 0.005670 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.571 on 124 degrees of freedom
Multiple R-squared:  0.6339,    Adjusted R-squared:  0.5926 
F-statistic: 15.34 on 14 and 124 DF,  p-value: < 2.2e-16
reg1.DD <- lm(DD ~ H + SPUB + SSERV + SAGRO + SIND + LNYI_T_1 + DORC + T + I(EXPOR * 
    10^-6) + I(IMPOR * 10^-6) + I(MREG * 10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + 
    I(CRED * 10^-6), data = dados)
summary(reg1.DD)

Call:
lm(formula = DD ~ H + SPUB + SSERV + SAGRO + SIND + LNYI_T_1 + 
    DORC + T + I(EXPOR * 10^-6) + I(IMPOR * 10^-6) + I(MREG * 
    10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + I(CRED * 10^-6), 
    data = dados)

Residuals:
    Min      1Q  Median      3Q     Max 
-97.903  -6.240   0.119   5.582 164.373 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)       6.148e+01  6.292e+01   0.977 0.330427    
H                 4.189e-01  3.405e-01   1.230 0.220856    
SPUB             -1.389e+00  3.311e+01  -0.042 0.966615    
SSERV            -1.577e+01  3.213e+01  -0.491 0.624474    
SAGRO            -3.075e+00  1.330e+01  -0.231 0.817551    
SIND             -7.971e+00  3.118e+01  -0.256 0.798648    
LNYI_T_1         -1.037e+01  7.422e+00  -1.398 0.164746    
DORC             -2.535e-03  4.861e-03  -0.521 0.603002    
T                 5.249e+02  1.471e+02   3.569 0.000511 ***
I(EXPOR * 10^-6) -1.977e+02  6.361e+02  -0.311 0.756467    
I(IMPOR * 10^-6) -8.741e+02  2.246e+03  -0.389 0.697762    
I(MREG * 10^-6)   5.096e+02  3.065e+02   1.663 0.098843 .  
I(TFPM * 10^-6)   7.768e+03  1.219e+03   6.370 3.35e-09 ***
I(TICMS * 10^-6) -6.884e+03  1.569e+04  -0.439 0.661586    
I(CRED * 10^-6)  -3.894e+03  1.437e+03  -2.710 0.007674 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 21.25 on 124 degrees of freedom
Multiple R-squared:  0.4953,    Adjusted R-squared:  0.4383 
F-statistic: 8.692 on 14 and 124 DF,  p-value: 6.92e-13
reg1.DORC <- lm(DORC ~ DD + H + SPUB + SSERV + SAGRO + SIND + LNYI_T_1 + T + I(EXPOR * 
    10^-6) + I(IMPOR * 10^-6) + I(MREG * 10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + 
    I(CRED * 10^-6), data = dados)
summary(reg1.DORC)

Call:
lm(formula = DORC ~ DD + H + SPUB + SSERV + SAGRO + SIND + LNYI_T_1 + 
    T + I(EXPOR * 10^-6) + I(IMPOR * 10^-6) + I(MREG * 10^-6) + 
    I(TFPM * 10^-6) + I(TICMS * 10^-6) + I(CRED * 10^-6), data = dados)

Residuals:
    Min      1Q  Median      3Q     Max 
-798.94 -243.99  -23.48  190.30 1292.20 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)       7.905e+02  1.163e+03   0.679  0.49810    
DD               -8.631e-01  1.655e+00  -0.521  0.60300    
H                 3.381e+01  5.544e+00   6.097 1.26e-08 ***
SPUB              1.311e+03  5.996e+02   2.186  0.03069 *  
SSERV            -5.942e+02  5.911e+02  -1.005  0.31675    
SAGRO            -4.876e-01  2.455e+02  -0.002  0.99842    
SIND              5.740e+02  5.732e+02   1.001  0.31861    
LNYI_T_1         -2.723e+00  1.380e+02  -0.020  0.98429    
T                -7.731e+03  2.764e+03  -2.797  0.00599 ** 
I(EXPOR * 10^-6) -1.835e+04  1.163e+04  -1.578  0.11708    
I(IMPOR * 10^-6) -2.901e+04  4.138e+04  -0.701  0.48459    
I(MREG * 10^-6)  -3.860e+03  5.708e+03  -0.676  0.50009    
I(TFPM * 10^-6)   3.314e+04  2.575e+04   1.287  0.20058    
I(TICMS * 10^-6)  2.185e+06  2.131e+05  10.252  < 2e-16 ***
I(CRED * 10^-6)  -2.571e+04  2.719e+04  -0.946  0.34615    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 392.2 on 124 degrees of freedom
Multiple R-squared:  0.7522,    Adjusted R-squared:  0.7242 
F-statistic: 26.89 on 14 and 124 DF,  p-value: < 2.2e-16
reg1.T <- lm(T ~ DORC + DD + H + SPUB + SSERV + SAGRO + SIND + LNYI_T_1 + I(EXPOR * 
    10^-6) + I(IMPOR * 10^-6) + I(MREG * 10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + 
    I(CRED * 10^-6), data = dados)
summary(reg1.T)

Call:
lm(formula = T ~ DORC + DD + H + SPUB + SSERV + SAGRO + SIND + 
    LNYI_T_1 + I(EXPOR * 10^-6) + I(IMPOR * 10^-6) + I(MREG * 
    10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + I(CRED * 10^-6), 
    data = dados)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.029579 -0.006728 -0.000136  0.006746  0.044637 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)      -1.197e-01  3.511e-02  -3.409 0.000880 ***
DORC             -7.675e-06  2.744e-06  -2.797 0.005987 ** 
DD                1.774e-04  4.972e-05   3.569 0.000511 ***
H                 7.236e-04  1.883e-04   3.843 0.000193 ***
SPUB              7.339e-03  1.924e-02   0.381 0.703566    
SSERV             1.203e-01  1.526e-02   7.886 1.38e-12 ***
SAGRO            -2.177e-02  7.484e-03  -2.909 0.004300 ** 
SIND             -2.089e-02  1.804e-02  -1.158 0.249015    
LNYI_T_1          1.894e-02  4.003e-03   4.731 5.99e-06 ***
I(EXPOR * 10^-6) -2.984e-01  3.690e-01  -0.809 0.420232    
I(IMPOR * 10^-6) -1.775e+00  1.297e+00  -1.369 0.173395    
I(MREG * 10^-6)  -2.051e-01  1.792e-01  -1.144 0.254705    
I(TFPM * 10^-6)   8.743e-01  8.130e-01   1.075 0.284298    
I(TICMS * 10^-6)  7.040e+00  9.106e+00   0.773 0.440968    
I(CRED * 10^-6)   1.173e+00  8.533e-01   1.375 0.171682    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01236 on 124 degrees of freedom
Multiple R-squared:  0.8217,    Adjusted R-squared:  0.8016 
F-statistic: 40.83 on 14 and 124 DF,  p-value: < 2.2e-16
reg1.EXPOR <- lm(I(EXPOR * 10^-6) ~ T + DORC + DD + H + SPUB + SSERV + SAGRO + SIND + 
    LNYI_T_1 + I(IMPOR * 10^-6) + I(MREG * 10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + 
    I(CRED * 10^-6), data = dados)
summary(reg1.EXPOR)

Call:
lm(formula = I(EXPOR * 10^-6) ~ T + DORC + DD + H + SPUB + SSERV + 
    SAGRO + SIND + LNYI_T_1 + I(IMPOR * 10^-6) + I(MREG * 10^-6) + 
    I(TFPM * 10^-6) + I(TICMS * 10^-6) + I(CRED * 10^-6), data = dados)

Residuals:
       Min         1Q     Median         3Q        Max 
-0.0070810 -0.0013795  0.0001258  0.0011624  0.0182828 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)      -2.715e-02  8.574e-03  -3.167 0.001938 ** 
T                -1.758e-02  2.174e-02  -0.809 0.420232    
DORC             -1.073e-06  6.800e-07  -1.578 0.117077    
DD               -3.937e-06  1.267e-05  -0.311 0.756467    
H                 9.618e-06  4.833e-05   0.199 0.842587    
SPUB             -7.298e-04  4.673e-03  -0.156 0.876153    
SSERV             1.050e-02  4.440e-03   2.365 0.019581 *  
SAGRO            -3.531e-03  1.851e-03  -1.908 0.058744 .  
SIND              5.852e-03  4.370e-03   1.339 0.182942    
LNYI_T_1          3.000e-03  1.021e-03   2.939 0.003927 ** 
I(IMPOR * 10^-6)  1.410e+00  2.907e-01   4.852  3.6e-06 ***
I(MREG * 10^-6)  -4.442e-03  4.373e-02  -0.102 0.919250    
I(TFPM * 10^-6)  -7.272e-02  1.981e-01  -0.367 0.714259    
I(TICMS * 10^-6)  7.906e+00  2.099e+00   3.767 0.000254 ***
I(CRED * 10^-6)  -4.968e-02  2.087e-01  -0.238 0.812195    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.002999 on 124 degrees of freedom
Multiple R-squared:  0.7413,    Adjusted R-squared:  0.7121 
F-statistic: 25.38 on 14 and 124 DF,  p-value: < 2.2e-16
reg1.IMPOR <- lm(I(IMPOR * 10^-6) ~ I(EXPOR * 10^-6) + T + DORC + DD + H + SPUB + 
    SSERV + SAGRO + SIND + LNYI_T_1 + I(MREG * 10^-6) + I(TFPM * 10^-6) + I(TICMS * 
    10^-6) + I(CRED * 10^-6), data = dados)
summary(reg1.IMPOR)

Call:
lm(formula = I(IMPOR * 10^-6) ~ I(EXPOR * 10^-6) + T + DORC + 
    DD + H + SPUB + SSERV + SAGRO + SIND + LNYI_T_1 + I(MREG * 
    10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + I(CRED * 10^-6), 
    data = dados)

Residuals:
       Min         1Q     Median         3Q        Max 
-0.0026011 -0.0002794 -0.0000641  0.0002327  0.0053520 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)       5.954e-03  2.467e-03   2.413  0.01727 *  
I(EXPOR * 10^-6)  1.131e-01  2.332e-02   4.852  3.6e-06 ***
T                -8.389e-03  6.127e-03  -1.369  0.17340    
DORC             -1.361e-07  1.941e-07  -0.701  0.48459    
DD               -1.396e-06  3.587e-06  -0.389  0.69776    
H                 4.020e-05  1.321e-05   3.044  0.00285 ** 
SPUB             -2.230e-03  1.308e-03  -1.705  0.09077 .  
SSERV             2.091e-03  1.272e-03   1.644  0.10264    
SAGRO            -3.096e-04  5.310e-04  -0.583  0.56099    
SIND              2.477e-03  1.226e-03   2.019  0.04561 *  
LNYI_T_1         -6.935e-04  2.924e-04  -2.372  0.01923 *  
I(MREG * 10^-6)   1.974e-02  1.226e-02   1.610  0.10987    
I(TFPM * 10^-6)   1.021e-02  5.614e-02   0.182  0.85594    
I(TICMS * 10^-6)  3.157e-01  6.269e-01   0.504  0.61537    
I(CRED * 10^-6)  -4.281e-02  5.898e-02  -0.726  0.46935    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0008494 on 124 degrees of freedom
Multiple R-squared:  0.4935,    Adjusted R-squared:  0.4363 
F-statistic:  8.63 on 14 and 124 DF,  p-value: 8.45e-13
reg1.MREG <- lm(I(MREG * 10^-6) ~ I(IMPOR * 10^-6) + I(EXPOR * 10^-6) + T + DORC + 
    DD + H + SPUB + SSERV + SAGRO + SIND + LNYI_T_1 + I(TFPM * 10^-6) + I(TICMS * 
    10^-6) + I(CRED * 10^-6), data = dados)
summary(reg1.MREG)

Call:
lm(formula = I(MREG * 10^-6) ~ I(IMPOR * 10^-6) + I(EXPOR * 10^-6) + 
    T + DORC + DD + H + SPUB + SSERV + SAGRO + SIND + LNYI_T_1 + 
    I(TFPM * 10^-6) + I(TICMS * 10^-6) + I(CRED * 10^-6), data = dados)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.009773 -0.003721 -0.001170  0.002936  0.023653 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)  
(Intercept)      -3.035e-02  1.810e-02  -1.677   0.0961 .
I(IMPOR * 10^-6)  1.038e+00  6.445e-01   1.610   0.1099  
I(EXPOR * 10^-6) -1.873e-02  1.844e-01  -0.102   0.9192  
T                -5.095e-02  4.453e-02  -1.144   0.2547  
DORC             -9.521e-07  1.408e-06  -0.676   0.5001  
DD                4.281e-05  2.574e-05   1.663   0.0988 .
H                 1.645e-05  9.926e-05   0.166   0.8686  
SPUB             -1.854e-03  9.596e-03  -0.193   0.8471  
SSERV             1.738e-02  9.189e-03   1.892   0.0609 .
SAGRO            -6.088e-03  3.817e-03  -1.595   0.1133  
SIND             -1.152e-04  9.039e-03  -0.013   0.9899  
LNYI_T_1          5.189e-03  2.117e-03   2.451   0.0156 *
I(TFPM * 10^-6)  -2.437e-01  4.065e-01  -0.599   0.5500  
I(TICMS * 10^-6)  5.447e+00  4.524e+00   1.204   0.2308  
I(CRED * 10^-6)   2.933e-01  4.278e-01   0.686   0.4942  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.006159 on 124 degrees of freedom
Multiple R-squared:  0.4713,    Adjusted R-squared:  0.4116 
F-statistic: 7.897 on 14 and 124 DF,  p-value: 9.217e-12
reg1.TFPM <- lm(I(TFPM * 10^-6) ~ I(MREG * 10^-6) + I(IMPOR * 10^-6) + I(EXPOR * 
    10^-6) + T + DORC + DD + H + SPUB + SSERV + SAGRO + SIND + LNYI_T_1 + I(TICMS * 
    10^-6) + I(CRED * 10^-6), data = dados)
summary(reg1.TFPM)

Call:
lm(formula = I(TFPM * 10^-6) ~ I(MREG * 10^-6) + I(IMPOR * 10^-6) + 
    I(EXPOR * 10^-6) + T + DORC + DD + H + SPUB + SSERV + SAGRO + 
    SIND + LNYI_T_1 + I(TICMS * 10^-6) + I(CRED * 10^-6), data = dados)

Residuals:
       Min         1Q     Median         3Q        Max 
-0.0019392 -0.0005669 -0.0001720  0.0002811  0.0104615 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)       4.314e-03  4.019e-03   1.073   0.2852    
I(MREG * 10^-6)  -1.186e-02  1.978e-02  -0.599   0.5500    
I(IMPOR * 10^-6)  2.613e-02  1.436e-01   0.182   0.8559    
I(EXPOR * 10^-6) -1.492e-02  4.066e-02  -0.367   0.7143    
T                 1.057e-02  9.828e-03   1.075   0.2843    
DORC              3.977e-07  3.090e-07   1.287   0.2006    
DD                3.174e-05  4.983e-06   6.370 3.35e-09 ***
H                -6.391e-06  2.189e-05  -0.292   0.7708    
SPUB             -5.287e-04  2.116e-03  -0.250   0.8031    
SSERV            -1.811e-03  2.049e-03  -0.884   0.3786    
SAGRO            -1.481e-04  8.504e-04  -0.174   0.8621    
SIND              2.606e-03  1.980e-03   1.316   0.1906    
LNYI_T_1         -5.383e-04  4.757e-04  -1.132   0.2600    
I(TICMS * 10^-6)  1.968e-01  1.003e+00   0.196   0.8449    
I(CRED * 10^-6)   2.437e-01  9.197e-02   2.650   0.0091 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.001359 on 124 degrees of freedom
Multiple R-squared:  0.4404,    Adjusted R-squared:  0.3772 
F-statistic: 6.971 on 14 and 124 DF,  p-value: 2.114e-10
reg1.TICMS <- lm(I(TICMS * 10^-6) ~ I(TFPM * 10^-6) + I(MREG * 10^-6) + I(IMPOR * 
    10^-6) + I(EXPOR * 10^-6) + T + DORC + DD + H + SPUB + SSERV + SAGRO + SIND + 
    LNYI_T_1 + I(CRED * 10^-6), data = dados)
summary(reg1.TICMS)

Call:
lm(formula = I(TICMS * 10^-6) ~ I(TFPM * 10^-6) + I(MREG * 10^-6) + 
    I(IMPOR * 10^-6) + I(EXPOR * 10^-6) + T + DORC + DD + H + 
    SPUB + SSERV + SAGRO + SIND + LNYI_T_1 + I(CRED * 10^-6), 
    data = dados)

Residuals:
       Min         1Q     Median         3Q        Max 
-2.423e-04 -7.760e-05  1.127e-05  5.651e-05  3.378e-04 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)      -1.803e-03  3.230e-04  -5.583 1.42e-07 ***
I(TFPM * 10^-6)   1.575e-03  8.034e-03   0.196 0.844850    
I(MREG * 10^-6)   2.122e-03  1.762e-03   1.204 0.230831    
I(IMPOR * 10^-6)  6.467e-03  1.284e-02   0.504 0.615372    
I(EXPOR * 10^-6)  1.299e-02  3.448e-03   3.767 0.000254 ***
T                 6.813e-04  8.813e-04   0.773 0.440968    
DORC              2.099e-07  2.048e-08  10.252  < 2e-16 ***
DD               -2.252e-07  5.133e-07  -0.439 0.661586    
H                -7.498e-06  1.840e-06  -4.075 8.15e-05 ***
SPUB              3.996e-04  1.860e-04   2.149 0.033600 *  
SSERV             5.279e-04  1.777e-04   2.970 0.003576 ** 
SAGRO            -1.602e-06  7.610e-05  -0.021 0.983237    
SIND             -5.895e-04  1.704e-04  -3.460 0.000740 ***
LNYI_T_1          1.987e-04  3.889e-05   5.110 1.19e-06 ***
I(CRED * 10^-6)  -1.716e-02  8.317e-03  -2.063 0.041232 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0001216 on 124 degrees of freedom
Multiple R-squared:  0.8573,    Adjusted R-squared:  0.8412 
F-statistic: 53.22 on 14 and 124 DF,  p-value: < 2.2e-16
reg1.CRED <- lm(I(CRED * 10^-6) ~ I(TICMS * 10^-6) + I(TFPM * 10^-6) + I(MREG * 10^-6) + 
    I(IMPOR * 10^-6) + I(EXPOR * 10^-6) + T + DORC + DD + H + SPUB + SSERV + SAGRO + 
    SIND + LNYI_T_1, data = dados)
summary(reg1.CRED)

Call:
lm(formula = I(CRED * 10^-6) ~ I(TICMS * 10^-6) + I(TFPM * 10^-6) + 
    I(MREG * 10^-6) + I(IMPOR * 10^-6) + I(EXPOR * 10^-6) + T + 
    DORC + DD + H + SPUB + SSERV + SAGRO + SIND + LNYI_T_1, data = dados)

Residuals:
       Min         1Q     Median         3Q        Max 
-0.0024009 -0.0007871 -0.0003046  0.0004341  0.0044864 

Coefficients:
                   Estimate Std. Error t value Pr(>|t|)    
(Intercept)      -9.026e-03  3.749e-03  -2.408 0.017524 *  
I(TICMS * 10^-6) -1.934e+00  9.375e-01  -2.063 0.041232 *  
I(TFPM * 10^-6)   2.199e-01  8.299e-02   2.650 0.009100 ** 
I(MREG * 10^-6)   1.288e-02  1.878e-02   0.686 0.494246    
I(IMPOR * 10^-6) -9.882e-02  1.362e-01  -0.726 0.469347    
I(EXPOR * 10^-6) -9.199e-03  3.863e-02  -0.238 0.812195    
T                 1.280e-02  9.309e-03   1.375 0.171682    
DORC             -2.785e-07  2.945e-07  -0.946 0.346154    
DD               -1.436e-05  5.299e-06  -2.710 0.007674 ** 
H                 5.677e-05  2.017e-05   2.815 0.005670 ** 
SPUB              1.399e-04  2.011e-03   0.070 0.944655    
SSERV             6.926e-03  1.851e-03   3.741 0.000279 ***
SAGRO            -1.696e-03  7.935e-04  -2.138 0.034515 *  
SIND             -8.407e-04  1.892e-03  -0.444 0.657652    
LNYI_T_1          1.001e-03  4.453e-04   2.247 0.026392 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.001291 on 124 degrees of freedom
Multiple R-squared:  0.6264,    Adjusted R-squared:  0.5843 
F-statistic: 14.85 on 14 and 124 DF,  p-value: < 2.2e-16

3.1 Resumo dos \(R^2\) DAS REGRESSOES AUXILIARES

r2.LNYI_T_1 <- summary(reg1.LNYI_T_1)$r.squared
r2.SIND <- summary(reg1.SIND)$r.squared
r2.SAGRO <- summary(reg1.SAGRO)$r.squared
r2.SSERV <- summary(reg1.SSERV)$r.squared
r2.SPUB <- summary(reg1.SPUB)$r.squared
r2.H <- summary(reg1.H)$r.squared
r2.DD <- summary(reg1.DD)$r.squared
r2.DORC <- summary(reg1.DORC)$r.squared
r2.T <- summary(reg1.T)$r.squared
r2.EXPOR <- summary(reg1.EXPOR)$r.squared
r2.IMPOR <- summary(reg1.IMPOR)$r.squared
r2.MREG <- summary(reg1.MREG)$r.squared
r2.TFPM <- summary(reg1.TFPM)$r.squared
r2.TICMS <- summary(reg1.TICMS)$r.squared
r2.CRED <- summary(reg1.CRED)$r.squared

tabela <- rbind(r2.LNYI_T_1, r2.SIND, r2.SAGRO, r2.SSERV, r2.SPUB, r2.H, r2.DD, r2.DORC, 
    r2.T, r2.EXPOR, r2.IMPOR, r2.MREG, r2.TFPM, r2.TICMS, r2.CRED)
library(knitr)
kable(tabela, col.names = "R2")
R2
r2.LNYI_T_1 0.8502561
r2.SIND 0.4315212
r2.SAGRO 0.4650231
r2.SSERV 0.7899224
r2.SPUB 0.6203105
r2.H 0.6338969
r2.DD 0.4952973
r2.DORC 0.7522043
r2.T 0.8217416
r2.EXPOR 0.7413223
r2.IMPOR 0.4934957
r2.MREG 0.4713308
r2.TFPM 0.4404069
r2.TICMS 0.8573237
r2.CRED 0.6264417
c(R2_mod1 = summary(mod1)$r.squared)
 R2_mod1 
0.890063 

4 Heterocedasticidade

4.1 Teste de White no modelo 1

# teste de White para heterocedasticidade, sem termos cruzados por causa do grau
# de liberdade do modelo (n=78obs)

m <- mod1
data <- dados
# rotina do teste com base em m e data
u2 <- m$residuals^2

# reg1<-lm(BARRO~LNYI_T_1+SIND+SAGRO+SSERV+SPUB+H+DD+DORC+T
# +I(EXPOR*10^-6)+I(IMPOR*10^-6)+I(MREG*10^-6)+I(TFPM*10^-6)+I(TICMS*10^-6)+I(CRED*10^-6),
# data=dados)

reg.auxiliar <- lm(u2 ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + DD + DORC + 
    T + I(EXPOR * 10^-6) + I(IMPOR * 10^-6) + I(MREG * 10^-6) + I(TFPM * 10^-6) + 
    I(TICMS * 10^-6) + I(CRED * 10^-6) + I(LNYI_T_1^2) + I(SIND^2) + I(SAGRO^2) + 
    I(SSERV^2) + I(SPUB^2) + I(H^2) + I(DD^2) + I(DORC^2) + I(T^2) + I((EXPOR * 10^-6)^2) + 
    I((IMPOR * 10^-6)^2) + I((MREG * 10^-6)^2) + I((TFPM * 10^-6)^2) + I((TICMS * 
    10^-6)^2) + I((CRED * 10^-6)^2), data = dados)
summary(reg.auxiliar)

Call:
lm(formula = u2 ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + 
    DD + DORC + T + I(EXPOR * 10^-6) + I(IMPOR * 10^-6) + I(MREG * 
    10^-6) + I(TFPM * 10^-6) + I(TICMS * 10^-6) + I(CRED * 10^-6) + 
    I(LNYI_T_1^2) + I(SIND^2) + I(SAGRO^2) + I(SSERV^2) + I(SPUB^2) + 
    I(H^2) + I(DD^2) + I(DORC^2) + I(T^2) + I((EXPOR * 10^-6)^2) + 
    I((IMPOR * 10^-6)^2) + I((MREG * 10^-6)^2) + I((TFPM * 10^-6)^2) + 
    I((TICMS * 10^-6)^2) + I((CRED * 10^-6)^2), data = dados)

Residuals:
       Min         1Q     Median         3Q        Max 
-3.866e-04 -1.215e-04 -2.876e-05  3.989e-05  1.334e-03 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)  
(Intercept)          -1.097e-02  6.328e-03  -1.734   0.0858 .
LNYI_T_1              2.139e-03  1.320e-03   1.621   0.1080  
SIND                 -1.829e-04  5.802e-04  -0.315   0.7532  
SAGRO                -2.743e-04  2.804e-04  -0.978   0.3300  
SSERV                -5.981e-04  6.825e-04  -0.876   0.3827  
SPUB                  1.494e-03  9.921e-04   1.505   0.1351  
H                     6.335e-06  1.108e-05   0.572   0.5686  
DD                    5.351e-06  5.781e-06   0.926   0.3567  
DORC                  2.974e-07  1.899e-07   1.566   0.1203  
T                     2.862e-03  6.383e-03   0.448   0.6548  
I(EXPOR * 10^-6)      1.097e-03  1.905e-02   0.058   0.9542  
I(IMPOR * 10^-6)      7.625e-02  8.514e-02   0.896   0.3725  
I(MREG * 10^-6)       6.498e-03  1.814e-02   0.358   0.7208  
I(TFPM * 10^-6)      -1.728e-02  4.717e-02  -0.366   0.7149  
I(TICMS * 10^-6)     -3.359e-02  3.788e-01  -0.089   0.9295  
I(CRED * 10^-6)       5.388e-03  4.557e-02   0.118   0.9061  
I(LNYI_T_1^2)        -1.081e-04  6.939e-05  -1.559   0.1220  
I(SIND^2)            -1.535e-04  2.382e-03  -0.064   0.9487  
I(SAGRO^2)            6.544e-04  4.498e-04   1.455   0.1486  
I(SSERV^2)            1.167e-03  1.304e-03   0.895   0.3727  
 [ reached getOption("max.print") -- omitted 11 rows ]
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0002467 on 108 degrees of freedom
Multiple R-squared:  0.226, Adjusted R-squared:  0.01103 
F-statistic: 1.051 on 30 and 108 DF,  p-value: 0.4104
Ru2 <- summary(reg.auxiliar)$r.squared
LM <- nrow(data) * Ru2
# obtendo o numero de regressores menos o intercepto
k <- length(coefficients(reg.auxiliar)) - 1
k
[1] 30
p.value <- 1 - pchisq(LM, k)  # O TESTE TEM k TERMOS REGRESSORES EM reg.auxiliar
# c('LM','p.value')
#'Resultado do teste de White sem termos cruzados
c(LM = LM, p.value = p.value)
        LM    p.value 
31.4172947  0.3951057 

5 Modelo 2 com menos variáveis

# rodando com menos variaveis
mod2 <- lm(BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + Importa + TICMSm, 
    data = dados)
summary(mod2)

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + Importa + TICMSm, data = dados)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.038231 -0.007231 -0.000428  0.006942  0.036033 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.4758882  0.0330407  14.403  < 2e-16 ***
LNYI_T_1    -0.0515334  0.0037531 -13.731  < 2e-16 ***
SIND         0.1257862  0.0186154   6.757 4.27e-10 ***
SAGRO        0.1093928  0.0073513  14.881  < 2e-16 ***
SSERV        0.0496722  0.0116988   4.246 4.11e-05 ***
SPUB        -0.1362400  0.0198922  -6.849 2.67e-10 ***
H            0.0004369  0.0001632   2.677  0.00839 ** 
Importa      3.8473462  1.2070479   3.187  0.00180 ** 
TICMSm      50.2771919  6.0990409   8.243 1.58e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01303 on 130 degrees of freedom
Multiple R-squared:  0.8836,    Adjusted R-squared:  0.8764 
F-statistic: 123.3 on 8 and 130 DF,  p-value: < 2.2e-16
mod2$AIC <- AIC(mod2)
mod2$BIC <- BIC(mod2)
stargazer(mod1, mod2, title = "Título: Resultado da Regressão", align = TRUE, type = "text", 
    style = "all", keep.stat = c("aic", "bic", "rsq", "adj.rsq", "n"))

Título: Resultado da Regressão
================================================
                        Dependent variable:     
                    ----------------------------
                               BARRO            
                         (1)            (2)     
------------------------------------------------
LNYI_T_1              -0.051***      -0.052***  
                       (0.005)        (0.004)   
                     t = -11.037    t = -13.731 
                      p = 0.000      p = 0.000  
SIND                   0.128***      0.126***   
                       (0.019)        (0.019)   
                      t = 6.721      t = 6.757  
                      p = 0.000      p = 0.000  
SAGRO                  0.107***      0.109***   
                       (0.008)        (0.007)   
                      t = 13.187    t = 14.881  
                      p = 0.000      p = 0.000  
SSERV                  0.055***      0.050***   
                       (0.020)        (0.012)   
                      t = 2.772      t = 4.246  
                      p = 0.007     p = 0.00005 
SPUB                  -0.144***      -0.136***  
                       (0.020)        (0.020)   
                      t = -7.090    t = -6.849  
                      p = 0.000      p = 0.000  
H                       0.0003       0.0004***  
                       (0.0002)      (0.0002)   
                      t = 1.202      t = 2.677  
                      p = 0.232      p = 0.009  
DD                     0.00005                  
                       (0.0001)                 
                      t = 0.872                 
                      p = 0.385                 
DORC                   0.00000                  
                      (0.00000)                 
                      t = 1.601                 
                      p = 0.112                 
T                       0.020                   
                       (0.095)                  
                      t = 0.213                 
                      p = 0.832                 
Exporta                 -0.297                  
                       (0.390)                  
                      t = -0.761                
                      p = 0.448                 
Importa                4.759***      3.847***   
                       (1.377)        (1.207)   
                      t = 3.457      t = 3.187  
                      p = 0.001      p = 0.002  
Mregio                  -0.194                  
                       (0.190)                  
                      t = -1.023                
                      p = 0.309                 
FPM                    -1.464*                  
                       (0.861)                  
                      t = -1.701                
                      p = 0.092                 
TICMSm                45.070***      50.277***  
                       (9.618)        (6.099)   
                      t = 4.686      t = 8.243  
                     p = 0.00001     p = 0.000  
credito                 1.029                   
                       (0.906)                  
                      t = 1.135                 
                      p = 0.259                 
Constant               0.466***      0.476***   
                       (0.039)        (0.033)   
                      t = 12.050    t = 14.403  
                      p = 0.000      p = 0.000  
------------------------------------------------
Observations             139            139     
R2                      0.890          0.884    
Adjusted R2             0.877          0.876    
Akaike Inf. Crit.      -795.426      -801.461   
Bayesian Inf. Crit.    -745.540      -772.117   
================================================
Note:                *p<0.1; **p<0.05; ***p<0.01

5.1 Heterocedasticidade

5.1.1 Teste de White: mod2

# teste de White para heterocedasticidade, sem termos cruzados por causa do grau
# de liberdade do modelo (n=78obs)

m <- mod2
data <- dados
# rotina do teste com base em m e data
u2 <- m$residuals^2

# mod2<-lm(BARRO~LNYI_T_1+SIND+SAGRO+SSERV+SPUB+H +I(IMPOR*10^-6)+I(TICMS*10^-6),
# data=dados)

reg.auxiliar <- lm(u2 ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + I(IMPOR * 10^-6) + 
    I(TICMS * 10^-6) + I(LNYI_T_1^2) + I(SIND^2) + I(SAGRO^2) + I(SSERV^2) + I(SPUB^2) + 
    I(H^2) + I((IMPOR * 10^-6)^2) + I((TICMS * 10^-6)^2), data = dados)
summary(reg.auxiliar)

Call:
lm(formula = u2 ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + 
    I(IMPOR * 10^-6) + I(TICMS * 10^-6) + I(LNYI_T_1^2) + I(SIND^2) + 
    I(SAGRO^2) + I(SSERV^2) + I(SPUB^2) + I(H^2) + I((IMPOR * 
    10^-6)^2) + I((TICMS * 10^-6)^2), data = dados)

Residuals:
       Min         1Q     Median         3Q        Max 
-4.086e-04 -1.125e-04 -4.973e-05  3.466e-05  1.263e-03 

Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept)          -6.271e-03  5.703e-03  -1.100    0.274
LNYI_T_1              1.248e-03  1.186e-03   1.052    0.295
SIND                 -1.581e-04  5.627e-04  -0.281    0.779
SAGRO                -1.316e-04  2.434e-04  -0.541    0.590
SSERV                -4.672e-04  4.337e-04  -1.077    0.283
SPUB                  1.434e-03  9.900e-04   1.449    0.150
H                     4.082e-06  9.731e-06   0.419    0.676
I(IMPOR * 10^-6)      1.228e-01  8.075e-02   1.521    0.131
I(TICMS * 10^-6)      2.136e-01  2.744e-01   0.779    0.438
I(LNYI_T_1^2)        -6.218e-05  6.152e-05  -1.011    0.314
I(SIND^2)             8.270e-04  2.066e-03   0.400    0.690
I(SAGRO^2)            3.149e-04  4.290e-04   0.734    0.464
I(SSERV^2)            5.858e-04  9.808e-04   0.597    0.551
I(SPUB^2)            -1.148e-03  1.497e-03  -0.767    0.445
I(H^2)               -1.250e-07  1.914e-07  -0.653    0.515
I((IMPOR * 10^-6)^2) -1.365e+01  8.659e+00  -1.576    0.118
I((TICMS * 10^-6)^2)  2.194e+01  1.724e+02   0.127    0.899

Residual standard error: 0.0002587 on 122 degrees of freedom
Multiple R-squared:  0.1514,    Adjusted R-squared:  0.04008 
F-statistic:  1.36 on 16 and 122 DF,  p-value: 0.173
Ru2 <- summary(reg.auxiliar)$r.squared
LM <- nrow(data) * Ru2
# obtendo o numero de regressores menos o intercepto
k <- length(coefficients(reg.auxiliar)) - 1
k
[1] 16
p.value <- 1 - pchisq(LM, k)  # O TESTE TEM k TERMOS REGRESSORES EM reg.auxiliar

#'Resultado do teste de White sem termos cruzados
c(LM = LM, p.value = p.value)
        LM    p.value 
21.0413499  0.1769266 

Ou pelo bptest:

bptest(mod2, ~LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + H + I(IMPOR * 10^-6) + I(TICMS * 
    10^-6) + I(LNYI_T_1^2) + I(SIND^2) + I(SAGRO^2) + I(SSERV^2) + I(SPUB^2) + I(H^2) + 
    I((IMPOR * 10^-6)^2) + I((TICMS * 10^-6)^2), data = dados)

    studentized Breusch-Pagan test

data:  mod2
BP = 21.041, df = 16, p-value = 0.1769

5.1.2 Correção de Var-cov conforme White

# mod2<-lm(BARRO~LNYI_T_1+SIND+SAGRO+SSERV+SPUB+H +I(IMPOR*10^-6)+I(TICMS*10^-6),
# data=dados) library(car) possibilidades:
# hccm(regressao1,type=c('hc0','hc1','hc2','hc3','hc4'))
vcov.white0 <- hccm(mod2, type = c("hc1"))
# 
coeftest(mod2, vcov.white0)

t test of coefficients:

               Estimate  Std. Error  t value  Pr(>|t|)    
(Intercept)  0.47588824  0.03277583  14.5195 < 2.2e-16 ***
LNYI_T_1    -0.05153343  0.00380593 -13.5403 < 2.2e-16 ***
SIND         0.12578625  0.02055138   6.1206 1.024e-08 ***
SAGRO        0.10939283  0.00884334  12.3701 < 2.2e-16 ***
SSERV        0.04967220  0.01090307   4.5558 1.188e-05 ***
SPUB        -0.13624003  0.02609054  -5.2218 6.838e-07 ***
H            0.00043686  0.00015281   2.8589  0.004954 ** 
Importa      3.84734619  1.26552423   3.0401  0.002860 ** 
TICMSm      50.27719190  7.21006346   6.9732 1.407e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5.1.2.1 Revendo a saída do modelo 2 sem correcao de White

summary(mod2)

Call:
lm(formula = BARRO ~ LNYI_T_1 + SIND + SAGRO + SSERV + SPUB + 
    H + Importa + TICMSm, data = dados)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.038231 -0.007231 -0.000428  0.006942  0.036033 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.4758882  0.0330407  14.403  < 2e-16 ***
LNYI_T_1    -0.0515334  0.0037531 -13.731  < 2e-16 ***
SIND         0.1257862  0.0186154   6.757 4.27e-10 ***
SAGRO        0.1093928  0.0073513  14.881  < 2e-16 ***
SSERV        0.0496722  0.0116988   4.246 4.11e-05 ***
SPUB        -0.1362400  0.0198922  -6.849 2.67e-10 ***
H            0.0004369  0.0001632   2.677  0.00839 ** 
Importa      3.8473462  1.2070479   3.187  0.00180 ** 
TICMSm      50.2771919  6.0990409   8.243 1.58e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01303 on 130 degrees of freedom
Multiple R-squared:  0.8836,    Adjusted R-squared:  0.8764 
F-statistic: 123.3 on 8 and 130 DF,  p-value: < 2.2e-16

5.1.3 Saída do stargazer com modelo 1 e modelo 2 (com e sem correção de White)

cov <- vcov.white0
robust.se <- sqrt(diag(cov))

stargazer(mod1, mod2, mod2, se = list(NULL, NULL, robust.se), column.labels = c("MQO-mod1", 
    "MQO-mod2", "robusto"), title = "Título: Resultado da Regressão", align = TRUE, 
    type = "text", style = "all", keep.stat = c("aic", "bic", "rsq", "adj.rsq", "n"))

Título: Resultado da Regressão
=======================================================
                            Dependent variable:        
                    -----------------------------------
                                   BARRO               
                     MQO-mod1    MQO-mod2     robusto  
                        (1)         (2)         (3)    
-------------------------------------------------------
LNYI_T_1             -0.051***   -0.052***   -0.052*** 
                      (0.005)     (0.004)     (0.004)  
                    t = -11.037 t = -13.731 t = -13.540
                     p = 0.000   p = 0.000   p = 0.000 
SIND                 0.128***    0.126***    0.126***  
                      (0.019)     (0.019)     (0.021)  
                     t = 6.721   t = 6.757   t = 6.121 
                     p = 0.000   p = 0.000   p = 0.000 
SAGRO                0.107***    0.109***    0.109***  
                      (0.008)     (0.007)     (0.009)  
                    t = 13.187  t = 14.881  t = 12.370 
                     p = 0.000   p = 0.000   p = 0.000 
SSERV                0.055***    0.050***    0.050***  
                      (0.020)     (0.012)     (0.011)  
                     t = 2.772   t = 4.246   t = 4.556 
                     p = 0.007  p = 0.00005 p = 0.00001
SPUB                 -0.144***   -0.136***   -0.136*** 
                      (0.020)     (0.020)     (0.026)  
                    t = -7.090  t = -6.849  t = -5.222 
                     p = 0.000   p = 0.000  p = 0.00000
H                     0.0003     0.0004***   0.0004*** 
                     (0.0002)    (0.0002)    (0.0002)  
                     t = 1.202   t = 2.677   t = 2.859 
                     p = 0.232   p = 0.009   p = 0.005 
DD                    0.00005                          
                     (0.0001)                          
                     t = 0.872                         
                     p = 0.385                         
DORC                  0.00000                          
                     (0.00000)                         
                     t = 1.601                         
                     p = 0.112                         
T                      0.020                           
                      (0.095)                          
                     t = 0.213                         
                     p = 0.832                         
Exporta               -0.297                           
                      (0.390)                          
                    t = -0.761                         
                     p = 0.448                         
Importa              4.759***    3.847***    3.847***  
                      (1.377)     (1.207)     (1.266)  
                     t = 3.457   t = 3.187   t = 3.040 
                     p = 0.001   p = 0.002   p = 0.003 
Mregio                -0.194                           
                      (0.190)                          
                    t = -1.023                         
                     p = 0.309                         
FPM                   -1.464*                          
                      (0.861)                          
                    t = -1.701                         
                     p = 0.092                         
TICMSm               45.070***   50.277***   50.277*** 
                      (9.618)     (6.099)     (7.210)  
                     t = 4.686   t = 8.243   t = 6.973 
                    p = 0.00001  p = 0.000   p = 0.000 
credito                1.029                           
                      (0.906)                          
                     t = 1.135                         
                     p = 0.259                         
Constant             0.466***    0.476***    0.476***  
                      (0.039)     (0.033)     (0.033)  
                    t = 12.050  t = 14.403  t = 14.519 
                     p = 0.000   p = 0.000   p = 0.000 
-------------------------------------------------------
Observations            139         139         139    
R2                     0.890       0.884       0.884   
Adjusted R2            0.877       0.876       0.876   
Akaike Inf. Crit.    -795.426    -801.461    -801.461  
Bayesian Inf. Crit.  -745.540    -772.117    -772.117  
=======================================================
Note:                       *p<0.1; **p<0.05; ***p<0.01

5.2 Autocorrelação dos resíduos (modelos 1 e 2)

library(car)
library(lmtest)
library(sandwich)

dw.mod2 <- dwtest(mod2)
dw.mod2

    Durbin-Watson test

data:  mod2
DW = 2.0758, p-value = 0.6859
alternative hypothesis: true autocorrelation is greater than 0
dw.mod1 <- dwtest(mod1)
dw.mod1

    Durbin-Watson test

data:  mod1
DW = 2.0732, p-value = 0.685
alternative hypothesis: true autocorrelation is greater than 0

Fiz uma rotina para rodar vários BGtest até ordem 12. Fiz para o modelo 2.

# padrao do teste de BG, com distribuição qui-quadrado
bgorder = 1:12  # definindo até a máxima ordem do bgtest
d = NULL
for (p in bgorder) {
    bgtest.chi <- bgtest(mod2, order = p, type = c("Chisq"), data = dados)
    print(bgtest.chi)
    d = rbind(d, data.frame(bgtest.chi$statistic, bgtest.chi$p.value))
}

    Breusch-Godfrey test for serial correlation of order up to 1

data:  mod2
LM test = 0.21823, df = 1, p-value = 0.6404


    Breusch-Godfrey test for serial correlation of order up to 2

data:  mod2
LM test = 0.88901, df = 2, p-value = 0.6411


    Breusch-Godfrey test for serial correlation of order up to 3

data:  mod2
LM test = 0.90746, df = 3, p-value = 0.8236


    Breusch-Godfrey test for serial correlation of order up to 4

data:  mod2
LM test = 1.9776, df = 4, p-value = 0.7399


    Breusch-Godfrey test for serial correlation of order up to 5

data:  mod2
LM test = 3.5133, df = 5, p-value = 0.6214


    Breusch-Godfrey test for serial correlation of order up to 6

data:  mod2
LM test = 3.7397, df = 6, p-value = 0.7118


    Breusch-Godfrey test for serial correlation of order up to 7

data:  mod2
LM test = 4.3217, df = 7, p-value = 0.7421


    Breusch-Godfrey test for serial correlation of order up to 8

data:  mod2
LM test = 5.751, df = 8, p-value = 0.6751


    Breusch-Godfrey test for serial correlation of order up to 9

data:  mod2
LM test = 9.2059, df = 9, p-value = 0.4185


    Breusch-Godfrey test for serial correlation of order up to 10

data:  mod2
LM test = 13.135, df = 10, p-value = 0.2162


    Breusch-Godfrey test for serial correlation of order up to 11

data:  mod2
LM test = 13.447, df = 11, p-value = 0.2651


    Breusch-Godfrey test for serial correlation of order up to 12

data:  mod2
LM test = 13.448, df = 12, p-value = 0.3373
d

Não concluiu por autocorrelação residual!

5.3 Teste de Jarque-Bera para normalidade (modelo 2)

u.hat <- resid(mod2)
# library(tseries)
JB.mod2 <- jarque.bera.test(u.hat)
JB.mod2

    Jarque Bera Test

data:  u.hat
X-squared = 3.4026, df = 2, p-value = 0.1824

5.4 Teste RESET de Ramsey com potencias de 2 e 3 (modelo 2)

TesteRESET.power <- lmtest::resettest(mod2, power = 2:3)
TesteRESET.power

    RESET test

data:  mod2
RESET = 7.4622, df1 = 2, df2 = 128, p-value = 0.0008603

5.5 Investigação de outliers - teste de Bonferroni para outlier (modelo 2)

outlierTest(mod2)
No Studentized residuals with Bonferroni p < 0.05
Largest |rstudent|:
    rstudent unadjusted p-value Bonferroni p
58 -3.125207          0.0021953      0.30514
qqPlot(mod2)

[1]  58 121
vif(mod2)
LNYI_T_1     SIND    SAGRO    SSERV     SPUB        H  Importa   TICMSm 
4.470832 1.666601 1.517527 1.675043 2.527361 1.648744 1.515172 2.812693 

O outlier 58 é o município de Juruena.

Referências

MARQUEZIN, William Ricardo. O Fundo de Participação dos Municípios e sua contribuição para a redução da desigualdade econômica em Mato Grosso. Universidade Federal de Mato Grosso, Faculdade de Economia, Programa de Pós-Graduação em Agronegócio e Desenvolvimento Regional. UFMT: Cuiabá-MT, 2014. Dissertação (Mestrado). Disponível em: https://www.ufmt.br/adr/arquivos/6b93f9815cfad275fb05f3502deffda6.pdf.

LS0tDQp0aXRsZTogIkVjb25vbWV0cmlhOiBleGVyY8OtY2lvIGNyZXNjaW1lbnRvIG11bmljaXBhbCBlbSBNYXRvIEdyb3NzbyBlbnRyZSAyMDAxIGUgMjAxMCINCmF1dGhvcjogIkFkcmlhbm8gTWFyY29zIFJvZHJpZ3VlcyBGaWd1ZWlyZWRvLCAqZS1tYWlsOiBhZHJpYW5vLmZpZ3VlaXJlZG9AdWZtcy5icioiDQphYnN0cmFjdDogDQogIFRoaXMgaXMgYW4gdW5kZXJncmFkIHN0dWRlbnQgbGV2ZWwgZXhlcmNpc2UgZm9yIGNsYXNzIHVzZS4gV2UgYW5hbHlzZSAxMzkgbXVuaWNpcGFsIGNyb3NzLXNlY3Rpb24gZGF0YSBmb3IgdGhlIEJyYXppbGlhbiBTdGF0ZSBvZiBNYXRvIEdyb3NzbyBvbiBhIHN0YXRpYyBncm93dGggbW9kZWwuIA0KZGF0ZTogImByIGZvcm1hdChTeXMuRGF0ZSgpLCAnJWQgJUIgJVknKWAiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgY29kZV9kb3dubG9hZDogdHJ1ZQ0KICAgIHRoZW1lOiBkZWZhdWx0DQogICAgbnVtYmVyX3NlY3Rpb25zOiB0cnVlDQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZmxvYXQ6IHllcw0KICAgIGRmX3ByaW50OiBwYWdlZA0KICAgIGZpZ19jYXB0aW9uOiB0cnVlDQogIHBkZl9kb2N1bWVudDoNCiAgICB0b2M6IHllcw0KLS0tDQoNCmBgYHtyIGtuaXRyX2luaXQsIGVjaG89RkFMU0UsIGNhY2hlPUZBTFNFfQ0KbGlicmFyeShrbml0cikNCmxpYnJhcnkocm1hcmtkb3duKQ0KbGlicmFyeShybWRmb3JtYXRzKQ0KDQojIyBHbG9iYWwgb3B0aW9ucw0Kb3B0aW9ucyhtYXgucHJpbnQ9IjEwMCIpDQpvcHRzX2NodW5rJHNldChlY2hvPVRSVUUsDQoJICAgICAgICAgICAgIGNhY2hlPVRSVUUsDQogICAgICAgICAgICAgICBwcm9tcHQ9RkFMU0UsDQogICAgICAgICAgICAgICB0aWR5PVRSVUUsDQogICAgICAgICAgICAgICBjb21tZW50PU5BLA0KICAgICAgICAgICAgICAgbWVzc2FnZT1GQUxTRSwNCiAgICAgICAgICAgICAgIHdhcm5pbmc9RkFMU0UpDQpvcHRzX2tuaXQkc2V0KHdpZHRoPTEwMCkNCmBgYA0KDQoNCkxpY2Vuw6dhIHstI0xpY2Vuw6dhfQ0KPT09PT09PT09PT09PT09PT09PQ0KDQpUaGlzIHdvcmsgaXMgbGljZW5zZWQgdW5kZXIgdGhlIENyZWF0aXZlIENvbW1vbnMgQXR0cmlidXRpb24tU2hhcmVBbGlrZSA0LjAgSW50ZXJuYXRpb25hbCBMaWNlbnNlLiBUbyB2aWV3IGEgY29weSBvZiB0aGlzIGxpY2Vuc2UsIHZpc2l0IDxodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1zYS80LjAvPiBvciBzZW5kIGEgbGV0dGVyIHRvIENyZWF0aXZlIENvbW1vbnMsIFBPIEJveCAxODY2LCBNb3VudGFpbiBWaWV3LCBDQSA5NDA0MiwgVVNBLg0KDQohW0xpY2Vuc2U6IENDIEJZLVNBIDQuMF0oaHR0cHM6Ly9taXJyb3JzLmNyZWF0aXZlY29tbW9ucy5vcmcvcHJlc3NraXQvYnV0dG9ucy84OHgzMS9wbmcvYnktc2EucG5nKXsgd2lkdGg9MjUlIH0NCg0KQ2l0YcOnw6NvIHstI0NpdGHDp8Ojb30NCj09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09DQoNClN1Z2VzdMOjbyBkZSBjaXRhw6fDo286DQpGSUdVRUlSRURPLCBBZHJpYW5vIE1hcmNvcyBSb2RyaWd1ZXMuIEVjb25vbWV0cmlhOiBleGVyY8OtY2lvIGNyZXNjaW1lbnRvIG11bmljaXBhbCBlbSBNYXRvIEdyb3NzbyBlbnRyZSAyMDAxIGUgMjAxMC4gQ2FtcG8gR3JhbmRlLU1TLEJyYXNpbDogUlN0dWRpby9ScHVicywgMjAxOS4gRGlzcG9uw612ZWwgZW0gPGh0dHA6Ly9ycHVicy5jb20vYW1yb2ZpL2dyb3d0aF9tdDIwMDFfMjAxMD4uIA0KDQpJbnRyb2R1w6fDo28NCj09PT09PT09PT09PT09PT09PT0NCg0KPiBFeGVtcGxvIHNvYnJlIGNyZXNjaW1lbnRvIG11bmljaXBhbCBhZGFwdGFkbyBkYSBkaXNzZXJ0YWNhbyBkZSBXaWxsaWFtIE1hcnF1ZXppbiAoMjAxNCkgbmEgVUZNVC4gRGFkb3MgZGUgMTM5IG11bmljaXBpb3MgZGUgTVQsIGVtIHF1ZSAyMDAxIMOpIG8gYW5vIGJhc2UgZSBvIGNyZXNjaW1lbnRvIHJlZmVyZS1zZSBhdMOpIDIwMTAuIEEgdmFyacOhdmVsIGRlcGVuZGVudGUgZG8gbW9kZWxvIMOpIGEgdGF4YSBkZSBjcmVzY2ltZW50byBkYSByZW5kYSBwZXIgY2FwaXRhIG11bmljaXBhbCAoYmFycm8pIGNvbmZvcm1lIEJhcnJvIGUgU2FsYS1pLU1hcnRpbiAoMTk5Mik9IkJBUlJPIi4gT3V0cmFzIHZhcmnDoXZlaXMgc8OjbzogICAgIA0KIyAib3JkZW0iID0gb3JkZW5hY2FvIGRvcyBtdW5pY2lwaW9zICAgIA0KIyAiS0VZIiA9IG9yZGVtICAgIA0KIyAiTVVOSUNJUElPIiA9IG5vbWUgZG8gbXVuaWNpcGlvICAgIA0KIyAiQkFSUk8iID0gdmFyaWF2ZWwgZGVwZW5kZW50ZSAoYWNpbWEgZGVzY3JpdGEpICAgIA0KIyAiREFTU09XIiA9IGFsdGVybmF0aXZhIHBhcmEgYSB2YXJpYXZlbCBkZXBlbmRlbnRlIChuYW8gdXRpbGl6YWRhKSAgICANCiMgVmFyacOhdmVpcyBleHBsaWNhdGl2YXM6ICAgIA0KIyAxKSBSZW5kYSBwZXIgY2FwaXRhIG5vIGFubyBpbmljaWFsICJMTllJX1RfMSIgICAgDQojIDIpIENvbXBvc2nDp8OjbyBpbmR1c3RyaWFsIChTaW5kKTogIlNJTkQiICAgICANCiMgMykgQ29tcG9zacOnw6NvIGRhIGFncm9wZWN1w6FyaWEgKFNhZ3JvKTogIlNBR1JPIiAgICANCiMgNCkgQ29tcG9zacOnw6NvIGRvIHNldG9yIGRlIHNlcnZpw6dvcyAoU3NlcnYpOiAiU1NFUlYiICAgICANCiMgNSkgQ29tcG9zacOnw6NvIGRhIGFkbWluaXN0cmHDp8OjbyBww7pibGljYSAoU3B1Yik6ICJTUFVCIiAgICANCiMgNikgQ2FwaXRhbCBodW1hbm8gKGgpOiAiSCIgICAgIA0KIyA3KSBEZW5zaWRhZGUgZGVtb2dyw6FmaWNhIChkZCk6ICAiREQiICAgICANCiMgOCkgRGVzcGVzYXMgb3LDp2FtZW50w6FyaWFzIChkb3JjKTogICJET1JDIiAgICAgDQojIDkpIE9wZXJhw6fDtWVzIGRlIGNyw6lkaXRvIChjcmVkKTogIkNSRUQiICAgIA0KIyAxMCkgRXhwb3J0YcOnw7VlcyBNdW5pY2lwYWlzIChleHBvcik6ICAiRVhQT1IiICAgICAgDQojIDExKSBJbXBvcnRhw6fDtWVzIE11bmljaXBhaXMgKGltcG9yKTogIklNUE9SIiAgICANCiMgMTIpIE1lcmNhZG8gUmVnaW9uYWwgKG1yZWcpOiAiTVJFRyIgICAgIA0KIyAxMykgQ2FyZ2EgdHJpYnV0w6FyaWEgdG90YWwgbXVuaWNpcGFsICh0KTogICJUIiAgICAgIA0KIyAxNCkgVHJhbnNmZXLDqm5jaWFzIEludGVyZ292ZXJuYW1lbnRhaXMgZG8gSUNNUyAodGljbXMpOiAiVElDTVMiICAgIA0KIyAxNSkgVHJhbnNmZXLDqm5jaWFzIEludGVyZ292ZXJuYW1lbnRhaXMgZG8gRlBNICh0ZnBtKTogICJURlBNIiAgICAgICANCiMgMTYpIE8gw61uZGljZSBkZSBHSU5JIChnaW5pKTogICJHSU5JIiAgICAgIA0KIyAxNykgw61uZGljZSBkZSBUSEVJTCAodGhlaWwpOiAiVEhFSUwiICAgICANCiMgdmFyaWF2ZWwgYXV4aWxpYXIgbsOjbyB1dGlsaXphZGE6ICJUTVJFRyIgICAgIA0KIyB2YXJpYXZlbCBhdXhpbGlhciBuw6NvIHV0aWxpemFkYTogIkNDT00iIGNvcnJlbnRlIGRlIGNvbWVyY2lvICAgIA0KDQoNClVtIGRhdGEuZnJhbWUgY29tIDEzOSBvYnNlcnZhdGlvbnMgcGFyYSAyNCB2YXJpw6F2ZWlzLiAgIA0KDQpgYGB7ciwgZWNobz1GQUxTRSwgZXZhbD1UUlVFfQ0KIyBpbmNsdWRlIHRoaXMgY29kZSBjaHVuayBhcy1pcyB0byBzZXQgb3B0aW9ucw0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGNvbW1lbnQ9TkEsIHByb21wdD1UUlVFLCBvdXQud2lkdGg9NzUwLCBmaWcuaGVpZ2h0PTgsIGZpZy53aWR0aD04KQ0KYGBgDQoNClBhcmEgcmVwcm9kdcOnw6NvLCBwb2RlLXNlIGZhemVyIG8gZG93bmxvYWQgcHLDqXZpbyBkb3MgZGFkb3MgYSBwYXJ0aXIgZGUgPGh0dHBzOi8vZ2l0aHViLmNvbS9hbXJvZmkvY3Jlc2NpbWVudG9fbXQvYmxvYi9tYXN0ZXIvY3Jlc2NpbWVudG8ucmRzPiwgZSBhcm1hemVuYXIgbm8gZGlyZXTDs3JpbyBkbyBwcm9qZXRvLg0KDQpgYGB7ciwgZXZhbD1UUlVFLCBtZXNzYWdlPUYsIHdhcm5pbmc9Rn0NCmxpYnJhcnkocmVhZHhsKTsgbGlicmFyeShmb3JlaWduKTtsaWJyYXJ5KGR5bmxtKTtsaWJyYXJ5KGNhcik7bGlicmFyeShsbXRlc3QpDQpsaWJyYXJ5KHNhbmR3aWNoKTtsaWJyYXJ5KHRzZXJpZXMpO2xpYnJhcnkoa2FibGVFeHRyYSkNCiMgbyBhcnF1aXZvIGRhZG9zIGVzdMOhIGVtIGZvcm1hdG8gZHB1dCBlbWJlZGVkIG5vIHNjcmlwdCwgDQojIGVtIHVtIGNodW5rIG9jdWx0byBxdWUgbyBsZWl0b3IgdGVtIGFjZXNzbyBhbyBiYWl4YXIgbyBSbWQsDQojIGNsaWNhbmRvIGVtIGNvZGUNCmBgYA0KDQpgYGB7cixlY2hvPUZBTFNFfQ0KZGFkb3M8LQ0Kc3RydWN0dXJlKGxpc3Qob3JkZW0gPSBjKDEsIDIsIDMsIDQsIDUsIDYsIDcsIDgsIDksIDEwLCAxMSwgMTIsIA0KMTMsIDE0LCAxNSwgMTYsIDE3LCAxOCwgMTksIDIwLCAyMSwgMjIsIDIzLCAyNCwgMjUsIDI2LCAyNywgMjgsIA0KMjksIDMwLCAzMSwgMzIsIDMzLCAzNCwgMzUsIDM2LCAzNywgMzgsIDM5LCA0MCwgNDEsIDQyLCA0MywgNDQsIA0KNDUsIDQ2LCA0NywgNDgsIDQ5LCA1MCwgNTEsIDUyLCA1MywgNTQsIDU1LCA1NiwgNTcsIDU4LCA1OSwgNjAsIA0KNjEsIDYyLCA2MywgNjQsIDY1LCA2NiwgNjcsIDY4LCA2OSwgNzAsIDcxLCA3MiwgNzMsIDc0LCA3NSwgNzYsIA0KNzcsIDc4LCA3OSwgODAsIDgxLCA4MiwgODMsIDg0LCA4NSwgODYsIDg3LCA4OCwgODksIDkwLCA5MSwgOTIsIA0KOTMsIDk0LCA5NSwgOTYsIDk3LCA5OCwgOTksIDEwMCwgMTAxLCAxMDIsIDEwMywgMTA0LCAxMDUsIDEwNiwgDQoxMDcsIDEwOCwgMTA5LCAxMTAsIDExMSwgMTEyLCAxMTMsIDExNCwgMTE1LCAxMTYsIDExNywgMTE4LCAxMTksIA0KMTIwLCAxMjEsIDEyMiwgMTIzLCAxMjQsIDEyNSwgMTI2LCAxMjcsIDEyOCwgMTI5LCAxMzAsIDEzMSwgMTMyLCANCjEzMywgMTM0LCAxMzUsIDEzNiwgMTM3LCAxMzgsIDEzOSksIEtFWSA9IGMoMSwgMiwgMywgNCwgNSwgNiwgDQo3LCA4LCA5LCAxMCwgMTEsIDEyLCAxMywgMTQsIDE1LCAxNiwgMTcsIDE4LCAxOSwgMjAsIDIxLCAyMiwgDQoyMywgMjQsIDI1LCAyNiwgMjcsIDI4LCAyOSwgMzAsIDMxLCAzMiwgMzMsIDM0LCAzNSwgMzYsIDM3LCAzOCwgDQozOSwgNDAsIDQxLCA0MiwgNDMsIDQ0LCA0NSwgNDYsIDQ3LCA0OCwgNDksIDUwLCA1MSwgNTIsIDUzLCA1NCwgDQo1NSwgNTYsIDU3LCA1OCwgNTksIDYwLCA2MSwgNjIsIDYzLCA2NCwgNjUsIDY2LCA2NywgNjgsIDY5LCA3MCwgDQo3MSwgNzIsIDczLCA3NCwgNzUsIDc2LCA3NywgNzgsIDc5LCA4MCwgODEsIDgyLCA4MywgODQsIDg1LCA4NiwgDQo4NywgODgsIDg5LCA5MCwgOTEsIDkyLCA5MywgOTQsIDk1LCA5NiwgOTcsIDk4LCA5OSwgMTAwLCAxMDEsIA0KMTAyLCAxMDMsIDEwNCwgMTA1LCAxMDYsIDEwNywgMTA4LCAxMDksIDExMCwgMTExLCAxMTIsIDExMywgMTE0LCANCjExNSwgMTE2LCAxMTcsIDExOCwgMTE5LCAxMjAsIDEyMSwgMTIyLCAxMjMsIDEyNCwgMTI1LCAxMjYsIDEyNywgDQoxMjgsIDEyOSwgMTMwLCAxMzEsIDEzMiwgMTMzLCAxMzQsIDEzNSwgMTM2LCAxMzcsIDEzOCwgMTM5KSwgDQogICAgTVVOSUNJUElPID0gYygiQWNvcml6YWwiLCAiw4FndWEgQm9hIiwgIkFsdGEgRmxvcmVzdGEiLCAiQWx0byBBcmFndWFpYSIsIA0KICAgICJBbHRvIEJvYSBWaXN0YSIsICJBbHRvIEdhcsOnYXMiLCAiQWx0byBQYXJhZ3VhaSIsICJBbHRvIFRhcXVhcmkiLCANCiAgICAiQXBpYWPDoXMiLCAiQXJhZ3VhaWFuYSIsICJBcmFndWFpbmhhIiwgIkFyYXB1dGFuZ2EiLCAiQXJlbsOhcG9saXMiLCANCiAgICAiQXJpcHVhbsOjIiwgIkJhcsOjbyBkZSBNZWxnYcOnbyIsICJCYXJyYSBkbyBCdWdyZXMiLCAiQmFycmEgZG8gR2Fyw6dhcyIsIA0KICAgICJCb20gSmVzdXMgZG8gQXJhZ3VhaWEiLCAiQnJhc25vcnRlIiwgIkPDoWNlcmVzIiwgIkNhbXBpbsOhcG9saXMiLCANCiAgICAiQ2FtcG8gTm92byBkbyBQYXJlY2lzIiwgIkNhbXBvIFZlcmRlIiwgIkNhbXBvcyBkZSBKw7psaW8iLCANCiAgICAiQ2FuYWJyYXZhIGRvIE5vcnRlIiwgIkNhbmFyYW5hIiwgIkNhcmxpbmRhIiwgIkNhc3RhbmhlaXJhIiwgDQogICAgIkNoYXBhZGEgZG9zIEd1aW1hcsOjZXMiLCAiQ2zDoXVkaWEiLCAiQ29jYWxpbmhvIiwgIkNvbMOtZGVyIiwgDQogICAgIkNvbG5pemEiLCAiQ29tb2Rvcm8iLCAiQ29uZnJlc2EiLCAiQ29ucXVpc3RhIEQnT2VzdGUiLCAiQ290cmlndWHDp3UiLCANCiAgICAiQ3VpYWLDoSIsICJDdXJ2ZWzDom5kaWEiLCAiRGVuaXNlIiwgIkRpYW1hbnRpbm8iLCAiRG9tIEFxdWlubyIsIA0KICAgICJGZWxpeiBOYXRhbCIsICJGaWd1ZWlyw7Nwb2xpcyBEJ09lc3RlIiwgIkdhw7pjaGEgZG8gTm9ydGUiLCANCiAgICAiR2VuZXJhbCBDYXJuZWlybyIsICJHbMOzcmlhIEQnT2VzdGUiLCAiR3VhcmFudMOjIGRvIE5vcnRlIiwgDQogICAgIkd1aXJhdGluZ2EiLCAiSW5kaWF2YcOtIiwgIkl0YcO6YmEiLCAiSXRpcXVpcmEiLCAiSmFjaWFyYSIsIA0KICAgICJKYW5nYWRhIiwgIkphdXJ1IiwgIkp1YXJhIiwgIkp1w61uYSIsICJKdXJ1ZW5hIiwgIkp1c2NpbWVpcmEiLCANCiAgICAiTGFtYmFyaSBEJ09lc3RlIiwgIkx1Y2FzIGRvIFJpbyBWZXJkZSIsICJMdWNpYXJhIiwgIlZpbGEgQmVsYSBkYSBTYW50w61zc2ltYSBUcmluZGFkZSIsIA0KICAgICJNYXJjZWzDom5kaWEiLCAiTWF0dXDDoSIsICJNaXJhc3NvbCBkJ09lc3RlIiwgIk5vYnJlcyIsICJOb3J0ZWzDom5kaWEiLCANCiAgICAiTm9zc2EgU2VuaG9yYSBkbyBMaXZyYW1lbnRvIiwgIk5vdmEgQmFuZGVpcmFudGVzIiwgIk5vdmEgTmF6YXLDqSIsIA0KICAgICJOb3ZhIExhY2VyZGEiLCAiTm92YSBTYW50YSBIZWxlbmEiLCAiTm92YSBCcmFzaWzDom5kaWEiLCANCiAgICAiTm92YSBDYW5hw6MgZG8gTm9ydGUiLCAiTm92YSBNdXR1bSIsICJOb3ZhIE9sw61tcGlhIiwgIk5vdmEgVWJpcmF0w6MiLCANCiAgICAiTm92YSBYYXZhbnRpbmEiLCAiTm92byBNdW5kbyIsICJOb3ZvIEhvcml6b250ZSBkbyBOb3J0ZSIsIA0KICAgICJOb3ZvIFPDo28gSm9hcXVpbSIsICJQYXJhbmHDrXRhIiwgIlBhcmFuYXRpbmdhIiwgIk5vdm8gU2FudG8gQW50w7RuaW8iLCANCiAgICAiUGVkcmEgUHJldGEiLCAiUGVpeG90byBkZSBBemV2ZWRvIiwgIlBsYW5hbHRvIGRhIFNlcnJhIiwgDQogICAgIlBvY29uw6kiLCAiUG9udGFsIGRvIEFyYWd1YWlhIiwgIlBvbnRlIEJyYW5jYSIsICJQb250ZXMgZSBMYWNlcmRhIiwgDQogICAgIlBvcnRvIEFsZWdyZSBkbyBOb3J0ZSIsICJQb3J0byBkb3MgR2HDumNob3MiLCAiUG9ydG8gRXNwZXJpZGnDo28iLCANCiAgICAiUG9ydG8gRXN0cmVsYSIsICJQb3hvcsOpbyIsICJQcmltYXZlcmEgZG8gTGVzdGUiLCAiUXVlcsOqbmNpYSIsIA0KICAgICJTw6NvIEpvc8OpIGRvcyBRdWF0cm8gTWFyY29zIiwgIlJlc2VydmEgZG8gQ2FiYcOnYWwiLCAiUmliZWlyw6NvIENhc2NhbGhlaXJhIiwgDQogICAgIlJpYmVpcsOjb3ppbmhvIiwgIlJpbyBCcmFuY28iLCAiU2FudGEgQ2FybWVtIiwgIlNhbnRvIEFmb25zbyIsIA0KICAgICJTw6NvIEpvc8OpIGRvIFBvdm8iLCAiU8OjbyBKb3PDqSBkbyBSaW8gQ2xhcm8iLCAiU8OjbyBKb3PDqSBkbyBYaW5ndSIsIA0KICAgICJTw6NvIFBlZHJvIGRhIENpcGEiLCAiUm9uZG9sw6JuZGlhIiwgIlJvbmRvbsOzcG9saXMiLCAiUm9zw6FyaW8gT2VzdGUiLCANCiAgICAiU2FudGEgQ3J1eiBkbyBYaW5ndSIsICJTYWx0byBkbyBDw6l1IiwgIlNhbnRhIFJpdGEgZG8gVHJpdmVsYXRvIiwgDQogICAgIlNhbnRhIFRlcmV6aW5oYSIsICJTYW50byBBbnTDtG5pbyBkbyBMZXN0ZSIsICJTYW50byBBbnTDtG5pbyBkbyBMZXZlcmdlciIsIA0KICAgICJTw6NvIEbDqWxpeCBkbyBBcmFndWFpYSIsICJTYXBlemFsIiwgIlNlcnJhIE5vdmEgRG91cmFkYSIsIA0KICAgICJTaW5vcCIsICJTb3JyaXNvIiwgIlRhYmFwb3LDoyIsICJUYW5nYXLDoSBkYSBTZXJyYSIsICJUYXB1cmFoIiwgDQogICAgIlRlcnJhIE5vdmEgZG8gTm9ydGUiLCAiVGVzb3VybyIsICJUb3JpeG9yw6l1IiwgIlVuacOjbyBkbyBTdWwiLCANCiAgICAiVmFsZSBkZSBTw6NvIERvbWluZ29zIiwgIlbDoXJ6ZWEgR3JhbmRlIiwgIlZlcmEiLCAiVmlsYSBSaWNhIiwgDQogICAgIk5vdmEgR3Vhcml0YSIsICJOb3ZhIE1hcmlsw6JuZGlhIiwgIk5vdmEgTWFyaW5nw6EiLCAiTm92YSBNb250ZSBWZXJkZSINCiAgICApLCBCQVJSTyA9IGMoMC4wNTk5NjQxODYxMTA3ODkxLCAwLjA0NTIwMzExNTM5MDE5NjgsIDAuMDQ0Njg1NTAwNDgwNTE0MywgDQogICAgMC4yMDQxMDI0MjI0NzM2MjcsIDAuMDQ1NTk4Mzk1MDM2ODU3NSwgMC4wMDc3Njc4NzU2OTU5OTQ0NiwgDQogICAgMC4wMjk0MzMxNTIwMzE4Mzc5LCAwLjA0MjMxNDE5MDk3MDA1MTYsIDAuMTE0ODE4NzAwMDE2OTY5LCANCiAgICAwLjA1MDk3NjMxMjk0MjY5ODUsIDAuMDYwOTU5MTA0NzAxNjEzMiwgMC4wMzM2NzYxMDUwMzA3MjA2LCANCiAgICAwLjA0NjQxNzE4MTU4NDYzOCwgMC4wNDkwMTk0MDE5NDM4MzMxLCAwLjA0ODIxMjkzNjkyODc5MzMsIA0KICAgIDAuMDQ0MDUzMjA3NTQyNDM5MiwgMC4wMjQwODQ1NjU5NTQ1NjgzLCAwLjE0ODY0MTUzOTU2NTkxOSwgDQogICAgMC4wMTU1ODI5NTQ0ODYyMzkyLCAwLjAzNzA2ODE4NzI2OTE4NDEsIDAuMDQ5NzExNjUwNTA3NzA1OCwgDQogICAgMC4wMDExODU3OTg4MjE5MDQzOCwgMC4wMDQ5ODU0MzI4NzI2MTMzNiwgLTAuMDEzNTcwNTg2NDk4MzA2NSwgDQogICAgMC4wNzcxOTc1NjQ3OTEyMTY1LCAwLjAzODAxODI2NjcwNTI2NDksIDAuMDY2MTM5NDA4MTkxMzIwNiwgDQogICAgMC4wNTk0NTIwNzQxMTQxNTM3LCAwLjAxNjI0MTk5ODQ0ODM5NTYsIDAuMDY2MDU0ODc2NDk1NTQzMSwgDQogICAgMC4wNjE4OTA4MDY5NDQxODE3LCAwLjAyNzA4Njc1OTMzNjY1NywgMC4wOTkxOTY3Njg0NjM0NjE3LCANCiAgICAwLjA0ODU0NDY4NTQ3MTU1MzEsIDAuMDQ2NTIyODc3MjQ2NjQ2MSwgMC4xMDMwMjQ1MDYzMTI2MjQsIA0KICAgIDAuMDQ4NjUxMjcyMTUyMTY4NCwgMC4wMjk3NzU4ODQ4NjcwMDczLCAwLjA5NDkwNDU0MjkwODAzNTMsIA0KICAgIDAuMDQ0Mjg2MjM4MjQwNTM2OSwgMC4wMzYxMzkzOTM3NzU2MDk5LCAwLjA2MjA4MjYwNzEyMjk5NDUsIA0KICAgIDAuMDY2Mjc0MjQwNDgwNTUwMywgMC4wNTUzMzE3NDExODQ1MTQ4LCAwLjA1NDU2ODQwMTU4MDE3MTgsIA0KICAgIDAuMDIxMzU3Nzk3MTU4ODU3NCwgMC4wNTMxNDcxODA4NjM5MjMxLCAwLjA0Mjc4NTkzNzc3MDI4MTEsIA0KICAgIDAuMDI3ODkyMzA0NDE3NzA4NywgMC4xMjQ4NTI1ODMxODEwNzUsIDAuMDQwNzY0MTEwNzg4OTM4NiwgDQogICAgMC4wMjE5NjQ0NjE1OTQyNzgxLCAwLjAzMDkwODk3MDI1NDU5NjgsIDAuMDc5MTA0MDIxOTY3MTAyMSwgDQogICAgMC4wNzE2MTI4ODM2NzkwMzY1LCAwLjExMDQzMTM4NzI4ODY4NSwgMC4wNTQxMTEwMzcyNzUxMTE2LCANCiAgICAtMC4wMDYwMTg0OTk3Mzc5NzkwNywgMC4wNDIyOTc5MTg0OTIzNzY4LCAwLjA3NDE5MzgxMjg4NzQ4NDgsIA0KICAgIDAuMDI1MTc0NzAzNTUyODAwNywgMC4wMzgyMTYyNjEzMzgwNTQxLCAwLjA4NDU5ODk3MDY3OTk4MzEsIA0KICAgIDAuMDYzODUwNTY4NDY1MzczOSwgMC4wNzA3MTY4NjI3OTE3NDA3LCAwLjA3NDMyNDYyNDk0MjA5NjIsIA0KICAgIDAuMDAyMDEyNjA5Njc3NjY2OTEsIDAuMDM5NzMwNTU1NzUyMzQxNiwgMC4wNTM5Njg3NjgxNzQ5MzA1LCANCiAgICAwLjExMTE1NDczNzU2OTYyOCwgMC4wOTgyMzY2MjQ4Mzk0MTc0LCAwLjExMDU1NzYwNDc2MjUyLCANCiAgICAwLjA5MDY0MTA3ODE5MDE2NDYsIDAuMDU2MzY3NTMwNTU0NjExMywgMC4wOTYyNTU4ODI2MDc5MTA0LCANCiAgICAwLjAzNzQyMjYxOTkwNDE5NDIsIC0wLjAyMTE5MDI5NzAwOTU0NDEsIDAuMDQ5NjIyMDkzMTM0ODY3LCANCiAgICAwLjAzODY0NzQxODA4MTQ2MjYsIDAuMDc1NDI4NDc0NTcxMTAwMywgMC4wMzM4NjIwNjA1NzY2NDYzLCANCiAgICAwLjA1NTAwODA4NjAyNDM0NjQsIDAuMDk3NzQ5MTcxNzE2NDM1OSwgMC4wNDMyMDkzMzU4OTEwMjEzLCANCiAgICAwLjEwNDAzNDE1NjQxNDA4MywgMC4wNDQwNDEyOTYxNTA5NzIzLCAwLjA1Njg2OTYyODE5MTU3NTUsIA0KICAgIDAuMDM0MTIxODY5NjYxOTEwMywgMC4wNjk3NTU2NTc0NTgxMjIxLCAwLjA0MDk4Nzk1OTE4Njk1NzQsIA0KICAgIDAuMDY3Njc0ODUyODE0ODMzNSwgMC4wMjk1MzczOTA1NzAwMTY4LCAwLjA2NDE0ODYxNzM2OTgyNDEsIA0KICAgIDAuMDk2OTE5NDcyNDc2MTIyMywgMC4wNTMxNTUzNzc4OTk3NDczLCAwLjA3ODQ0ODQ2NjM3MTMxODEsIA0KICAgIDAuMDYzNzQwNTAyNDk5NTQ2MywgMC4wNTYxNzkyOTUzODA1NTc4LCAwLjA5OTEwMTY0NDg2OTYyNDEsIA0KICAgIDAuMDE5ODMzOTMyMTIxNTgwNCwgMC4wNTYxMjcxNjgwODI5ODQ3LCAwLjA1NjI2MjY1MTM0MzcyMDMsIA0KICAgIDAuMDU4MTg5MDY1MzMwNzQzNywgMC4wMzgzNjc3MTc0ODAwNjQyLCAwLjA0NzM1ODc3NjE4MzI5MDYsIA0KICAgIDAuMDQ2MzU2MTM2NzgyODgwMywgMC4wMzMyNDY0MDIxMTMxNTE3LCAwLjAwOTYwNTMzNTUwNzI5Mjg3LCANCiAgICAwLjA1Nzc1MjA3NjU5NDYyOTEsIDAuMDEyMTk5MjkwMjgwNzQ1NywgMC4xMzA4MDkwNzI5MDAxNSwgDQogICAgMC4wNjI3NTA0NzMxNDgwNTI1LCAwLjA5MzQyNzMzMTMxOTU0NzksIDAuMTA0MDIzMDIxNDU0MDg4LCANCiAgICAwLjA1OTE3Mjg3Njk2MDI5MzYsIDAuMDAzODI0NDMxOTA4MzI2NzEsIDAuMDU4NTUwMzQxNzcyNDE4LCANCiAgICAtMC4wNDE5NTIzNjIyMDMwNjMsIC0wLjA3OTg1OTQ0Mjk4NjgxODQsIDAuMDcxMzQ5ODg2MzIwMTE1MywgDQogICAgLTAuMDAyNzYzMDYwNDM1NDIwNTIsIDAuMTAyNTUxOTk4NzI0NTA4LCAwLjAyMDU3MzY0MTY1MDQ3NiwgDQogICAgLTAuMDAxMDc1NDYwNzI2MzQyODIsIDAuMTE5ODk2NTI3MDc5MzcyLCAwLjAxNzkwODU3OTY4MDgyNjYsIA0KICAgIDAuMDIzMDY5ODE4Njk0MDk4OCwgMC4wNjgxODM5ODk2MjY4NiwgMC4wMjI2NjYyNTA5ODQyMDE5LCANCiAgICAwLjA0NjQ3Mzc1Mzc3NzY1MzUsIDAuMDg2OTQ1NjQyMzMwMDY5NSwgMC4xMzQ2MjYzODQyNjU2MSwgDQogICAgMC4wMzUxOTc3MDkwNjM0NzQ4LCAwLjA0MTE2NDYyMDY0MTg0NjYsIDAuMDQ1Njc4NDY5MTkyODI0MSwgDQogICAgMC4wNjM0OTI3MjM0NTMwODgzLCAwLjA0NjY4ODI3NTE2Nzg4MzYsIDAuMDc1NDg0NzkwMTgwMjA2NywgDQogICAgMC4xMTA1MDIzNzM5MTg3MjUpLCBEQVNTT1cgPSBjKDAuMDc5NDk0ODcxMDQ0MzcyOCwgMC4wNTU3ODI4NjU0OTE0NDc1LCANCiAgICAwLjA1NTAwNzE5MjM0ODU0NDEsIDAuNTg2MzU0MDA3OTM0Njg4LCAwLjA1NjM3NzY1MDk3MjczOTIsIA0KICAgIDAuMDA4MDQ1ODQ0OTkzMjg3MDUsIDAuMDMzNjk5ODM0NzMxODA3OCwgMC4wNTE0OTk0OTQ1MzcyNjMsIA0KICAgIDAuMjAxMTY4NTA4MDc4MTk5LCAwLjA2NDY4MzcwODY0NTM2MzMsIDAuMDgxMjA5MjcyMTA4NzE3MSwgDQogICAgMC4wMzkzMzY2MDg2NjI4NTE4LCAwLjA1NzYxNjQ0NzY2OTg1MzcsIDAuMDYxNjE0NjgwNzk0MzM1MiwgDQogICAgMC4wNjAzNjU1NDM3MzY4ODIzLCAwLjA1NDA2NDU1ODExNTI0MzYsIDAuMDI2ODk0MTQ4MTgwMTIwNSwgDQogICAgMC4zMTIyODM0Njg5OTY0NDgsIDAuMDE2NzI4NjA4OTIwMTIwNCwgMC4wNDQwMDA0MTU4NjYyMzk0LCANCiAgICAwLjA2MjY5NDE2MjY0OTAzNTgsIDAuMDAxMTkyMTQ4OTI2NDQ2NDQsIDAuMDA1MDk4OTcwMDM0MjUyODQsIA0KICAgIC0wLjAxMjc3NDU5NjEwMzE3NjYsIDAuMTExNDczODI5NjAxMzA0LCAwLjA0NTMzMjQxNjk4MDEzMjUsIA0KICAgIDAuMDkwMzg4MDgxNjc3NjkwNSwgMC4wNzg2MTgzODc5NjM4ODQxLCAwLjAxNzQ4OTEzMDEyNzAyMDcsIA0KICAgIDAuMDkwMjM0ODQyMzYwMDEwNywgMC4wODI4Mjg3MjA0MDY5MTM4LCAwLjAzMDY3Mzg0Nzc2NjQwNDksIA0KICAgIDAuMTYwMjA5NjE2NDk5MzQyLCAwLjA2MDg3ODI5Mjk5NjQyNTMsIDAuMDU3Nzc3MDI3OTczODUwOSwgDQogICAgMC4xNjk3MTkzODE1Nzk2NTYsIDAuMDYxMDQzMzU4MTcyODAyMiwgMC4wMzQxNDcyMDc1NTM0NzkzLCANCiAgICAwLjE0OTkyODM0OTk4MTAyNCwgMC4wNTQ0MTEzNDA2NTExMDI2LCAwLjA0MjcwOTIyMDgzMjQyMjQsIA0KICAgIDAuMDgzMTYzNzg4NzcwNzYyNiwgMC4wOTA2MzI3NDc0NzQ0NjQyLCAwLjA3MTcxMTUwNTA3NjU5MzksIA0KICAgIDAuMDcwNDU5ODA3OTIzMTgyOSwgMC4wMjM1NDg1OTE2ODkwMDg0LCAwLjA2ODE1MjEyNjk3OTcxMjIsIA0KICAgIDAuMDUyMTkxMzYxNTMxMjE5OSwgMC4wMzE3MDU1MTA1NjIzNTQsIDAuMjMwNjgxNDMwNzU1NTIzLCANCiAgICAwLjA0OTI0NjcwOTc2NzE3NDQsIDAuMDI0Mjg1ODQxODE2MDc1MSwgMC4wMzU2MzYwOTcwMzAzMTQyLCANCiAgICAwLjExNTMyNTkyMDMyMTAxOCwgMC4xMDA1NjI3NDA2MDM1ODIsIDAuMTg5MDc4MTYyMzQ3NTU1LCANCiAgICAwLjA2OTcxMzk0NzU0NjEwMTQsIC0wLjAwNTg1ODQwMjg0MjAzNzQyLCAwLjA1MTQ3NTY4MTU4Mzk4NTcsIA0KICAgIDAuMTA1NTM3MTI3NDExODIxLCAwLjAyODI1NDgxNDY3NDExMTMsIDAuMDQ1NjExNDQwMzE5NDI1NywgDQogICAgMC4xMjY4MDU3ODUyNTU1NjEsIDAuMDg2Mjc5NzQ3NjcxMzYxMSwgMC4wOTg4NjI2MjcxMDI0ODg3LCANCiAgICAwLjEwNTc5MjMzOTQyNDg1OSwgMC4wMDIwMzA5NDc5MjMyNDA4OSwgMC4wNDc3NjE5NzgyNTQ5MTE2LCANCiAgICAwLjA2OTQ4MjU2MzM0Njk0MzgsIDAuMTkxMDM4ODE1NDU1ODc1LCAwLjE1Nzg3NTE1NTYwNTU1LCANCiAgICAwLjE4OTQxOTM1ODI4ODc4NiwgMC4xNDAxMDE2OTMwNzA5NiwgMC4wNzM0MjM3NjUxMTIyNTQxLCANCiAgICAwLjE1MzEyMjUxMTI3ODM1LCAwLjA0NDQ5NTk5NTE1MzY4MjQsIC0wLjAxOTI5MjIyMzA2ODU0ODIsIA0KICAgIDAuMDYyNTU0MTI5MTk3OTExNSwgMC4wNDYyMjA3Njk2NDI4OTE3LCAwLjEwNzk1NzkzNzk4MjIxOCwgDQogICAgMC4wMzk1ODg2MDg3Njg0ODQzLCAwLjA3MTE3OTczNjU5NzczMDEsIDAuMTU2Njk3Njc2NTc4NTUzLCANCiAgICAwLjA1MjgxNDgyNjI5OTIxMDQsIDAuMTcyMjgyODc1ODA0MzgxLCAwLjA1NDA0Njg1MTgxNTgyOCwgDQogICAgMC4wNzQyNTk1NDI4MDY2NDg1LCAwLjAzOTk0MTM5OTQ3NzEyNjIsIDAuMDk3MDU0MDEwNTIxNTM4OCwgDQogICAgMC4wNDk1NzAwOTc5ODQzMTk5LCAwLjA5MzE5MTkyNzkwNTgzMDUsIDAuMDMzODM1NzUyNDA4OTcxOCwgDQogICAgMC4wODY4MDk5NDc2MzExNDUzLCAwLjE1NDcwNTMxNzg3MDQ3LCAwLjA2ODE2NTM1MjMxMjIwNTgsIA0KICAgIDAuMTEzOTkzODc1MTUxMTE4LCAwLjA4NjA4NDMxMDM0NzE3NjEsIDAuMDczMTExNDA2MTgyMjc2MiwgDQogICAgMC4xNTk5Nzc0MzQ4NzYwNjQsIDAuMDIxNzE0MzY5NTA0MTU0NywgMC4wNzMwMjQ5OTkyNTQ3NzE4LCANCiAgICAwLjA3MzI0OTY2MjQ0NDI1NjMsIDAuMDc2NDczOTI4OTU3NjcyNSwgMC4wNDU4MjUyMTUzMjIyOTM1LCANCiAgICAwLjA1OTA1MjM3OTk5NTkyOTUsIDAuMDU3NTIzNzczNjY2NDkwOSwgMC4wMzg3NTU5MDE4NjA3OTE5LCANCiAgICAwLjAxMDAzMjc0MzU4MzY3NzMsIDAuMDc1NzM3NjI0ODY1MjYyNywgMC4wMTI4OTQxODk4MjQ1NzMyLCANCiAgICAwLjI0OTUwNDQxMTk2MzI4MiwgMC4wODQzMzUwNTE4MDEyMjUyLCAwLjE0NjQ4MDgyMzM3NjY4NywgDQogICAgMC4xNzIyNTQ0NzcwMDEwMjgsIDAuMDc4MTQyMjM5MDE2NTUyOCwgMC4wMDM4OTEwMTE4NjExMDkyNywgDQogICAgMC4wNzcwODQ4NTIxMjYxOTUxLCAtMC4wMzQ5NDE3Mzg5NDQ4MDIyLCAtMC4wNTY5NTkwNjczODAxOTkzLCANCiAgICAwLjEwMDA2MjMwNjExOTkwNiwgLTAuMDAyNzI4OTg4MTg3NDA2MDEsIDAuMTY4NTI3NjY2NDUxNjUsIA0KICAgIDAuMDIyNjAxNTg5OTc0OTgzNywgLTAuMDAxMDcwMjcyNzA3Mzg0NjYsIDAuMjE1NzcwOTUyOTEwODMyLCANCiAgICAwLjAxOTQzMjU3MzUwNjMxMTcsIDAuMDI1NjM5NTIxODUwMTM0MiwgMC4wOTQxMzAyMzk4MjY5MTQ2LCANCiAgICAwLjAyNTE0MzcyOTUyMzIyNjksIDAuMDU3NzAyMzc3MTM1NjgxMywgMC4xMzE4ODQwMzg0ODEzNjQsIA0KICAgIDAuMjYyMTA4OTI2OTMxNjEsIDAuMDQxNDExMDc3Mjk2Mjk3MSwgMC4wNDk4MjU3NzY3NzQ2NDkyLCANCiAgICAwLjA1NjQ5ODM5ODE2ODExNjksIDAuMDg1NjQ1MDUyMjYzMDI4NSwgMC4wNTgwMjg2MTg5MDgzMDg5LCANCiAgICAwLjEwODA2ODk5OTE4NzQyMywgMC4xODkyNzAwMDg0NDgzOTEpLCBMTllJX1RfMSA9IGMoOC42MDkwNjg4MzI5Mzc3NywgDQogICAgOS41MDE1OTgzNjI4NjIwNSwgOS4xNDU5MjA0NjY3ODc0NiwgOS4zNzgyMzY0NDQ5NTUwMSwgOC44OTgxODc2ODU2NzIwNSwgDQogICAgMTAuMjExMTU5MzE1NzAyNCwgOC41MzExMTk1NzU4NTY0OSwgMTAuNzIwMzMxMzQ1MTM3OSwgOC43NDE3NTQ2OTE0NTYwNSwgDQogICAgOS4zNzY2MTY2NjMzNTA2OCwgOC44NTc2MzU2Mzg1MTEzOSwgOS41NDk3NjU4Mzc2MjMwNiwgOC42NjMyMDM4MjU3NTExMiwgDQogICAgOS4yMjAyMjE4MzQ0ODA2MiwgOC42NjIwMzU1NDQwMjMxNSwgOS4yNTIwNjQ1MDE3MDM2LCA5LjM1NzI3NzY4OTUwMTIxLCANCiAgICA4LjI2NTIzMDk5NzcyNjc2LCA5LjgxOTE5NTAwNzkzMzMxLCA4LjkzMzMwODA5NDQ5MTg1LCA4LjY0MDEyNjUxMzExOTQzLCANCiAgICAxMC42MjQzMzI1NjA5MDc0LCAxMC40MDc4OTM5MzI2MzA2LCAxMS4zOTY1NjAyODY2MTE4LCA4Ljk2OTEzNDcyNTEwNTE4LCANCiAgICA5LjU0MjUzNjQ3ODM0NDUzLCA4LjU4MjE1MDUxNTE0NzY5LCA4Ljk1OTI5NjI2NDYyODMsIDkuMDk0MzgyNjE4ODY0OTgsIA0KICAgIDkuMDQ5ODQ2OTY2NDk5MzIsIDkuMjY5Njg3ODQzMzU3MiwgOS4zMzQ0NDUwNjAwMjY4OSwgOC40ODQzMjU4ODkyNzIwOCwgDQogICAgOS4xMzY1MzU3MjI3MzMxMiwgOC44NDQwMjgzNzExMzU2NCwgOC41NDg5MDY2MDU4OTE2MSwgOC44NDgzNTQ0ODM5NjY3LCANCiAgICA5LjYzNzczNTUyNTM4NDk3LCA4LjIyOTQwMDMyNDQ3OTIxLCA5LjE1NDkzMzAyMDkyMjMsIDEwLjE1OTg4MjE0ODQwOTQsIA0KICAgIDkuNTMyODM0NDQ0ODk3MTQsIDkuMjE4Mzk4NTc0NjE3ODgsIDkuMDEyMzcxNjg1ODk4NjQsIDkuMTg0NTg1MDQ4MjEzOTIsIA0KICAgIDkuNjg2NDgwODQ5MTg4OTQsIDguOTk0MTMzODI0NTIxMzgsIDguODE4NDIyNDEwODAyODcsIDkuMzE2NTQ5Nzg3NDE4MjgsIA0KICAgIDguOTY1MDA1MzAzMTI4MzYsIDkuMzYxODkyNDA0NDcxNDIsIDEwLjY3NzQ1MzcyNjgwNjQsIDkuMzgwMzM0NDYzMDcwMTksIA0KICAgIDguODI3OTc1MjM5MzY2ODUsIDguODk2MjY5ODE3ODk3NDIsIDguOTgyNzE2NzE5MzUxMDUsIDguOTcyMTc3MTYwMDAyODgsIA0KICAgIDkuMTg1OTM4MzYwOTYyMjUsIDkuMDAwMzk4NDgzNTc0NzEsIDkuMzY4NTQ5MTQ1NDA0MiwgMTAuMjcyMTU1MDQzMjQ2LCANCiAgICA4LjgzMzA5NTYxODU3NjcxLCA4Ljk3ODQzMjUwNDQ3MTE2LCA4Ljk4MDI4MzIzMDMyMzY2LCA5LjI2ODExNDc5ODYzMzE5LCANCiAgICA4Ljk4NjEzMDg4NjYyNTk2LCA5LjY1MTk5NDEwMjExNTI3LCA4Ljg0MjQxMzc0NzI4ODY2LCA4LjU4NDcwMDc3MzI2ODk1LCANCiAgICA4LjY1MDc1MTIxMzIxMTI2LCA4LjM1OTk2MTEyNDU5Njk2LCA4Ljg3NjM2MjkwNzU4MDkxLCA4LjcwNDA4NDYyMzgwMzI5LCANCiAgICA4Ljc3MTExNjQyNjM0NDc4LCA4Ljc4Nzk2NjMyOTA4NjQ0LCAxMC4zNzkzNTk3ODU3OTc3LCA5Ljk0Njg3NzY4NDEzMjEzLCANCiAgICA5Ljk2NDE2ODg0OTg4MjUyLCA5LjExNzg2NjA4NjcxMTk2LCA5LjA3NDE4MDA3MzQ2MDI1LCA4LjkyNzgzNjM1MTg3MTE5LCANCiAgICA5Ljg3Mjc3NjE3NTUzNTExLCA4Ljg2NTA3MDU0NjI5NzM4LCA5LjMwODExNTc1MTY0NzI3LCA4LjQwODQ2NzkzODU0NTk4LCANCiAgICA5Ljc2Nzk1OTQ1NTE2NzI5LCA4LjU4MzQyMjM0NjQ1OTExLCA5LjEyNzA5MTE3NzA5Njg3LCA4LjU3MTYxMDc5OTI4NzU1LCANCiAgICA4Ljg4MDcwODQzMDU4MTg5LCA4Ljg0NDY0MTY3MDUwOTksIDkuMTg4OTA1Mzc0NDcyNSwgOC41NTM3OTg5Nzg2Mzg2NiwgDQogICAgOS4yODk1NTE0NzUwMTU2MywgOC45MzQ2MTgxMjYwNDE0MiwgOC42NDk1ODI3MzE0Mzk3LCA5LjA5MDkwNzY3NTM3Mzg3LCANCiAgICAxMC4wODU0Nzk0MDE4Mzk3LCA5LjQzNzUzMTQzNjUwNDAxLCA5LjI5MDIzMjI2MjM3NjI1LCA4Ljc2OTM0NjQwNzUyMDEyLCANCiAgICA4Ljk1NTQ3MTEwMjExMzI4LCA5LjAzOTE1Nzc2NDE3MjE4LCA4Ljg5OTQ2Mzg0MDYzNzcxLCA5LjY1MDg2MTI0Mjg3MDMxLCANCiAgICA5LjA3Njg2NjkxOTU1Mzk0LCA4Ljc4Mjg1MzgwMTUwNDIzLCA5LjYwNTI4MTQ2OTExODk0LCA5LjQxNTk5MTAyNjYxMjcsIA0KICAgIDguNzM5NTE2NjE4NjkyMDYsIDguODM3MzIxNDQyNDc2ODgsIDkuNjAzMTg3NDk5OTY0NzMsIDguNjA2NTY2MDU2MDQ3ODgsIA0KICAgIDguOTMyMDQzMjc1NjEwOTUsIDguODIzMTU2MjA3NDE5MzIsIDExLjI2MDQzODMzMzUwNTksIDguODQzMDk4NTMwMzY3OTgsIA0KICAgIDkuMzQ4Njc1NjI5NzA3MTYsIDExLjU5MzIyMDIxNjE2OTMsIDguOTg4MjY3Njg4MzQwNDIsIDExLjE0MDMzNzIyMjY1OTUsIA0KICAgIDguNjI2MTk2NjM5OTc3MjUsIDkuNjAxMDY3MDUyMzczMDMsIDEwLjM1NDA2MjA5MzQ4MTIsIDguNjg5NTI5NTE3NDczNSwgDQogICAgOS40ODg1Mzg1NjMyOTI1OCwgMTAuMTE2ODc1MzMzNTI5NywgOC44NTg3NDI0MDYyNjA2MSwgOS40MTQwNTY3MTc5NTg1MiwgDQogICAgOS4xMzQ1NDgwNjYyMjE1LCA5LjIzMjYxMTY5NTE1NTA4LCA4LjIxOTMzMTg2MDU0MTYyLCA5LjIwNDcwNTg5NTgxNjA0LCANCiAgICA5LjQyMjgzMDA5Nzk4OTYsIDkuMTA3NzIyMTkwNDUzNzksIDguNzYwNDI4NDI5ODkzOTUsIDkuNTI1OTc1OTAyMjI2MywgDQogICAgOS41NzAwNzkwMDAzNzY3NCwgOC44Njg1NTIzNzg4ODA3MyksIFNJTkQgPSBjKDAuMDM0MDY1ODM2Njc4Mzk0OSwgDQogICAgMC4xMDQyMDIwNTQxNzIxLCAwLjA1MjExMTAzNjY5NDUzMTEsIDAuMzU1OTM4MzQ5NDU5OTQ0LCAwLjA2OTcyMTk2NTUzMjcxNDUsIA0KICAgIDAuMDA2MDI1MTc1MDE5ODk4MTYsIDAuMDYyMTA0OTY2OTI5MjE3OCwgMC4wNDIzNzk2MDIwNDQzMTcyLCANCiAgICAwLjEwNzMzNjI2MDU3MDQ0NCwgMC4wMTg3NTE3MTMyNDM5MTc1LCAwLjAxMzY1MjAxNjAxMzEwNDksIA0KICAgIDAuMjM4OTgxOTAyODUzNDMzLCAwLjA1NjA3Nzg0NTE2MTE0NzgsIDAuMTUwNjk2ODI0NDQ1NjU4LCANCiAgICAwLjAzMjExMjIxODM4MTkzNDcsIDAuMTEyODY5MzA4NjI2OTI4LCAwLjAyNTUwNTc3NzI2NDY5NDgsIA0KICAgIDAuMDkyMTM3NDgxOTU2Njk2MywgMC4wNDY4Mzk4MjQxNzA1NjUzLCAwLjAyNjIyNTg3NTM0MzM1NDUsIA0KICAgIDAuMDYyMDgxNzQ2MjQzMjg5MiwgMC4wOTcwNDgwMDY1MjQyNjcyLCAwLjAxNTYwOTAwNTcwMzY0NjYsIA0KICAgIDAuMDI3OTI3NTY3OTk0NDQ0NCwgMC4wNTM5NTg0MDEyOTcyMDEsIDAuMDAwMzE3NjU1Njg5NTQ3NjY1LCANCiAgICAwLjA0MzY4MzkyODUyNTg2OTMsIDAuMDQ4NjY1ODY5NDYyMjI1MywgLTAuMDIzNTM3OTc2MDM4NDU2NSwgDQogICAgMC4wNTc3NDYxMjIwMTkyMTQ1LCAwLjA2NTYzOTQwODYzMjU5OTksIDAuMTEwOTkzNTA4MTUzNjUzLCANCiAgICAwLjI2Njk1MTMwNDQ3NDA4OCwgMC4wNDE1NjQzNzc0OTgyMTQ5LCAwLjA1MTY2MDk2Njc0MzgwNTEsIA0KICAgIDAuMTk3OTY3MDMwNDQyMDYxLCAwLjAzMDc2Mjg2NTY0NTA1MSwgMC4wODI2MjAyODYwMTc4NjYxLCANCiAgICAwLjE0OTY4NTUxNjMzMzcyOSwgMC4wMjc3MDE0NDUyNDc1NTcxLCAwLjA2Mzc2NzM0MTE2MjcwNjIsIA0KICAgIDAuMDQ2MTY4NDk1ODM4OTUxMywgMC4wMTU2NzM4ODk0ODY1MDQsIDAuMDU2MTkyNTY3NjI3NDAyNSwgDQogICAgMC4wMzc1NDQ4OTczMDQzOTM5LCAwLjAzODc3MzY0NDc4OTQyNDIsIDAuMDM4NjQ1NjMzMjM4NDEzLCANCiAgICAwLjEwNzE4ODE4NjI1NzkyNywgMC4wMjE3OTY0ODIxOTUwMzAyLCAwLjIxMzk4NjUxMzUyOTcwNSwgDQogICAgLTAuMDc0MTM0NzYyNzEwODcyNywgMC4wMTU1NzA4MTI3MzI1MTM2LCAwLjA4NTEwMzI0ODY4MDk0NjcsIA0KICAgIDAuMTM4MjgzMjQxMzY1MzU2LCAwLjIyNjY3NDM4OTk2NjQ0MywgMC4xMzk3MjY1NzA4MDIwODEsIA0KICAgIDAuMDcxNTczMzUxMjIwNTg0LCAwLjA5MDk4ODcyMDM2OTc2NiwgMC4wNzgzMTY1MDI4NTU5OTA5LCANCiAgICAwLjEzMTA0NjI3OTgzNzM2NSwgMC4xNDgyMDQwNTQ1MzI0MDMsIDAuMDI1NzYyMDEzNDI0MDQ2MSwgDQogICAgMC4xMDQ4NzY3MTAxOTE5NzcsIC0wLjA0ODM2NjMyMzMxNjY0NjQsIDAuMjkxOTA1ODM1NTA3MTA0LCANCiAgICAwLjIyNTE2MjA1NjU3NzczNiwgLTAuMTQzNTQ5MDQ2NDAxNzQzLCAwLjA3Mjc0NTE2ODc2MDUzMjcsIA0KICAgIDAuMDQzODkxOTI2MTI3Njg2NCwgMC4xMTc5NzE1ODE5MjE4OTQsIDAuMDg0MzIwMTc1MDMyNjMzOCwgDQogICAgMC4yODU5MDkwNTYxMDIzNDIsIDAuMDkxNjQ3NjQ4ODI2OTkzNCwgMC4wMjM1NzQ0MDE3ODY4MDY2LCANCiAgICAwLjEzMTgzNjk3OTk2MDE0OCwgMC4xNzc5Njg3NjA1ODkzODgsIC0wLjE0Njg3NTM3MDQ0MDgzMSwgDQogICAgMC4wNjE2NzQ1ODgyOTg5Nzc4LCAwLjEwMzQyMjExNTYxNzcwMywgMC4wODUxNzI2MDQyMDI4MjE3LCANCiAgICAwLjAwNjUxNTgwNTIyOTE5MjQ5LCAtMC4xMDI2NzA4MDQxNTY1MDgsIDAuMDMwNzM2MjI3NjI3NDY2NywgDQogICAgMC4xMTY2Njg1ODk4NTc5NTEsIDAuMTAxMDk5MjgxOTA0MDk3LCAwLjA4NTE3MDkxODAzNjEwMjcsIA0KICAgIDAuMDYyOTI4OTgwMjE3MjQxNCwgMC4wMjMyMDcxNTg2NTAyMTk1LCAwLjA4NzkyNDYwNzQ5MjE3NDIsIA0KICAgIDAuMDY1MDU4NzQxNDUxNDE4LCAwLjAzNjExMjQwMzc4NTY4NjYsIDAuMDE2OTc3Mjk3MjQ0MjM3MSwgDQogICAgMC4xMDQ2MTk3OTY4MDA0MjUsIDAuMDIzOTUxOTYzODU4NDk0MywgMC4wMjk0MTExNzczMTgxOTIyLCANCiAgICAwLjAyNDI3MDUxNzk1MDUzNTgsIDAuMDI3MTg5OTA2Njc0NjYyOCwgMC4xMzM0MTkxNjY1MTg5NjEsIA0KICAgIDAuMDY4NDAzMzI4MDU0MjgwOCwgLTAuMDQ2NTEyOTk3NjgwNzg1NiwgMC4wMzQ4MjgyMDEzNDE0MzczLCANCiAgICAwLjA0NzAxNjgyNzAwNjkyNjYsIDAuMDM5NTMyNzc1OTY5ODY1OSwgMC4wMzg0NDI5MzAxMTI4NzU2LCANCiAgICAwLjA4MzM3MzI1Mzc0MzcxNDYsIDAuMDI4Mjk2MDczMDE2ODA1NCwgMC4wMzIyMTA4Mjc1NTEyODc1LCANCiAgICAwLjAwMjg4ODQwMTQ1NzgwODQ2LCAwLjAyMTU0MDE0MzQwODc4NjMsIDAuMDQzMDIwNDA3NjUzNjI1MywgDQogICAgLTAuMDM0ODUwMjA5OTI2Mzg0OCwgMC4zNTkyNjMzMDAwNzgyMzksIDAuMDQ1MzM0MDQ5MjI2NzE2NSwgDQogICAgMC4wNzQwMjQ3NjExODk3ODI1LCAwLjAyMDgxNTg3NTcyMDI4OTYsIDAuMDE2NzE2OTA2Mzg1MTM0MiwgDQogICAgMC4wNTQ0MTgzNjUzMzUxMzE3LCAwLjAwNzA4MTIzMjkyNjcwMzE1LCAwLjAzODU4NDAwODE0MTQyMSwgDQogICAgMC4wNDUzOTM3ODkwNzY5MjM5LCAwLjA0NzgyMjc3MDMzNjc4MjcsIDAuMDU5MzA4NDUxODM5MTc4LCANCiAgICAwLjA5Nzc3MDExNjgyNzgyMywgMC4xMTQzMjkwMjA1Mjc4NDYsIDAuMDcwODA2MTY4MzA4NTk4OCwgDQogICAgMC4wNzIyMzc3NzA2OTEyMzM3LCAwLjA0NTgwMzAyNjk2NjM1OTcsIDAuMDYxMDY0MzY0Njg5ODI1MywgDQogICAgMC4wMTczMDUwOTI3MTM5NDU3LCAwLjAzMTM1MjY1NTM0NTk3NjYsIC0wLjA5MTA1MDUxNzk0MDI5MjcsIA0KICAgIDAuMTMxMjAyNDYzODM2OTEyLCAwLjEwMTE1ODIwNDc0ODg3OCwgMC4wMjA1NzcxODYyNzc3MjA5LCANCiAgICAwLjA4NTI0MjY4OTAyMDQ0MiwgMC4wMjY3MjQ5OTk4NDA1OTI5LCAwLjA5NjM1MzQxMjk1MzI1NzMsIA0KICAgIDAuMDc4NjE0NzQxMDY5MzQxMSwgMC4wNjg5NDEzMjQ4MTY1NTY3KSwgU0FHUk8gPSBjKDAuMjI4OTU0OTkwNjg3OTQ3LCANCiAgICAwLjExNDYzNjM1ODg1MDg4NSwgMC4xNTEyODQ3MTY2MTgxNywgMC4yNzk3NDIxMjM4NTE2MTYsIDAuMzU4Njg3NTE4MDg1NTg2LCANCiAgICAwLjA2ODM1OTQ2OTgwNDMwMjEsIDAuMTE3MTkzNzk1OTEyMjA5LCAwLjIyMDM0MjkxOTg0MzA5NiwgDQogICAgMC41OTYyMjUzODg0NjU0NTcsIDAuMjQxMTI0MTEzMzc1NzksIDAuMTEwNjkxNTExMTM5MjE2LCAwLjA1MDU0MjY1NTUwMDczMDMsIA0KICAgIDAuMDYwODY0NTU5NDQ5Njc2OCwgMC4yMjYxMDY0MTE5ODIwOTIsIDAuMjE2ODU5MDAzMjk4MDc5LCANCiAgICAwLjE1ODYzNDE3NjQyNzU2MywgMC4wMjMzNDgzNzQyMjYxMTY5LCAwLjY4NzM1MzU2OTkyNDY1OSwgDQogICAgMC4wNDE4MTM4NDgxMDAxMjA2LCAwLjEwMjc0OTU1ODkxOTUzOCwgMC4xOTg2ODU0NTY3NDE5NiwgDQogICAgLTAuMjQxMTAxMzU0MTU2OTE4LCAwLjIxNDU1NDU5MjQ0MjA5OSwgLTAuMjY2NzM1MjE1NjA3NTE0LCANCiAgICAwLjMxMjIwODIwOTM4NTA2MiwgMC4wNDU4NzU0NDIxMTU4NjU2LCAwLjI2NzU2MzczNzk3Nzg1MSwgDQogICAgMC4zMzk3NzY5MzYxMzM0NiwgMC4xMzAwNDY4MzA0ODAwMjMsIDAuMzA4OTc5Mzk0MjEzMjYsIDAuMzAyNTc4ODQyODIzNzYxLCANCiAgICAwLjA2Mjk0OTE1MDgwMjcwNTIsIDAuNTIyMDYzMDc2MDc1MjE0LCAwLjE2MzA5ODg2MjAxNjQyNiwgDQogICAgMC4yNDk1MzY4MzEzNzI5MzUsIDAuMzIxMTgyOTAwMzk0NzE5LCAwLjM5Nzc5ODI0OTQ0MzEwNCwgDQogICAgMC4wMDE2NTEyODY0MzM4OTQ5MSwgMC4yMjM2NDMwMzU0MDYyNzIsIDAuMjYxMjk5NzA1MjUyMzkzLCANCiAgICAwLjAyNDg0Nzk0NDAyMTA0MDEsIDAuMzM5MDQ3OTk2MDIyNTA1LCAwLjM1NzU5MzI3Mzk2OTQwOCwgDQogICAgMC4xNDYzMTY2NzExMDQ1NzgsIDAuMzUwNDgyNTQyODAyMTc0LCAwLjAxNTU4MjU0NTAyODc2NTEsIA0KICAgIDAuMjAxNjEzODgwNjY5Nzg2LCAwLjExMTc4NzAwNDY4MjA0MSwgMC4xODgwMTc1NjY2MDY4MDIsIA0KICAgIDAuMjg1ODEzMTgwNTQ0MDIxLCAwLjA4Njg2ODAwMjIzMzIwNTUsIDAuMDg4NDg1ODg5OTU4ODU2OCwgDQogICAgMC4wNTI4Nzg4MTI1Njg1NTYxLCAwLjM0NTIxNjIxNTQxMzQ3NywgMC4xMDAxMjc1MjM4MTI2MjYsIA0KICAgIDAuNDcwMTA0MDQ5NTE0MDU0LCAwLjE2MjI1MTY5NjA1MzY1OCwgMC4yMjIzNjQzODU1NzM3MTIsIA0KICAgIDAuMDI5MDg1ODIzNDQ3NjM3MiwgMC4zMzA2NDc1MTgxMzE5OTEsIC0wLjA0MjQzOTA4MzQyNjU0MzQsIA0KICAgIDAuMDk5NTAwNDQ1MTA5ODIsIDAuNDA5NjQ0MjQ0MjU5MDM1LCAwLjIyNDc4MjYxNDc2MjAwOSwgMC4yMzA3MjY0NzMzOTM4NzcsIA0KICAgIDAuMTU1OTQ0NzM2NjE2ODU1LCAwLjA2MDE3MDg2MDM1NjM1NjQsIDAuMDM4MDY4MDA4MzgyMjE1OSwgDQogICAgMC4xNjIwMzU1ODA1ODI2MzEsIDAuNjk0OTc5MzkyOTIzMTk4LCAwLjQ4NzY4OTkwMjI1ODE0LCAwLjMzNTc2Mjk3MDM3MjAxLCANCiAgICAwLjQwODEyNzUyNjc4MTkwMywgMC4xNzY5OTMzNjEyNzQxODUsIDAuMzk2MTAwNjc5MzY0NDUsIDAuMTExMTE3OTgwNjg5MjA1LCANCiAgICAwLjA1MTgzODA0MDUzMDE5OTYsIDAuNDg2NDcxNDU2MDU3NzE1LCAwLjA0NDYwNjkxMjQ5NjE4MDcsIA0KICAgIDAuNTY4MjQ0MzA3ODAxMjU0LCAwLjIxMjM2NzMzMjE2NDExOCwgMC4yMjc0MjEwNTE0NDg5NTUsIA0KICAgIDAuNTMzNzMxMDY5NDIwMTM2LCAwLjE3NTY4NjI2OTkwOTE3LCAwLjMxMDMxODM4OTc3OTI3NiwgMC4yMjAzMTkwMDcwMjkxODQsIA0KICAgIDAuMjY5MjAwMDEyNzAyMzU0LCAwLjA0MDM2Njk4MzUyOTcwMzQsIDAuMjYwMDMxMzY5NTc0MDg3LCANCiAgICAwLjI5NDEyNTM3Mjc0OTY3NywgMC4yNDQyODAyOTM3ODA3ODMsIDAuMTA1MTQwNTg5ODA0Mzc2LCANCiAgICAwLjIyMTgxMjQ1OTQ5Mzk0LCAwLjUxMTIxMjEzOTgyMzM4NSwgMC4yOTIxNTg1NDkwNzIxNDEsIDAuMjQyODE1MzQ1NTQ0NDU4LCANCiAgICAwLjMwMzQxMDY2ODA5NTc2OSwgMC4wNTIyNjM1NDY2MDIzMjQzLCAwLjQ4MzA5MzM1NDY1Njg5OCwgDQogICAgMC4wODE1NzcyMTc5MDYzNTQxLCAwLjI4NzUxNTU2ODQ3NTEyMywgMC4yOTAzODE2MjExNTExNTQsIA0KICAgIDAuMjMwNDUzMzY0MDY5ODgxLCAwLjA3NjE4Mzg0NjA5NSwgMC4yNDk2NjExNjIxNjk4NjcsIDAuMjM1OTQwNjQ3MTM3MDg4LCANCiAgICAwLjE4MTAxMzUyMzQ5MTUyLCAwLjE1NzQ4NTkwNTE1NTM2LCAwLjMxNTAzMTAxNzYxOTUwOCwgMC4wMzY0ODMyMDY1OTQ2MjIxLCANCiAgICAwLjYzNjQzNjE2Mjk4NTA1NSwgMC4wMDk2NjkxMzcwMTA3MTA3OSwgMC4zNzY3MTI3NzgyOTg0OTgsIA0KICAgIDAuNTgzNDg5NzUwNjA1NDc0LCAwLjA2NDI3MDg1NDY2MTY0MjYsIDAuMjcwODYyODA2Mzc2OTYxLCANCiAgICAwLjM4ODUyMDIyNDY4NTUwOSwgLTAuMzczOTA3MzcxNTg0MTU5LCAwLjExMDI5MTk3NzUzNTEyNCwgDQogICAgMC4zMjc5NjM2ODEzNDk3OTUsIDAuMTM0MTYwNzY1Njk0MDI4LCAwLjQ3NDIwNTc0MzgxMzg4NiwgDQogICAgMC4wMzUxNjcyNDM5ODkzNjc0LCAtMC4yNTMxMTI4MzMwODcyNTQsIDAuNTA1NjYwMzE4NjMzNzU5LCANCiAgICAwLjA2NzA2Mjg5MDI2NzQ3NCwgMC4zMDEzMDE1NTY5ODY5NzQsIDAuMTgyMTMyNDI5Nzc2NjczLCANCiAgICAwLjE5Mjc5NDQ2NTA0ODAzMywgMC4wOTEwODU5MzAzMTQ2MDIxLCAwLjM3NzUxNDIyODExMDgwOCwgDQogICAgMC4zOTczMTM5NjUwNDY5MTcsIDAuMDA2ODIwMDIwNjMzODUyOTMsIDAuMjQzMTQwOTM5Njk3NzYsIA0KICAgIDAuMjc4MjkyNzMyNDY2MTg2LCAwLjE5OTgxMzg5ODE4MzkwNiwgLTAuMDc3MzQ4OTIwNjM1NCwgMC42Njk3NzQzOTI2MzYyNzcsIA0KICAgIDAuNTg2MTkyNDIyOTkyNzQyKSwgU1NFUlYgPSBjKDAuMDczODAxNTQxMjkzNjU2LCAwLjM1NDU1NzE3NDMxNTc4MywgDQogICAgMC4xMzg5NjQ2Njk4Mzg3OTgsIDAuNzEyNjg0NTEzMzA0MDE1LCAwLjE0OTY4MDY0Nzg4ODEwMywgDQogICAgMC4xMjgyNjI5MjI3NDc4ODIsIDAuMDY2NjgwOTkyMjExMTczLCAwLjQ3NDYxMDYzNjQ2MTUzLCAwLjIzNTIxODA0MDkzNjAwNywgDQogICAgMC4wNDgwOTkzMzIyMjYxMjQ3LCAwLjA0ODIwOTExNzkzMzg2MDksIDAuMTA0MTIyMTkxMDUxMTYzLCANCiAgICAwLjExNTQ3MDczOTE2MDk1LCAwLjE2NjY5Njg3MzMwNjUwNCwgMC4wNjI4NzE3MTQzMzQzNDcxLCANCiAgICAwLjEzMTc5NTAyOTYwNDM2NCwgMC4xNjg3MzU5ODE3Mzk3ODcsIDAuMTk5MjI3Njg2NzA2ODI1LCANCiAgICAwLjE5MjMzNTc0Nzg1MDUxNCwgMC4xNDQwNzEyMzcyMjE1NTYsIDAuMDkzOTIyMTI2NTQ5MTcxMiwgDQogICAgMC4yMjM0MzUwMTgzODU1ODcsIDAuMjI2MjYyNjkwMTUxMjI3LCAwLjIyNjcxMTA2NzI4NzE3NiwgDQogICAgMC4wOTUxMjA4NjY0ODcwMzI2LCAwLjI2NjY1NzYwNzI5MzI5OSwgMC4wNjQ3NTUwMjgxNzA3ODM0LCANCiAgICAwLjA4NDc2OTEzMDExODE2MiwgMC4wMjk3MTU3NDgyNzcwMjI2LCAwLjEwMjYxMjIyNDYzNzg3MiwgDQogICAgMC4wODEzOTc3NDMyNjc4NDQ0LCAwLjExOTQwMDEzNTkwMDU4MiwgMC4zNDkwMjU1NzYxMTMyMTYsIA0KICAgIDAuMjE4NDI2NzAyOTg4NDk3LCAwLjE1Mzc3NzgyMDQ3MDczMywgMC4yMzgwMzM1MzE0Nzc5ODgsIA0KICAgIDAuMTU0MDUxNDUwNjUyODUyLCAwLjI0MjkwNzk0ODk1OTI2LCAwLjE4ODkyMjE2NjgxMTIyNywgMC4wNzE4MjA5NjY0NzQ0MzE1LCANCiAgICAwLjE0Mzc4OTg4MzQ1MDAxMSwgMC4wNTQ5MjYyOTg4MDM0MDM3LCAwLjIwNjczNjQ3ODg2MzA1NiwgDQogICAgMC4wOTQwNzA4NDMzNzk0NDA5LCAwLjE2NzExMjIwNDUwMDkyNCwgMC4xMDIzMTUzNTM1MTk0NDQsIA0KICAgIDAuMDg1NzIyNjcwMjU2NjY3NCwgMC4xMTE1NDQ1MDI1MDIzMDgsIDAuMDM4NjI0NDc5ODUwMjkxNywgDQogICAgMC4xMTg1OTUxNDgxNzg5NiwgMC4wNTU1ODA2NTkwNTUzNjAxLCAwLjE2NTg0OTQ0MDYxMjg5MywgDQogICAgMC4xMTY5Njg0MDA4NTYxNjMsIDAuMDczNTYwMjcwNDI0MTExNCwgMC4wMTcyMzE0NjcyODM5NjQxLCANCiAgICAwLjIzMzMyMDY3MjAxMjk2NSwgMC4xNTE4Njc3ODE2NTYyMTYsIDAuMTE3MDk2NDU0NzIzMjI1LCANCiAgICAwLjAyMzExMTg2NDI0MDU2MiwgMC4xOTg0MDA3MTIyMzk4NDEsIDAuNDUwNzU5NDE1ODc1NTc1LCANCiAgICAwLjAwOTMxMDQ4MDg0MzIyMjcyLCAwLjEzMjc0MTgxODgzODA2LCAwLjA1MzY0ODMyMDU0MzM3NTgsIA0KICAgIDAuMjEwNjY4NzcyNzcyMTEsIDAuMjQ2NjAzOTY5NDcyMTIyLCAwLjA0NDc3MzE2Nzg0NTY1NjYsIA0KICAgIDAuMDQ5MjE3ODQ3MTU2MTY0NCwgMC4wNTUyNjIyNzYyMjAyMzM4LCAwLjI1MDQyNTIxNDA5Mzg2OSwgDQogICAgMC4xNTIyNDc4Njg4MDI2NDYsIDAuMTc3MjE4MDkyMDE2MTU0LCAwLjEzOTI2NTgwNjM0MzYwNywgDQogICAgMC4wNTI0ODc2ODEyOTIwMTAxLCAwLjE3Mzg1MDE1OTg4ODgyMywgMC40MzA4MjIwNTg1NjM0NzYsIA0KICAgIDAuMDMxNTI5MTM0OTA3MDMzMiwgMC4yMjE5NzczMDkzNzI1OTEsIDAuMTAwMTY0NzQyODE3MDAzLCANCiAgICAwLjEyNjc2MTc4NTIyMjc4MiwgMC4wNTU5MzYxNDg4OTI1MjEzLCAwLjAzOTEzNTg3NDkyODUxNTEsIA0KICAgIDAuMTI4MjIyMTI3MDA2MjAyLCAwLjA4NDc3NDUwNTU2ODY3NTYsIDAuMTcwOTcxMDA0MDczNDI2LCANCiAgICAwLjA3Mjg5MzgwMzIxMDI0MjEsIDAuMTQwMjIzNDQ4NzU4Mzk2LCAwLjA0NTc0NDM4MTc3NDYyMTMsIA0KICAgIDAuMTE4NTUxMDkyMjQxNzY0LCAwLjE0NDc3NzMxNTI0OTEyOSwgMC4wNjMxMDAzNDkzMTQ2Njk3LCANCiAgICAwLjE0Mzc4NDg5MTcxOTU2MywgMC4yMDkwMDIxNzIzOTYyOTgsIDAuMDk3NjE1MzM2ODE3NDA3NSwgDQogICAgMC4wODg0NzMxMjQ2NTQ2NzA4LCAwLjA3MTExMjQ5Njk5NDMzLCAwLjA0NzQ0NzAwMTgyNjU3ODYsIA0KICAgIDAuMzUwNDUwNTUzMTE1NjQxLCAwLjQzNTUzMDUzMDQ1NzAzNywgMC4wNzExNzAyNjIzOTAzMjcsIA0KICAgIDAuMDk5MjAwODE1MDIxNjYwOSwgMC4xNjQxNDAxMDcyNTU5NTQsIDAuMTM2NjExMDg0MTkwNTA2LCANCiAgICAwLjExNzY4ODA0NjUyODMzNywgMC4xMDIwMTA2MTA0MDgyOSwgMC4wMzc2Nzc5NTUwODU2OTEyLCANCiAgICAwLjAzODkyNzA1OTQyNjMyNjEsIDAuMTE2NDQ5MjYwNzQ1NjgyLCAwLjA4MzYyNjI5NjYxNDA0NTYsIA0KICAgIDAuMDA1Nzk1OTMyODkzMTM5MDUsIDAuMTM3MTQxMjExOTM3MDE1LCAwLjM1NDc1MDg0NzE4MjgzMywgDQogICAgMC4xMTM4MzU1ODY1NDIzMTUsIDAuMjc5NjkwMjc0OTI0NzU3LCAwLjA0MTY2NjE4NTY4MDM3NTUsIA0KICAgIDAuMTgxMzU0NDI1ODI2ODg2LCAwLjA2OTgwNTk3NjQ5ODUwMTksIDAuMDI2MDU0NjgxNjA4Mjk1MSwgDQogICAgLTAuNTYyOTQ5NTU3OTE1NzYyLCAwLjIyOTcyNzI0NTg3NTA3MSwgMC4zNDUwMzU0MjMxMTE0MDcsIA0KICAgIDAuMTMxNjI2NTEwNDQwMTEsIDAuMzMyMjE0NDE0MTMzOTg1LCAwLjMxMzAxNjU2Nzg2MzY4NSwgMC4xNTc1NTM0NDgwMzcxNDUsIA0KICAgIDAuMjIzNjkxNTc5Mzc3NjE3LCAwLjE5ODE3MDIyNzIxODA1MSwgMC4xMzE0MDI5NTk2ODk2NDMsIA0KICAgIDAuMDM0NTk4MjcwOTc0MjczMiwgMC4wNTMxOTI4ODYzMTAwMzE5LCAwLjA4Mjg2NDM5MDkwNTk5LCANCiAgICAwLjE2MjI3MDk5NTI5MTY1MSwgMC4yNTExOTcyMjA1MTUwMDIsIDAuMTAyMDkwNDc5NTg3NDU2LCANCiAgICAwLjE1NzE3ODUwMTMyNjM1NywgMC4wODMyMzQ1MjEzNDI3NzI2LCAwLjExNTYyODQ5OTQ5NjQ0NiwgDQogICAgMC4yMzYyNDE4NDQ1NTMwNjUsIDAuMjM4MTUxOTgwOTI2ODM4KSwgU1BVQiA9IGMoMC4xMDkxOTY0MzMxNjE5MSwgDQogICAgMC4xMTA3NDkzNzU1MDcwOTUsIDAuMDk5NjkyMjExNDc5NjIyOCwgMC4xNjEzMDg1NDIwNTc5NTIsIA0KICAgIDAuMjM3NjY3NzA0NjAzMjA4LCAwLjA0MjczNTc0MTc0OTU3MTQsIDAuMTk3MjgzNzk1MjYyNDgzLCANCiAgICAwLjA1OTQzMzkyNzQ2NzMxMywgMC4yMzExNTAxMTAxMDYwMDIsIDAuMDcxNzA1NTEzMjQxNjc5NiwgDQogICAgMC4xNjA3NDQzNDE1NTQ3OTcsIDAuMDc3NTg3ODMzMjY1NjkzLCAwLjA4OTM0MTU2MzgwNjI3NDgsIA0KICAgIDAuMTI4NDY0MTAzODQ2MzczLCAwLjEzMTMzMDI0MjYyNTU4NCwgMC4wOTUxMzY5MDM3ODU3NjQsIA0KICAgIDAuMDg2NjY2NTE5NjE3MjAzNSwgMC4zNTY5ODQ1OTk5MzgxODQsIDAuMDkzMTAwNzUxNDY0MzIxOCwgDQogICAgMC4xMTg2MDUzNDA4NTgwNywgMC4xOTQ1MTk1MjA2NTc3MTEsIDAuMDM5NjU4MDYyMjk0MjI2MiwgDQogICAgMC4wNTU4NjE4MzYzNjU3MzY2LCAwLjAyODAyNjI0OTM0ODA3MiwgMC4wOTEwNjQ4MTg3MDI0OTAzLCANCiAgICAwLjA4NDY4NDM0ODE0ODMwOTYsIDAuMTM3NzE0NDkyMzYyNTY3LCAwLjEyMDA2OTkwMTczNDgzNCwgDQogICAgMC4wODE0MTIwMzk2NzkwMDgzLCAwLjEyOTIzOTQ0MTA3OTEsIDAuMDg0MDQyNjIzNTk3NTIwNSwgDQogICAgMC4wOTE1NTI2MjcyNDM3NDg3LCAwLjQ4MzUxMTc5Njk1MTUzNywgMC4xMjQxNzQyMTE2MDc3NTEsIA0KICAgIDAuMTcwMDE0MTU1NjQ1NzE1LCAwLjMyNDgxNDI4MjA3MDc1LCAwLjI0NDM2NTIyMDc3NDQ0NCwgMC4wNzAwNDc3NjEyMzU2ODQ0LCANCiAgICAwLjIzMDUzOTg4NDQxODA1MywgMC4wOTg1MDQzMDQ2NDE1Nzg0LCAwLjA0NzEwODQ0Mzc5MzM2MjQsIA0KICAgIDAuMDUzMjAzMTAwMjczOTUyMSwgMC4xNjI5MTkxNzg1NTAxLCAwLjA4Mjg1NjI4NzA2NTE2MDUsIA0KICAgIDAuMTQ1OTE1MzM3MjY0NjE4LCAwLjA3NDE4ODMzOTM3NDk3ODYsIDAuMTAyMjg5OTcyNTAxMTQxLCANCiAgICAwLjEzMjY1OTkzMjg1ODAyLCAwLjA4OTY5Mzk5NTQ2NzUyNjEsIDAuMTcyMzY1OTY0MDc3MTY5LCANCiAgICAwLjAyODY0OTYxOTk5Mjg0NjQsIDAuMDMyNjU2MDU4NDQzNTU1MywgMC4wODI5ODYwNzI0NzE0NDQzLCANCiAgICAwLjEyNTI3ODc5ODEwNjg5MSwgMC4wNzExMzI3MDg2OTA2NTE5LCAwLjEwODIyMjA3MDUyMzgzOCwgDQogICAgMC4xMjMxNzU1Mjk3MDAwMjIsIDAuMjAzNTcxNDY5Mjk3NDQsIDAuMDkzNDY1NzA3Mzg1MzkzNiwgDQogICAgMC4xMDE4NzEwMDM5MTQ4MTYsIDAuMDg1MDIyMzcyNDMyODkwOCwgMC4xMTgwNTk3ODAwMzcyODksIA0KICAgIDAuMTM2MTUwMjQ2MjYzNjI1LCAwLjAzNTcyNjI4OTYzNjEzNjIsIDAuMTI1NzIxMTQ0ODExNDk5LCANCiAgICAwLjEyNDE5NzQxMjQzNDA4NiwgMC4wNjExNDE4NzQ1OTc5MDM1LCAwLjA4MDMxNjkxMDMxNDUxNTYsIA0KICAgIDAuMTM5MjA3NTA0NzEyMjE5LCAwLjMwNTY5NDkzMDM4OTcyMiwgMC40Mzk0NjkzNTg0ODk5OTksIA0KICAgIDAuMjE4NjkwODM3MTIzNDM5LCAwLjE3ODA2MzY4Njk3MjQ1MSwgMC4wMDg2MzUxMjU2MjIyODY1NSwgDQogICAgMC4xMzg3MTk4OTQ3MjQ5MjQsIDAuMDgxNDUyOTQyMDk1NTU4LCAwLjA1Njk2ODQ0NjAwNjY3OTQsIA0KICAgIDAuMDc0NDUwNTQ3MTEyMzg5NSwgMC4xMDkyODExMDY4NDcsIDAuMTY3OTExNDUwOTIxOTg2LCAwLjEwNTMwNjE1NTMzMzIyLCANCiAgICAwLjAwNjAxNDQ0Njc5MjE2Njc1LCAwLjEzMzc0MTQwMzg3MjQ1MywgMC4xMjE2Nzc1NjY0NjgwOTUsIA0KICAgIDAuNjU1MDI0NTE0NTU3NzQ1LCAwLjA0OTMwNjUyNTAyOTU3NzIsIDAuMjEwMTI4OTgyMzE1Njg0LCANCiAgICAwLjA5OTM0MDE2NTY5Mzc1MTcsIDAuMTQ3NjQ4Njg5MTY5MDg3LCAwLjE5MzI1ODg4Mjk1NjAzMSwgDQogICAgMC4wOTIxNzMwNDc5OTg4MTE4LCAwLjA4OTQ3MDA0MTc1MTMyOTMsIDAuMTk2MTM5ODU1ODQxMzMzLCANCiAgICAwLjA3ODAwNzMzNDIxMDkyOTIsIDAuMTI3MjgxNDE5MTE1NjY4LCAwLjExNTIwNzY2Njc4MjU1OCwgDQogICAgMC4wNjA3MjUyNjYwOTY3MTMsIDAuMDU3NTUwMTk3MjA0MDc3MywgMC4xNDkwMDc2NzEyMjE1MzgsIA0KICAgIDAuMDcxOTMwODU0Nzk1ODYyMSwgMC4xNzE0MzUyNTgzNTg1MTgsIDAuMTU2MDExNTczMzE2NDc3LCANCiAgICAwLjE1NTk3NDA2NDg4ODU4MiwgMC4xMzcwOTc1MDY3NTM4ODQsIDAuMDY2MjU1MjQzNjE1MzU5NSwgDQogICAgMC4wOTE4MTg4NzMzODAyNjI1LCAwLjE5MDA2NTA3MDM5OTI3NywgMC4wODU2NzM5NjcxNjc0NjQ1LCANCiAgICAwLjA3MDQwNDkxMTY4NDE3NDYsIDAuMTc3NTQ5ODI2NjcwNzY1LCAwLjE5ODU1NTE0NDI1NTkwNSwgDQogICAgMC4wODgyNTYxMzc5MzQ3NjgyLCAwLjEzNzk4Nzc2OTk3MjQ4NSwgMC4zMTEwMzQ5Mjk4NTE0MTQsIA0KICAgIDAuMDgxNjk4ODc4MTQ5OTYxLCAwLjAzNjQxNTc5NzgxNDIzNiwgMC4xNjQyOTI4MzkyODcxODIsIA0KICAgIDAuMDI5MTQ2MTA4NDczMzMwMiwgMC4wNzczMDcwOTQxNzc5ODE5LCAwLjEwNzg2OTI1NjMwMTY5LCANCiAgICAwLjAzNTkyODAxODM1OTQ2NjYsIDAuMzI4NTE3ODY4MjQ2NzM0LCAwLjExMjkyMjYyNTc0MTg0NiwgDQogICAgMC4wNjQ0MTY5MzE3NzUyMzQxLCAwLjA4NzkwNzQ2NzQ0MzAzNjgsIDAuMTA5NDkzMDMzMzQwOTQ2LCANCiAgICAwLjA4MDE1ODc0MDMwODY5MzcsIDAuMDYxMjYyNzYyMTMxOTU1NCwgMC4wODU2MzIxNzM0Nzc0MjYsIA0KICAgIDAuMDU4NjI1NzIzMTU3OTI0NywgMC4wNTcxMzEwNzkyMDE3NTkyLCAwLjIyNDMwMTM5MzEyNDE2MiwgDQogICAgMC4xMTExNzM0MzIwNjA1OTMsIDAuMDY4Njg3MTgxODA5NjA4MSwgMC4xNDE1ODM3MTk3ODYyOTYsIA0KICAgIDAuMTEwMjU5MjkxMDkzMDU1LCAwLjA5MDcwNzAyNjA0NTc5NTcsIDAuMTM1OTE3Mjk5OTgwMTg0LCANCiAgICAwLjE1MTM2OTE3Nzg4MTAxKSwgSCA9IGMoOS40MjcxMjExMDIyNDgsIDI3LjQ4OTkyNTE1ODMxODksIA0KICAgIDIyLjc0ODk2OTE4NzMzMzcsIDI5LjE2NDAwNzY1Nzk0NTEsIDE2LjM4NDA3MzE1Njc5MTcsIDE2Ljc2MTk0MTY3MjMxODUsIA0KICAgIDEzLjM2NTQ5MDkwNTQzNjYsIDE5Ljg3NjU0MzIwOTg3NjUsIDEwLjE4OTczOTk4NTk0NTEsIDI2LjM4OTMyMDA4NjkyOTUsIA0KICAgIDI0LjY1NzUzNDI0NjU3NTMsIDE4LjUyMjEyOTA2OTk5NDEsIDIxLjE0OTIwMzI4MzQzNzksIDE0LjgwMDA2NDU4MjA5OTksIA0KICAgIDguODI2MjQxNjAxODk2OTgsIDE5Ljg2NjA1NzA1NDU0MzEsIDM2LjgxMTIyOTQ2MzE2MjEsIDEzLjE5MDU5NDUzMjU5NDEsIA0KICAgIDExLjE5MTA5OTQ3NjQzOTcsIDI0Ljc1MjAyNDc1MjAyNDcsIDYuODkwNzMyNjY3Njk3OTMsIDI0Ljg0MjI0MjY5MjM5MTMsIA0KICAgIDI5LjMyNDMwNzIyNTEwNDQsIDIyLjMxNTIwMjIzMTUyMDIsIDE2Ljk5MTgxODc1MzkzMzIsIDE4LjUwMTY4NDQwMTkwMzYsIA0KICAgIDEwLjI4Njc1NDY2NTQ1MjgsIDkuNzE5MzUzNjYyOTgxNDEsIDI3LjY5ODE4NTI5MTMwODUsIDE5LjIzMDc2OTIzMDc2OTIsIA0KICAgIDEzLjA5NTY3MTE1MzE0NjYsIDIxLjgwNTMzOTU1NDE3MzEsIDguNTYzODQ5OTQzMTYwMjgsIDE2LjA4MTk1MTg2NDI5NDcsIA0KICAgIDEzLjI1MjY3NjQwMzg2ODMsIDIzLjYxMjc1MDg4NTQ3ODEsIDkuODA4NTAwNzAwNjA3MTksIDU1LjkxMzY2NjQ1NTA2NDgsIA0KICAgIDEyLjI0OTg5NzkxNzUxNzMsIDkuMDY1MjIyNTEwMDA3MDYsIDI4Ljc0NjMyNzEzMDI2NDQsIDIzLjI0NDM3MzM4NTgwNzQsIA0KICAgIDE0LjcyNjA1ODcyMTMwMjQsIDE0LjQ1NDY2NDkxNDU4NiwgMTMuMzYwOTAzNDUxNTY2NywgMjQuOTEwMzIyODM3NzgzOSwgDQogICAgMTEuNTIsIDE0LjMwNzkzMTU3MDc2MiwgMTcuMjM1MTYyNjE2MjgzMiwgMTIuODc5MTAyNjE3MzY2LCANCiAgICAxNS45NzM3NDE3OTQzMTA3LCAyMi4xODc0MTg0Mjg2MDg3LCAyOC4zMjU0MTEwNDk2Mzc2LCA3LjI3NjUwNzI3NjUwNzI3LCANCiAgICAxNS4xMDM3MTg1NzM3NTAxLCAxMy43OTM1MjQzNjc1NDI0LCAxOC42NzA0MDI0NDUyMzY4LCA4LjUxODk0NTc4MDQ1OTY2LCANCiAgICAxNC4zNDMxODY5ODYxODE1LCA4LjQ1ODk5MjI3NjU3MjI3LCAyNy4wOTQwODI3NzUyNzcyLCAyMi44ODAyMTUzNDMyMDMyLCANCiAgICA5LjQ1NDE0Mzk1MTQxODEyLCAxNy4wMDg1MDQyNTIxMjYsIDE5Ljc1NzI2Nzg1MjEwMjcsIDE3Ljg0Mzc0ODc2NjMzMzcsIA0KICAgIDIxLjUxNzU1Mzc5Mzg4NDQsIDIxLjU5MDU1NjA3MzMxNDcsIDkuMjMwNTAzNzk1NzIxMTgsIDQuNjQzMTY0MjMwNDM4NTIsIA0KICAgIDEzLjkwMjY4MTIzMTM4MDMsIDkuNTA4MTM2NzcwODkwNDcsIDEyLjY2MTg3MDUwMzU5NzEsIDE0LjM2OTY5MzAxMTEwMzgsIA0KICAgIDExLjA0NTE2OTc5ODg3OSwgMzAuNzkwNjMwMDM4MjUxMiwgMjEuMzkzMTE5OTcyNjE2OCwgOS4wODU5OTI0MjgzMzk2NCwgDQogICAgMTguNzQxOTc2ODkzNDUzMSwgMTEuNTk5OTQzNDE0OTEwMSwgMTIuODEzNjY3OTEyNDM5OSwgMTIuNzQyMDE1NTU1MTg3OCwgDQogICAgNy4wMTU5MDI3MTI4MTU3MSwgMTIuOTE0OTM3NzU5MzM2MSwgMTYuOTU3NjA1OTg1MDM3NCwgMTYuMzc2NzI4NDc3NjY1MiwgDQogICAgMTMuMjk1NjI0NDcxNzUwOCwgMTYuMTQwODY1NzM3MzQ0LCAxNS4wNDE4NTI4NTQxNzU4LCAyNC4zMjI4MzAyOTI5Nzk1LCANCiAgICAyNS43OTkyMTQ4MDY1MDU4LCAyMC4zNDUwNDQyMTc4NTE0LCAxNy42Njc4NDQ1MjI5NjgyLCAxNS4wNTEzOTUwMDczNDIxLCANCiAgICAxMi42OTQwNjM5MjY5NDA2LCAzLjU3MjQxMDAwMjc0OCwgMTUuNzkzNjU5ODExMzg1LCAzMy40NDU5MDcwNDk5MjksIA0KICAgIDEyLjUxODIzOTc2NjUzMDksIDE1LjEzNDczNjA2NDk2ODYsIDI1LjYwMTI0MTI3MjMwNDEsIDE1LjQyNzkyNzkyNzkyNzksIA0KICAgIDE5LjU1NDM0Mjg4MzEyODcsIDE4LjU3MzQwNDQ2NTUyMDYsIDIxLjEwNDI5NDQ3ODUyNzYsIDE1LjQ2NzM4Mzk5NDYyLCANCiAgICAxNS44Mjg5MzY0MDY1NTM3LCAxMy4zMTE1MzY2NjUxMDk3LCAxMS45NjEyNjgyNzQxNTk4LCA5Ljg5ODU5OTcxMDI4NDg4LCANCiAgICAxNS44MjgxNTE0OTgwMjE0LCAzNi44NzU0Nzk0MTcwMjg5LCAxNS4xNTY2NTY0ODY4MjI3LCAyNC4yMjMyNzU0MDgxMDk1LCANCiAgICAxMS41Mjk1OTI2MjEwNjA3LCAyMS44OTc4MTAyMTg5NzgxLCAxOS4zMjY5MzYwNzI0NDIyLCAyLjY2MTc0MTUzOTQ2NDM5LCANCiAgICA3MS41OTk2ODA1OTYyMjAzLCAyMi41MDQ5ODUyODE1NDk3LCAyNi4yNzIxMjM4OTM4MDUzLCAxMy4xODY4MTMxODY4MTMxLCANCiAgICAyNy44MjkzNjI3NjMzMDQ1LCAyNS4wMjAyOTg5MjAzOTgxLCAxMi4xMDA0MzM1OTg4NzA2LCAyOC4wMTAzNzE1Njg1ODA4LCANCiAgICAxNS40NTI3NTExNjczODA3LCAxOC44NDYyMjE5MDc2MjY5LCAxNC4yNTY2MTkxNDQ2MDI4LCAyMC4wNjkzNzU2MTk0MjUxLCANCiAgICAxMi40NzY3NzE5NjcwODI1LCAxNS4zNjk1MjI1NjM3NjcxLCAyMS40NzkyNTA4Mzc5MjAzLCAxMC4wNjM1MDc1NzIwNTY2LCANCiAgICA5LjYyNDgxODk1MDYxNDQsIDExLjM2MTMzMDg5ODc2MjQsIDE2Ljc1MjEzNjc1MjEzNjcsIDExLjM4MDg4MDEyMTM5NiwgDQogICAgMTMuNjAwMzk1NjQ3ODczNCksIEREID0gYyg2LjY3Nzk2NjEwMTY5NDkxLCAyLjgyMjg2MDIzODM1MzE5LCANCiAgICA1LjM2ODkyMDM5MjU4NDUxLCAyLjg4NDIyNjAyNjEzNjU3LCAyLjI4MDE5MTEzODE0MDc0LCAyLjY2NjkyNTA2NDU5OTQ4LCANCiAgICA1LjM1ODY0Mjk3MjUzNjM0LCA1LjU4MjM1Njk5NTE3NTc0LCAwLjQxNjAyMTA0OTU1NDE1OCwgMC41MTM1NTIyOTU5MTgzNjcsIA0KICAgIDEuNjY0MTMzNzM4NjAxODIsIDkuNjg5NTQ2NTk5NDk2MjIsIDI0LjAyNTUyMjA0MTc2MzMsIDAuNzUzNzAxMzc1MDg2MTk2LCANCiAgICAwLjY2NjExMDkxNjExMDkxNiwgNS43OTMzMjIxNDEzOTE1MywgNi4yMDIzNzQ0MDkxNDU4NywgMS4yNDY2NjM0ODkwMzcxNywgDQogICAgMC45NTk4NTkyODc2NDM2OTYsIDMuNTc1NjkzNDg0MDk2NjQsIDIuNDMxOTQyNTQ0NDU5NjQsIDIuOTMwMjg2OTI4Nzk5MTUsIA0KICAgIDYuNjU1MTU3ODk0NzM2ODQsIDAuNzM5ODI5MDA5NDMzOTYyLCAxLjM4Mjk0MTY4ODQyNDcxLCAxLjcyNzQxNTQ4MTI0ODg0LCANCiAgICA1LjA5NTA4MzQ4Nzk0MDYzLCAyLjIyNTc5NzcyODUwMTg5LCAyLjczMzI2MTY3MDc2MTY3LCAyLjg1NTgwNDI2ODYxMDA5LCANCiAgICAwLjMzMDQ2ODIzMzQ1NTU1LCAxMC4wMTQyNzY0NDM4Njc2LCAwLjk0NTUwNTM1NjMxMTEzMSwgMC44MzU4NDIxOTQ5MDg2MjIsIA0KICAgIDQuMzQ2NDc5ODQ3Nzc3MiwgMS4yNzAzNDEyMDczNDkwOCwgMS41Nzg1NzU5NDI3MDA2NSwgMTc2LjAzNzY3NTYwNjY0MSwgDQogICAgMTIuOTIzNDgyODQ5NjA0MiwgNi43NTczNTg3OTA3NzE2NywgMi40ODc4MTY3NjQxMzI1NSwgMy43MTEwOTA4MjYxMDY4LCANCiAgICAwLjkzOTE4MDQ4Mjc3NjM5MywgNC4yMzI0ODA1MzM5MjY1OCwgMC4zNzIzMjAyNjUzMDg1MzksIDEuMzQyMDcwMDcyMjExODIsIA0KICAgIDMuNzA2OTk4ODEzNzYwMzgsIDYuOTA1MDY4NzI4NTIyMzMsIDIuNzM5NDMxMDU0OTE5LCA0LjAzMTgyNTc5NTY0NDg5LCANCiAgICAxLjAwODgzMDAyMjA3NTA1LCAxLjMxNjc5NjUxNjk1NjkyLCAxNS4yNzczODA5NTIzODA5LCA1Ljk5ODQ0MTE1MzU0NjM3LCANCiAgICA3LjgyNDIzMzM1ODI2NDc3LCAxLjUzMzE5NjA4ODUyMjksIDEuNDkwNTA4NzMxOTY2NTksIDMuNDk5Njg5NDQwOTkzNzgsIA0KICAgIDQuOTc3Nzk3MTI2Njg2OTgsIDMuMDc3NTMyNTQxMDI5OTksIDEyLjQyMDIzNDUyNDEzNDEsIDAuNTIzOTc3NDMzMDA0MjMxLCANCiAgICAxLjA3ODI3OTYzMzkwMTMzLCAwLjk3NzkwNDYwNjYwNDE1OCwgMi43Mzg1NTA3MjQ2Mzc2OCwgMjMuODc0NjQ2NTU5ODQ5MiwgDQogICAgMy44NTg4Njg4OTQ2MDE1NCwgNC44NTg4Njc5MjQ1MjgzLCAyLjE2MDY3MTAxNTg0MzQyLCAxLjIxMDA3MTc5MjczNzQ4LCANCiAgICAwLjc0OTgxMzg0OTU5MDQ2OSwgMS4xNTg2ODY0NDA2Nzc5NiwgMS41NzgxMTA4MDgzNTYwNCwgMS4zOTIyNDAwNzI3NDkzMSwgDQogICAgMi4wMzU1NzA0Njk3OTg2NSwgMy4zMTg2MTA5OTQ1NDQ2OSwgMTMuMjM5NDI1OTgxODczMSwgMC43NDMxNjcyMDI1NzIzNDcsIA0KICAgIDMuNDUyNDAyMDU2MzcyOTgsIDEuMjM4MDAzNTAyNjI2OTcsIDQuMTg1NDc0ODYwMzM1MTksIDEuMTMyNzA4NTI4NTg0ODEsIA0KICAgIDIuMjQ0ODU1MTAyODk3OTQsIDAuNzk5NzY3NzAyMzI3MTI0LCAwLjQ1NjkyNzk4NTQxNDc2NywgNC4wNzcxNjI4OTk0NTQ0LCANCiAgICAyLjE3OTY5MjQ4MjEwODY5LCAxLjExMjE5OTEwMjQwNzE4LCAxLjg0NjE2Mjc4Mzk0MjM2LCAxLjk4MTM4MDA2NTcxNzQxLCANCiAgICAyLjQ5MzcwNjI5MzcwNjI5LCA0LjgzODc3MDAyMjIxNDQyLCAyLjcxMDg2NDYzMzIyNDA5LCAwLjc5NTU2MDc0NzY2MzU1MSwgDQogICAgMS44NzkxODMxMTMwOTQyMSwgMS43NzU5ODgyODY5NjkyNSwgMi41NDY5NTQxMzEwOTUzNSwgOS41MjM3NTczMDk5NDE1MiwgDQogICAgMC43MzM4NjY4NzcwNzgyODQsIDE0LjcyMjgyNjA4Njk1NjUsIDEuOTA5NjI5NjI5NjI5NjMsIDAuNzg0MTc1MjAzMTA4NDQyLCANCiAgICAzLjUwNzE3NzAzMzQ5MjgyLCA5LjAwNTMzODA3ODI5MTgxLCAxLjA2OTU1MzgwNTc3NDI3LCAyLjU3MjY2NDM1OTg2MTU5LCANCiAgICA3Ljk4NDQ3ODkzNTY5ODQ0LCAzLjc4NjAzMDA2MTg5MjEzLCAwLjcwNjg4NDk4MTg4MTYyNiwgMTIuMDQwNjk3Njc0NDE4NiwgDQogICAgMC4yNzkyNDIzMDQ2NTY2NjksIDQwLjE0NTc2MDYyNDEwMTgsIDIuNDIwNTMzODgwOTAzNDksIDAuMzM5MzQ5NTM1MzgyNDE2LCANCiAgICAyLjIzMDI4NTcxNDI4NTcxLCAwLjUyMjkwMDc2MzM1ODc3OCwgMS4xNjM3MzA3MzI5MzQ4OCwgMS42MjYzODA0MjIyOTg3OSwgDQogICAgMS4xNDI5ODc1MjY2MjAwMSwgMC42MzEyMDM1NDgzMDk3NTcsIDEuMzMwNDg3ODk0NjIwNjQsIDAuOTExODIzNjQ3Mjk0NTg5LCANCiAgICAyOC40OTg0ODc5MDMyMjU4LCA3LjIwMTUxNTk3MTg0NjIzLCAxLjE3NjExNDgwMDc1OTAxLCA3LjIzMzU4ODU3NDM3ODM4LCANCiAgICAxLjkyMTQ2ODg3NDI5NDcsIDQuMTYyNzk5MjYzMzUxNzUsIDAuODE5MTEzNDQxMzcyNzM1LCAxLjY4MDI2NjQ0NDYyOTQ3LCANCiAgICAwLjgyMzc0ODA4NjU5NTIzMiwgMS42MjQ4NjcxNjI1OTI5OCwgMjg0LjU4MjIwNzIwNzIwNywgMy40MzIyNjAyMjgwMzQ4NywgDQogICAgMi45NTI1NDUxNzg2NDUzMywgNC40MjQ1OTYwNTAyNjkzLCAxLjQ5MzEwODcyODk0MzMzLCAwLjU3MTcwMTIyMzIxNTA2LCANCiAgICAxLjI3MjI5ODI1Mzg5MzM0KSwgRE9SQyA9IGMoMTMzOC44MjI5NDcxMTMsIDE3MjIuMTM3NTY4NjI3NTYsIA0KICAgIDEyNTQuNDczNzMwMTc3MzgsIDIyMjcuNTk4MzQ2Nzc2MTEsIDE4MjguNDM5OTUyMjQ5NCwgMTUzOC42MTY4MDkyOTYzOSwgDQogICAgOTI4LjE3MTU2MzAwMDMyOCwgMzE4MC4zOTc0MDA2MDYxMSwgMTYyOS41MTAxODU3NzkyNiwgMTk5NC4wNTQ0MTE5NTU0MiwgDQogICAgMzk4OS43MzUyNjY5MzQwMiwgMTM0NS43NzAxNzgxNTY2NywgMTAwMi4wNzE5MDE3MzUxMSwgMTUyOS44OTI1NDE1ODMxNSwgDQogICAgMTE1Ni4yNDgxNTYyNjAyOCwgMTMyOC40ODA4MDc4MTI4OSwgMTM3Mi43MDQ0MTA2NzMyMiwgMTU3My41MDM1ODE1MTc1LCANCiAgICAxODQxLjAxMTU4NTE3NjE1LCA4MzguMTAzOTEzNDc0OTQ1LCAxNTIxLjczODc1MTIzNDksIDIzMTcuNDAwMTcwMjM1MzEsIA0KICAgIDE2NTEuODExNzgyMzkwODUsIDM4NjguNjYwNTA2OTY3MzMsIDE3NzEuNjY2OTQ1Mjc2MTksIDE1NDkuNDQ1NzE1MDYyNDUsIA0KICAgIDExNzYuMTYxMDU0NTU5MjEsIDEyODYuNzc3NDkyODcyMTgsIDE0NTcuMzY5Mjg1Nzc4NjIsIDE2NDEuMDg2OTUzNDA4MiwgDQogICAgMTk5MC4yNDY3NzUwNTg3MywgMTE0NC42NzE4MDM5MzY3MSwgMTE0Ny4yODk5NTU3MTkwNywgMTQ0MS45NzIzODYyODIxNiwgDQogICAgMTM5NS4zMzE0MDcyODY1NSwgMjQ0My4wNTE1MTQ3MzAyNSwgMTIyNy4xODM1MzQ0OTcyNiwgMTU3My4zOTc1NDYxMTY5OCwgDQogICAgMTQ0NS43OTQ5Nzc0MTU2NywgMTQwNy4xNTY2ODEzOTY1NSwgMTcwMi42NzU4OTkzMTIsIDE0MzAuMTA2NTIyMTgzOTUsIA0KICAgIDE4MDQuNzg3MDQ0MTgzMTcsIDE0NDkuNjUyNTQ3NDMxNjUsIDE4ODMuNDQ4OTA0ODEyMTMsIDIwMTAuOTc0NzU0MDg4NzMsIA0KICAgIDIwMjMuMTQ4NDQ4NDQ1MDIsIDEyMDEuODI5NjAyNzE1MTIsIDEwODAuNjMwMDA2NzQ5ODEsIDMxODMuODQyOTE2ODY1MDcsIA0KICAgIDIyNzAuNTQ1MzIyNzY0OTksIDI3NjYuNjgwODkxMTQ0MywgMTMyMC44NDY3MzE0MjAzLCAxMDMzLjg4MTAzODQ4NTQ1LCANCiAgICAxNDE3LjQzMDU2MjUzNDI4LCAxMzUwLjIzNjY2MjM1NjA4LCAxMTQyLjkyNzY0NjA2NjY0LCAxNDQ2LjgzNDEzNjM4NDA3LCANCiAgICAxMTM3Ljc4Mzk1MjE5NjMxLCAxNjgxLjU5NzczMDExMjE2LCAxOTA4Ljk3MDUzMTY2Njg1LCAyOTk0LjcwMDc0NTEzNTM4LCANCiAgICAxNjQ3LjU0ODk0NzU2NTg1LCAxNTUwLjAxNzE1NDUxNDAxLCAxNzA2LjAyMTEyNTkwMjA1LCA5NzEuOTI0OTMzNzA0NTA3LCANCiAgICAxNDI5LjEwNDM0NDgzNTQyLCAxNTQzLjYzMTI0NDUyMTY2LCAxMjE5LjkxMTQ2MDY1MzE0LCAxNTgxLjE0MTc3MDM2MzM3LCANCiAgICAzMzgyLjcyNDI1NTY1OTg4LCAyMjYxLjY1MDc4MjEzNDgxLCAyMDI3LjkxNzA2MjMxNDYsIDE4NDEuODg4MjYxODczMjksIA0KICAgIDEyMjcuNzkyOTQzMzQ3MzEsIDIyNDAuMTQzMzQ0NjI1OTUsIDE4MjcuNjQzNzM2MjY4NTQsIDIzNjQuODY3NDU3OTMyMzYsIA0KICAgIDE1NTMuNDIzODA0MzY1MzEsIDE2MTUuMDg0MjUyMzAxMzMsIDI1MzEuMjEzNjIzMjE4MTgsIDIxMzkuOTkyMzY5NjYzODYsIA0KICAgIDE0NjAuOTk5NTg1MTc1ODIsIDE0MjcuNzgzODAyMDkxMjgsIDQxNzguMzk2MjMxNjA3NzEsIDE0ODIuMTEyMTA4NTMwMDcsIA0KICAgIDExNjAuMjAzNTI2NjYzNDYsIDIxNzkuMTI2MTQ2MTI2NTMsIDkzOC43NjI3ODEyOTQwMDgsIDE1NjMuOTI4MDY0MjYxMjQsIA0KICAgIDI2MTQuMTI4NTQ4OTQ3MywgODY2LjM5MTYyNTQ0NzIyMiwgMTAzOS4wMzczMzQ5MjcwNywgMTgzOC41NDI0NDUwOTMxNCwgDQogICAgMTM0Ny4zNjg0MTk4MTQ1MywgMTc3NS44NDE4MTA4MzQwNywgMTA2OC40MzcwOTE5MjYzNCwgMTc0Ny4wNTkzMDM4NDQ5MiwgDQogICAgMTYxNi40NTUwMjMxMzM5NSwgMTA4Mi40NjMyMjcxMTY2MiwgMjU2Ni4xMDY0NjE1MzYxMiwgMTA5NS4wNjg4Mzg5MjMyNywgDQogICAgMzM3OC4wMjI4MTQwNzAwMiwgMTgyOC4zODE2ODExMDI5MiwgMjUxOS41MDU4NjgyMzY1MywgMjExOS40NzIyODAxNTg3OCwgDQogICAgMTc1MS4yMTU2MjAzNDg1MSwgMTM3OS42Mzc4MTk4OTAwMywgMjA2MC4zMTU1Mzg2OTc0OCwgMTc1NS4yODcwMjgwMjQ2NCwgDQogICAgMTk4NS45NTE5MDY1Mjk0MywgMTUzMy4yODE4MTUxNjMzLCAxMDgxLjg1NzgzODY3ODUzLCA0NDY3LjU3NzI3NDk0MzIxLCANCiAgICAxODk4LjI4ODExNTYyMDU4LCAzNDUzLjA5ODg2NDgzODU4LCAxMzc4LjQ4NjU0OTc1MDc0LCA1MzIuNDI2MjEyMjg2MjkxLCANCiAgICA0NTA3Ljg1MjIxMDAxMTA1LCAxNzUwLjI0MDcwMjYzNTc3LCAyOTAzLjg0MTAyOTI5NDQ5LCA0MTU2Ljk5MDQ1MzI1NzQ5LCANCiAgICAxNDIyLjY0MjkzMDMyMDkxLCAxNzMwLjY5NTY1ODM2NjY5LCAxMzUxLjEyOTk0NzYxLCAxMjg1LjMxMTg4MjY3NjAzLCANCiAgICAxODU3LjE0OTE0NDQ0MDc5LCAxMzg5LjExMzYzNTM1MjIsIDIwNDMuNzIyNjEwOTg0MDksIDE2MDYuODc5MDAwNDk5NSwgDQogICAgMjE1OC42NjM1MzI2Njk1NiwgMjE5MC42MjA1MDY4NjgwNSwgOTg4LjgzMDE4NjIwNzI0OSwgMTU5Mi4wMDIzMjc4MDExMSwgDQogICAgMTIyMC45MzQ2MzQxODAwMiwgMjAzMy42NjkzNzQzNjc1NSwgMjQ4Ni41NDI4NDMzNTg1OCwgMjAzNC45NTQ1OTY5Nzg3LCANCiAgICAxMzkyLjUyOTE5MzgwOTI2KSwgQ1JFRCA9IGMoMCwgNTk5OC4yNzI3NDU0ODA5MiwgMTc0My43MzQ2MDAzNTc0NSwgDQogICAgMjYzOS44MDM2NzQ0NTkxNiwgMCwgNTkyOS4wMTM1Njg1NTY4NiwgMzUwLjUyNjQ0MzkwMzUxOCwgDQogICAgMjYxNy44NTA0MTA5MzkwMiwgMCwgMCwgMCwgMjg1Mi4zMzUxMTkzODM3NSwgNTAwNS40MjU2OTM3NDAyLCANCiAgICAyODg4LjE3ODk0Mzc5OTUyLCAwLCAyMjQ3LjM2OTc3NTE2NTYyLCAzMDM3LjQxNTIyNTY0MTI2LCANCiAgICAwLCAxMjIxLjA5MTQzMzUwNDY4LCAyNDM1Ljk1ODg4MjQ2MTUsIDI3MDEuNTA4NjQ1ODU2NzIsIDUzODMuMzkzNjYxMzU2NzcsIA0KICAgIDQyOTMuNjk5MzE3ODU1NDMsIDE2ODguNTQyNDMzMTYxNjMsIDAsIDY1MjAuMDU5NjMwNzEwNjYsIA0KICAgIDAsIDAsIDkzMi44MDEwMzg0NzA2MTYsIDcyOC42NzYzMDk3Nzk1MzYsIDAsIDQwMDUuMzcwODI4MjQwMDMsIA0KICAgIDAsIDU2NTQuODExMDU1MjgwNjcsIDEzODEuNDg4OTU5NDEzNTUsIDAsIDAsIDY4MjIuOTk1MjU4NTM0MTksIA0KICAgIDAsIDE1MzMuMDI1ODQyMjQ2MzEsIDIxNDcuNjEzODkyNjM2MjQsIDMxMzMuMjE5ODAyMzE0OTMsIA0KICAgIDAsIDAsIDAsIDAsIDAsIDI4ODQuNjQ4MzEyMTU0MDIsIDI1NDguMTE0NTU0NzQyMjksIDAsIDY4MC4wODMzMzMzMzMzMzMsIA0KICAgIDQyNzQuMDgwMzcxNDI3NjMsIDIzMTguMzIyMjMyMjA1MjUsIDE0Ny40MjI5MDIxODAyMDEsIDE3My4xNDEyNDI0NTAzODgsIA0KICAgIDE3MzUuMDE0MTQyOTUwNjcsIDk4MS4xODIzMzY0MDI3OTYsIDYyMS4xMjk4NzM1MDcxNjYsIDk4NC42MjQ1NjA5NTgwNjMsIA0KICAgIDAsIDYzNDIuNTY1MzczODQ0NDQsIDAsIDE4NzAuNTc4NTk3ODg5NDcsIDg5My4zNTkyODU2NjEyNDYsIA0KICAgIDI0MTMuNDk5MTk5NTE1OCwgMTkzNS4wODEwMDIxNDg2NSwgMTg3Ni42NTgwNTI0NDc4MiwgNjk1Ljk3MDg1OTkzMjQwNywgDQogICAgMCwgMCwgMCwgMCwgMCwgMCwgMTA0NC41MjUxODU2NTY2OSwgNzAxMC42NjY4NjE2MTExLCA2NzguNDg3ODE5MDk2NzEsIA0KICAgIDE5MDAuMzcyOTA1ODUzNzUsIDM0MzAuMTkxMzI0NjM1ODQsIDAsIDAsIDYxNy42NTY4Njk2Mjc1MTMsIA0KICAgIDEzOS45Mzc2OTYzNjAzODQsIDI1NTYuODE4MTQ0MjMyMzgsIDAsIDE5NzAuMDMwNTIzNzk1MDYsIA0KICAgIDE3OC41NTIwNjE5MTYwMzgsIDAsIDc1Ny42NDE5ODExNTcwMDMsIDAsIDAsIDIxMTMuODkyNzkwNjE1NzEsIA0KICAgIDM5OC4yNjU1ODU4MjMxODcsIDIzMjUuMzIwNjY0MjM5NDEsIDAsIDAsIDE4NDguNjgwODA5ODY3OCwgDQogICAgMzMyOC43MDU0ODIyNTU4OCwgNDQ1OS4xMTk2OTgzNTI0NiwgMTY5Mi4yNjUwNzgyODYzNywgMCwgDQogICAgMzE2LjUyMTc3NjkxNTk3NywgMCwgNjI3NC40OTI5ODY4MTgxOCwgMjQ3Ljk3NDAzNDI3OTg2NywgDQogICAgMCwgMCwgMjEyOS4yNzIzNjYyNzEwOSwgMCwgMCwgMCwgNzE3Ny4xNjE0NzcwNjc5MiwgMTI1OS4yODg5OTA5NTMzNywgDQogICAgMCwgMCwgMCwgMCwgMzMyLjg4MjM0NTk4OTA2NywgMjA4My4yNjU2OTM2ODczNSwgNTg4My4xMjU3MDE3NzgyNSwgDQogICAgMzgwMS40NTU3Mjk4OTc0MSwgMCwgNjYxNi4yNDAxMzM3MDc4MywgNzcxNS41ODg0MzkzMTc0MywgDQogICAgOTY1LjI4NTYxNTkzNTM3NywgMzI1MS41MDg2NTUxNzI0MSwgMTA2OS41MjM5NTc2NjYxNCwgMjAyMS40MTkwMzYzOTkwOSwgDQogICAgMCwgMzYzMy40MDcxMzg4MTAxOSwgMCwgMCwgMTc3OS41NDY5MDM3MzU2NywgOTE4LjY5NjIzNDY0OTM0NSwgDQogICAgMzA3Ni45MDM1MTg1NDgsIDAsIDAsIDExNzAuNzk1NjcxNDg2NjIsIDM0MjguNDc2ODgzNzMwMDgpLCANCiAgICBFWFBPUiA9IGMoMCwgMjM3Ny44ODY0ODMxOTk4NiwgODI2LjIzNjMzMDE3NjMwNiwgMjk0NTguNDU5NjI3Mzk4MywgDQogICAgMCwgOTU2My4zNDk4ODI1MzQ0NywgMCwgOTQyNS4yMzY0NDE4MzgxNSwgMCwgMCwgMCwgNTI3MC40NzU0NDk4OTY3MSwgDQogICAgMzMuNDM0MjY2MjUyNTk0OCwgMTgxOS4xNjM4Mjk0Mzc4MywgMCwgMTQ1LjAzMDQyMDQ5ODY3OCwgDQogICAgMjkxMi44MTIyMjI5NjEzLCAwLCA0MTEwLjkwNDYwNzk1NTc1LCAxNzMuNTU2NzkwOTE1NzYxLCAwLCANCiAgICAxNDkzMi41ODM0ODQzMjU3LCAyOTI2LjAzNjczODMzMzIxLCAzMjAxNS4xNjEzMDQyMzIsIDAsIDE4MDIuMjE2NzU0NDMxOTQsIA0KICAgIDAsIDAsIDQwLjkyNTgxOTAyMjc1MywgMzkwLjU3ODk1Mjg1NjU5LCAwLCAzNzYuOTUwNzAwMTk3Njg1LCANCiAgICA3NzUuNTkxMDU4Nzc0Nzk5LCAxNTI1Ljk0NjI5MDI3MDYsIDAsIDAsIDI1MTQuODAzNTc2NjE1NjIsIA0KICAgIDE4OTQuNzMwMTQ5OTg4OTgsIDAsIDAsIDc4NzIuNzIzNDMwNTMwNDEsIDAsIDEyMC41NTMwNzEwNTg4NjIsIA0KICAgIDAsIDU2OS43NzQ4MzMzMjEyOCwgODc2LjUwNDI4MTU1ODE2NCwgMCwgMC41MjQwOTI3Nzk2MDA2OTgsIA0KICAgIDAsIDAsIDQ4MC40MjQ2MDU0MTY3NzgsIDcyOTAuODk0MjI5ODAxMTUsIDExNi4yMTc2MDI2MzU5MzksIA0KICAgIDAsIDExLjI5NTU5MzQ4NzYzNzEsIDExNy4yOTEwNjkzMTE2MTgsIDcyMi41OTg2Njk5ODAzNTgsIA0KICAgIDEyMDUuNjQ4NDk0NTI0MzUsIDAsIDAsIDY4MjcuODU2MTg2Njk5NjEsIDAsIDIyNjAuNjUxNjQwNjc2MzYsIA0KICAgIDE3OC4zMzkxNTY2NDA4MjgsIDE3MDUuMjIyMjkyMjk3NDksIDQ3LjY4MTI3MjA1NDgwNjIsIDQ4LjY5NDQ0MjE4NDk5NzYsIA0KICAgIDM5LjIwNzAzMDM1Njc0MDUsIDAsIDAsIDAsIDU2MTkuMDA1OTkzMjAzNDgsIDAsIDAsIDAsIDE4ODI3LjQzOTM1NDc0MDQsIA0KICAgIDQwMzguNjQ2NDI0MDc0OCwgMTk3NS44NTE2MTk2ODQwMywgNjUzLjMyOTgzMjM4NTczNywgMCwgMjQuMjY4Mjk5Njk4NDc5MiwgDQogICAgMCwgNTAxLjEzMDIxOTk3MDA5MSwgMzgwLjQ5NzgzMDA2MDI4NywgMCwgMzUxNy44OTA5NjAzNzkwNSwgDQogICAgMTEwLjI3NTExNDk4Nzg0MywgMCwgMC40NTMyNDYzNTc2ODk4NTMsIDAsIDAsIDYxOS44OTcyMjkzMzk3NTMsIA0KICAgIDAsIDY4NS4zODAwMTgzOTU4MjksIDMzNzguNDA3OTc3MzcwNDMsIDAsIDAsIDgxMDkuMTg0NTU1NDA0NDgsIA0KICAgIDg3NTcuODEwMzMzMTE4NzgsIDE2MDcuMDk1NzQ3Mzk2MzIsIDAsIDAsIDAsIDUuNjA4Mzk2OTY2NDQ3MjIsIA0KICAgIDM0Ni45Njg5MDk3ODUxMTEsIDAsIDAsIDE4NTUuNjQwMjk3MjE1OTYsIDAsIDAsIDE3ODkuNzExMTg2MjgxMSwgDQogICAgMTAwNDEuNDc0MDg3ODc5LCAyNTcuMzc1MDY3NzI3MjA5LCAwLCAwLCAxNTQ0NS4xMDg4MTIwNTc0LCANCiAgICAwLCAxMDY3LjQyMDAxODcwMjkxLCAwLCAxNjA0LjgzODExMDY4NTk4LCAzNzU1NS41NzUxNjU4OTUyLCANCiAgICAwLCAxNjQ2LjMwODI4MDI2NTUzLCA2NDU4LjM5MDQ0OTc3MTk0LCAwLCA4MDguNTU2OTUzMjAwMTQ1LCANCiAgICA5MTIuOTIwODgzNDM1NTA4LCAwLCAwLCAwLCAzMS44NDY1MzE1NjkzNjQxLCAwLCAxMjQuNzA0MTE3NDc2MTA3LCANCiAgICA1OS4zMjY1NjAyNjc2ODUxLCAwLCAwLCAwLCAxMjk5LjUwNTk1NjI0Mzk2LCAwKSwgSU1QT1IgPSBjKDY3OC4zOTQ4MDAwMTc1OCwgDQogICAgMCwgNS43NzE3NzE5NDAwOTM2OCwgMTExMjIuNDQ4ODE5ODgxLCAwLCAzLjk1OTc2OTAzMjA0OTczLCANCiAgICAwLCAxMy43Njc1NzAyNzk2ODc3LCAwLCAwLCAwLCAwLjA1ODU2NzQ0ODE2OTAxNDgsIDAsIDY2OS4wMDg1ODUwMDgwNTUsIA0KICAgIDAsIDUuMjU3OTQ4MjI1NjQ4NDQsIDMxLjY5ODE4OTEwNTQ1NjUsIDAsIDAsIDQuNDI2Nzk5NTY5MDkyNTYsIA0KICAgIDAsIDY1MDAuOTkxMjY5MjgyMiwgMy44MjE4Mjk0MDQ0ODIyOCwgMTczLjM1MzQ5Nzc0MzQzNSwgMCwgDQogICAgMjEuNTQ0MTkwMTA2MTU5NCwgMCwgMCwgNzkuMjgxOTUzMTMwOTkxNSwgMCwgMCwgNTYuNjQ3MjQ0OTU0MDEwMiwgDQogICAgMC4wNDY3MjEwOTkxOTU2NzksIDAsIDAsIDAsIDEuMDA1Mzk4Njk2NzU2ODUsIDQ0OS42NjM4NDY5MzkzNDMsIA0KICAgIDAsIDAsIDIyLjcxMTI2MTgyNzA2OTMsIDAsIDAsIDAsIDAsIDAsIDAsIDAsIDAsIDAsIDAsIDIxLjQyOTYwOTQ0OTA2NjQsIA0KICAgIDc1LjU2NzQ5ODE3NTEwMjMsIDkyLjU4MTQ3MzUxOTYyNzQsIDAsIDAsIDAuMDExMzUxMjA4NDM5ODA1MywgDQogICAgMy4yMzE0MzA3MDM1ODgzMywgMCwgMCwgMzQ0Ljk2NjE0ODMwNzg5OSwgMCwgMzkuMTU0NjQwOTQ5MDkxMSwgDQogICAgMCwgMCwgMS40NjkzMzYxMDYxMzE3OSwgMjE1LjkwMjc0NjIyMTMzMSwgMCwgMCwgMCwgMCwgNC4wOTc2Mzk5MDg4Mjc2NiwgDQogICAgMCwgNi4xNDkwMzU3NzUzMTE3OSwgMCwgNjQ1LjUwMzQzMzg1MjI3OCwgMTE4LjE1ODIwNjQxMjYxLCANCiAgICAwLCAyMi4xNzg0NDYxODg1Njk3LCAwLCAwLCAzMS43OTgwMDY1MzEwMjY3LCAwLCA1Ny4zNzg0NTc4OTk0NDMyLCANCiAgICAwLCA4Mi43MDUwNjc0Mjg5MTg0LCAwLCAwLCAwLCAwLCAwLCA4Ljc5MTg0MDE5NTMzODE4LCAwLCANCiAgICAwLCAxMDEuNDQ2OTg2MzIzMDQ5LCAwLCAwLjU4MzE5NTY2MTc3NDYwNiwgMTM1OS44NDc5ODQzNTYyOSwgDQogICAgMC4xMDE0NjMwODY2MDQ3ODEsIDAsIDAsIDAuNTkzMTk0MDE4NDYxNTM4LCAwLCAxMDYuMDM1MDcxNzcxNDcyLCANCiAgICAwLCAwLCAwLCA0NS43MDQwNzU2ODE3NzIxLCAwLCAwLCAwLCAyOTY3LjgxNDYxMTYwODk4LCAwLCANCiAgICAwLCAwLCAwLCAwLjE0MzkxNjc0MjkwMzM1OSwgMCwgNTYuNjM5NjA0Njk5MTkyNSwgMCwgMjAwMC44MTIyMDE0OTczOCwgDQogICAgMCwgMTYuMTY5ODk5MjU3OTkxOCwgMjUyLjI2MzM2NDQzNDU2NSwgMCwgMzguMzg1NjI3ODEwMTIxNSwgDQogICAgMCwgMCwgMCwgMCwgMCwgMCwgNTcuMTM2MjAzMDQ3NzYzNiwgMCwgMCwgMCwgMCwgMCwgMCksIENDT00gPSBjKDY3OC4zOTQ4MDAwMTc1OCwgDQogICAgMjM3Ny44ODY0ODMxOTk4NiwgODMyLjAwODEwMjExNjQsIDQwNTgwLjkwODQ0NzI3OTMsIDAsIDk1NjcuMzA5NjUxNTY2NTIsIA0KICAgIDAsIDk0MzkuMDA0MDEyMTE3ODMsIDAsIDAsIDAsIDUyNzAuNTM0MDE3MzQ0ODgsIDMzLjQzNDI2NjI1MjU5NDgsIA0KICAgIDI0ODguMTcyNDE0NDQ1ODksIDAsIDE1MC4yODgzNjg3MjQzMjYsIDI5NDQuNTEwNDEyMDY2NzUsIA0KICAgIDAsIDQxMTAuOTA0NjA3OTU1NzUsIDE3Ny45ODM1OTA0ODQ4NTQsIDAsIDIxNDMzLjU3NDc1MzYwNzksIA0KICAgIDI5MjkuODU4NTY3NzM3NjksIDMyMTg4LjUxNDgwMTk3NTUsIDAsIDE4MjMuNzYwOTQ0NTM4MSwgMCwgDQogICAgMCwgMTIwLjIwNzc3MjE1Mzc0NCwgMzkwLjU3ODk1Mjg1NjU5LCAwLCA0MzMuNTk3OTQ1MTUxNjk2LCANCiAgICA3NzUuNjM3Nzc5ODczOTk0LCAxNTI1Ljk0NjI5MDI3MDYsIDAsIDAsIDI1MTUuODA4OTc1MzEyMzcsIA0KICAgIDIzNDQuMzkzOTk2OTI4MzMsIDAsIDAsIDc4OTUuNDM0NjkyMzU3NDgsIDAsIDEyMC41NTMwNzEwNTg4NjIsIA0KICAgIDAsIDU2OS43NzQ4MzMzMjEyOCwgODc2LjUwNDI4MTU1ODE2NCwgMCwgMC41MjQwOTI3Nzk2MDA2OTgsIA0KICAgIDAsIDAsIDQ4MC40MjQ2MDU0MTY3NzgsIDczMTIuMzIzODM5MjUwMjIsIDE5MS43ODUxMDA4MTEwNDEsIA0KICAgIDkyLjU4MTQ3MzUxOTYyNzQsIDExLjI5NTU5MzQ4NzYzNzEsIDExNy4yOTEwNjkzMTE2MTgsIDcyMi42MTAwMjExODg3OTcsIA0KICAgIDEyMDguODc5OTI1MjI3OTMsIDAsIDAsIDcxNzIuODIyMzM1MDA3NTEsIDAsIDIyOTkuODA2MjgxNjI1NDUsIA0KICAgIDE3OC4zMzkxNTY2NDA4MjgsIDE3MDUuMjIyMjkyMjk3NDksIDQ5LjE1MDYwODE2MDkzOCwgMjY0LjU5NzE4ODQwNjMyOSwgDQogICAgMzkuMjA3MDMwMzU2NzQwNSwgMCwgMCwgMCwgNTYyMy4xMDM2MzMxMTIzLCAwLCA2LjE0OTAzNTc3NTMxMTc5LCANCiAgICAwLCAxOTQ3Mi45NDI3ODg1OTI2LCA0MTU2LjgwNDYzMDQ4NzQxLCAxOTc1Ljg1MTYxOTY4NDAzLCANCiAgICA2NzUuNTA4Mjc4NTc0MzA3LCAwLCAyNC4yNjgyOTk2OTg0NzkyLCAzMS43OTgwMDY1MzEwMjY3LCANCiAgICA1MDEuMTMwMjE5OTcwMDkxLCA0MzcuODc2Mjg3OTU5NzMxLCAwLCAzNjAwLjU5NjAyNzgwNzk3LCANCiAgICAxMTAuMjc1MTE0OTg3ODQzLCAwLCAwLjQ1MzI0NjM1NzY4OTg1MywgMCwgMCwgNjI4LjY4OTA2OTUzNTA5MSwgDQogICAgMCwgNjg1LjM4MDAxODM5NTgyOSwgMzQ3OS44NTQ5NjM2OTM0OCwgMCwgMC41ODMxOTU2NjE3NzQ2MDYsIA0KICAgIDk0NjkuMDMyNTM5NzYwNzcsIDg3NTcuOTExNzk2MjA1MzksIDE2MDcuMDk1NzQ3Mzk2MzIsIDAsIA0KICAgIDAuNTkzMTk0MDE4NDYxNTM4LCAwLCAxMTEuNjQzNDY4NzM3OTE5LCAzNDYuOTY4OTA5Nzg1MTExLCANCiAgICAwLCAwLCAxOTAxLjM0NDM3Mjg5NzczLCAwLCAwLCAxNzg5LjcxMTE4NjI4MTEsIDEzMDA5LjI4ODY5OTQ4OCwgDQogICAgMjU3LjM3NTA2NzcyNzIwOSwgMCwgMCwgMTU0NDUuMTA4ODEyMDU3NCwgMC4xNDM5MTY3NDI5MDMzNTksIA0KICAgIDEwNjcuNDIwMDE4NzAyOTEsIDU2LjYzOTYwNDY5OTE5MjUsIDE2MDQuODM4MTEwNjg1OTgsIDM5NTU2LjM4NzM2NzM5MjUsIA0KICAgIDAsIDE2NjIuNDc4MTc5NTIzNTIsIDY3MTAuNjUzODE0MjA2NTEsIDAsIDg0Ni45NDI1ODEwMTAyNjcsIA0KICAgIDkxMi45MjA4ODM0MzU1MDgsIDAsIDAsIDAsIDMxLjg0NjUzMTU2OTM2NDEsIDAsIDE4MS44NDAzMjA1MjM4NywgDQogICAgNTkuMzI2NTYwMjY3Njg1MSwgMCwgMCwgMCwgMTI5OS41MDU5NTYyNDM5NiwgMCksIE1SRUcgPSBjKDExNjgyLjI2NjU0NDM3OSwgDQogICAgMTEyMDAuMzk2NjAzMTM4MiwgMTEyMjguNjEwMTY4ODY2NCwgNDMxNDcuNjE5Njc4MTk4NSwgMTMwODguMTk3MjYzMzA1MSwgDQogICAgMjIzODMuMzg3NTEwOTE5NSwgMTY5NjkuODQ1MTQ2MDIyMiwgNDMwMzcuNzc2MTExNTUwMSwgMTExODIuOTc0Njc5ODU4NiwgDQogICAgMTI4NTQuNzI4OTExODAyNCwgMjMxODcuODI5NDkyOTU4MSwgMTE0NjYuMTkxNjkyMjkxNiwgMTIxMjMuNTU5NDAxMzcxNSwgDQogICAgMTAzNjcuOTI2ODczNDk4NiwgMzU4MjQuOTI0Njg2NTQ1NSwgMTE0NTUuMDcyNDY1ODk2LCAxMzIxNC45NTg0MzQ3MDA5LCANCiAgICAxMTc2Ni40OTYzNjcxNzc3LCAyNzcxOS40ODY2NTA2MTYyLCA5MzQwLjY5NDExNjAxNDA4LCAxNTk2OC44NTY1MjA2MjQ3LCANCiAgICAyODU5Ni43ODkxMTY5NDUzLCAyNzIyOS43NTg4NDYzMTE1LCAzMTA0OC43ODYxMDgzMTk0LCAxMDg5MC40MzQ1ODY0Nzk3LCANCiAgICAxMzg5MC4xODk1Njk5MjMxLCAxMTQ5MC43NjE0NDcwMTg2LCAxMzQ1Mi4zODU3NDk3NjM5LCAyNzU4Mi42NjEzNDgwMTk3LCANCiAgICAxNTI1Ni43MTU1Mjk3ODY5LCAxMTQzNi4zMTQ3Mzg5ODY5LCAxMDMyOC41NTY1NDk5ODM2LCA5MDk4LjQwMDY1OTAwODgyLCANCiAgICAzMTMzNi41ODgxNjk2MzExLCAxMTU1My44OTA1MTQwMDk2LCAyMzg5MS40NDQ0MTc0NDY4LCA3MTEzLjc4ODgyMTA2OTIxLCANCiAgICAyNDY4Ny45MDU0MzY1MDczLCAxMjcxOC4xNjQ4NjM2OTg1LCAxMTI5MC4zNjI4OTI4NDM5LCAxOTgyMC42ODM0NDU5NTMyLCANCiAgICAxOTY4Ny42ODUxNDQ4Mjk2LCAxNjU2MC41MzAwOTc0Mzk0LCAxMjA5MS4zOTU5Nzg3NjAyLCAxNDgxNi43NjYwMzc0MTE4LCANCiAgICAxNDY2OS4zNjkzMDM3NjYzLCAxMDY3MS40NDI3MTExOTgsIDE0MTM3LjQ0MzI2NTQ1OCwgMTQxOTguNzA5NTU2MzU0NywgDQogICAgMTI0NjkuNjgwMTI3NDM5MiwgMTIyOTEuODM2NDA2MDc0OSwgMzEyODUuMzkwNTIwNjA5MiwgMzAwMDUuOTI4Nzc1NTI1OSwgDQogICAgODgzMi45NjIyMjM3OTUxNiwgMTIyMjQuOTU5NDgxMTMwMiwgMTM1NTIuOTg2MzQ0MDYwNiwgMTM3NTguMDA2NzI5MjkwNCwgDQogICAgMTE1MzQuOTk4MjA4MzQyMiwgMjY3MzguNDMzNDIwMzg2NCwgMTAwMDMuNjU4ODM3MzA4LCA0MDc1Mi4wOTkxNzk1OTI4LCANCiAgICA5OTg4LjU1OTQyMDI4MjA3LCAxMTA3OS40MjM4MzAyNzQ2LCAxMjU4Ny41Nzc4NDc2MjYyLCA5MzE4LjM3NTIwMjA3MDksIA0KICAgIDExMDEwLjg1MTE3NjYzNDcsIDMyNjgwLjY0NjEzNzE5MzYsIDE1MzA3LjM1NTE2MDUxMTcsIDE4MDU4LjYyMjQ1MzUzNywgDQogICAgMTE2MzkuODEyNjg1MjAwOCwgMTQ3NzUuOTEzOTk5NzczNSwgMjkzMjIuMzE3OTQ0NDc2NSwgMTI3MzUuNjU0OTU3ODkzNCwgDQogICAgMTkwNTkuNTc1MjA3MDMzMiwgMTAxOTQuOTIyNjE5MDcxNiwgMzk1MzYuNzUxMjg1NzUxNCwgMTI1MjkuNTU3MDU1MTYwNywgDQogICAgMzA2NTIuMTY4OTc1MDE5MSwgMTIzMjQuNjE3NjU5MjM5LCA5OTk2LjY1MjcxMDE1MjM2LCAxNjU1MC4yODQ2MDQxNTEsIA0KICAgIDE0NzAzLjc5NTEwMzE2NDQsIDEyMjU5LjM5MjU5NTY2ODIsIDIzNjQyLjAzMzUwNjA4MDIsIDkyNzMuMDUyODE4Nzg3NTMsIA0KICAgIDIzNDE5LjEyNTU1NTI5MzMsIDExODkwLjE5MzQ4OTQxMjEsIDE1Nzk0Ljk0ODEwOTQ1MDIsIDU4NjMuMDM2NjM0MjE1NiwgDQogICAgMTM3NjMuOTk5MTc3MzI5NCwgNjYzMy42NDQ2Mzg2MjI1OCwgOTg5MS43NTQwMzk5Mjk4MiwgMTA5MTkuNDE1NTQzMjI4MywgDQogICAgMTY4NDguNTY1MzUzMDk4NSwgMTA0MTMuMjkzMDI5MzQ0MywgOTUzNC4yMzk0ODcwNzU1MSwgMTgwMDAuOTM4NTkzNDk0NywgDQogICAgMTU0MTcuMTQ4ODg4ODU4MSwgMTIyMzcuODU5MjQ4Mjk4NCwgMTMxMDkuMTA0NjkxMDA1MiwgMTIyMjYuNDMzMDc0MDQ5OCwgDQogICAgMTQwNDkuMjUxOTY0MzA3MSwgMTA3NjEuNzI4Nzk2Mzg0OCwgMTI2ODMuOTYzODI0MjQzMiwgMTQ3NzcuMjIyMjQxNDcxMSwgDQogICAgMTM5NTguMzAwMjkzODAzMywgMTY3OTEuMjYzMTk0MjA0NywgMzAyNDguMDQzNDYxNDc0NiwgOTc4OC4yMjkzNzQwNzY5NywgDQogICAgMTM3NTUuNTAyMTk1MzA5MiwgMTA1MjYuMzQyNjgxODg2OCwgMzAwNjAuMDE3NDA5MTg1MiwgMTU5NTIuMTc5MjIyNzM4NSwgDQogICAgMTA5MTIuOTQ0NDA2MDI0MSwgMTE5MDYuODUwMTcxNjUzOSwgMjI1ODUuNjg1MzQ1NjgyNCwgNzA3OS44OTAwMjk2MTEsIA0KICAgIDE5NTk3LjU0MzE4NTQ5NTQsIDE3OTYxLjk3NDMwODM2NTIsIDEwNjMyLjUzNTQ5MDY0MTQsIDMzOTQ0LjkwMTE2MzM4NzMsIA0KICAgIDk1MjQuOTUxODAxNTA4MjcsIDIxMTI1LjMwMTY3NTQ4NzksIDIzNzcyLjgyMTQ4MjA2MzIsIDE2NDYxLjQ2NzA0NDYxNzEsIA0KICAgIDI0NjA4LjkyNTA1MTU4NDgsIDMwOTM5LjM3MTAzNjc5NCwgOTk0MC42NTIwMjQ3OTQ1NCwgMTI5MDQuOTE4NzI4Mzk3MiwgDQogICAgMTUwMTAuOTQ1MjcwNjk3MywgMTMzMzcuNzIyMDg3ODg5OCwgMTE4MjYuNDE2Nzg3MDQ5MywgMjQ2MjAuMjg3NDE4ODQ3OSwgDQogICAgMjE3MjEuMjAzNzEzNjkwNCwgNzg3NS44OTUzMjgyNzQ3MywgMTE3MzYuMTExMTE1NzM0NywgMTQzNzcuMjIzMDA3MjgxMSwgDQogICAgMjM2MzQuMzU0MDUwMjY5MiwgMTI2MDguODE5NDQ3ODU4NyksIFQgPSBjKDAuMDQzMTI2NzM4Njk1MzY0LCANCiAgICAwLjExNTcyNTE2ODc2NDQzMiwgMC4wOTUwNjI2MTE5NDAxNjY0LCAwLjEwMzg3MTE2MzE1NDcwMywgDQogICAgMC4wNDYyMzI1NjgyMDIwMSwgMC4wOTI5MTIyNTMyNTkyMjMyLCAwLjA0MTg0OTQ1MjE5NjIzMzIsIA0KICAgIDAuMTQ2OTA3NDAyMTYzMDY1LCAwLjA1MDkzNTg2NjMzNTI3NCwgMC4wNDMwNDY0NTQ3MDMxNjI0LCANCiAgICAwLjA0MTI0ODQxNjI3OTcxNjUsIDAuMDg2MTY2Mzc3MzkwODU4NiwgMC4wNTkxMDg2ODI2MjIwNzg2LCANCiAgICAwLjA3NjA2NzU0Mzc1ODU3ODEsIDAuMDM3OTQzMjI3ODg4MjkzOSwgMC4wOTYzMzQ1MzMwNjMyNDg1LCANCiAgICAwLjExNTk2NTAwODg1NzA3NywgMC4wNTc2NDg1NjE3ODI0NDA4LCAwLjA4MTU5NjIwOTkwMzUyNywgDQogICAgMC4wNzc1NjA0MDc0NTU4OTUzLCAwLjA0MjEwMTc0NTE0MjMyMDQsIDAuMTA5OTIwMjI4NzM0NTI5LCANCiAgICAwLjA5MzY3NjA2NTI1NzE1ODcsIDAuMTE1MjI2NDY0NDg3MDYyLCAwLjA0MjMyMTcxNjA3MjQxNjEsIA0KICAgIDAuMTAyNDE0NDg4MzQxNTU1LCAwLjA0OTUwMjkyMzMyOTM3MDcsIDAuMDUyMTEzMTA4NTM1NzU3LCANCiAgICAwLjA1NjUzOTUwNjE3NjkxMDIsIDAuMDc0NTQ2Mzk1ODg2MTI4NSwgMC4wNTE4ODg1MzU0MzkzNzg0LCANCiAgICAwLjEwMDkyNTgzMjAzMDg5MiwgMC4wNTg4MjExNTQ1ODcxOTI4LCAwLjA4NTE1NjAyMzgxOTIwMjIsIA0KICAgIDAuMDQ3NzkxNjM5MzYwMjQ4NSwgMC4wNjgzMzM2NzE5MjMxOTUyLCAwLjA2MTU3NjE3NTYxOTE5NzEsIA0KICAgIDAuMTYwMTkwNTEwNzEyMDQxLCAwLjA0NjcwMTI3NjcyMjU1NjUsIDAuMDQxOTA2NjMyMzc0OTQ5NSwgDQogICAgMC4wODE4MjM5OTAzNTk2ODcxLCAwLjA0ODk0ODAyMzgyNzExMjUsIDAuMDc5NzQ0OTAzNTUzMzM0NywgDQogICAgMC4wNTY3MjE2MTMzMTIwNzY3LCAwLjA1ODA4OTA0NTk2MzQyMTEsIDAuMDUxMDU5NzAzODk5MTMzNCwgDQogICAgMC4wNTY0MDQ3MzU0OTY1OTUyLCAwLjA2MzQ0NzMzODM5ODY1MDksIDAuMDQ2Mzk0MjM5NjgzNjI4NSwgDQogICAgMC4wNTI0MzQxNTcwODM4MzE4LCAwLjA3NTc3MDQyMTkwNTQxNzMsIDAuMTAwOTMzMjYwMTg4MzQ4LCANCiAgICAwLjA5MTkyNTgwMTg3NzA3MTIsIDAuMDU5MDY3Mjk1ODQ0NDc3OSwgMC4wNDM1OTA3NzY4MjU1NjUzLCANCiAgICAwLjA2NzIyNzYwNTQ2NTk5ODQsIDAuMDkxNTUxNjI1MDc0MzM3MiwgMC4wNjg0NTk4ODg2NTg4OTUxLCANCiAgICAwLjA1NDc5NDQ0MzMyMDg0OTgsIDAuMTEzMDIxNzMxMTU2MTkzLCAwLjEyMzk2OTkxNTk0MzY1NiwgDQogICAgMC4wNDkxNjE3MDE0MzMzMDMsIDAuMDQ5MTU3NDcwNTg2NDE3MiwgMC4wNjY4NjgxMzc5MDEzNzg1LCANCiAgICAwLjA4MDc4MjY1Njg3NTgwNCwgMC4wODY1Njk1MTUxMDM3MzAzLCAwLjEwMzQ2MjkwMjA4MDUzNiwgDQogICAgMC4wNTE1MzMyNjM4NjIxNjQ0LCAwLjA0NTgzNDQxMjUzMDkxMjEsIDAuMDU0NjQzODYwMTA2MzY3MSwgDQogICAgMC4wNDE0NzcwNjAyNzY5MzYzLCAwLjA1NjcwMjUzODkzNDEyMzQsIDAuMDUwMTk0OTc2NTc2MjYwMSwgDQogICAgMC4wNDc3NjE1NTg1ODQ3MDksIDAuMDUwNDk3MTY0NTQ4Mjg2MywgMC4xMTE0NTI2MzAzNzA4NTIsIA0KICAgIDAuMDk0Mjg0ODQ0MTk0MDA5OSwgMC4wODA3MDY4NDIwMDIxMzI1LCAwLjA3MzAwMDI1MTAwOTIxMjEsIA0KICAgIDAuMDQxMTAzMzE0NTQ5Mjk0MSwgMC4wNDUzODI2MTk4NjQ2NzQ3LCAwLjA0ODU0NzUwNjcyMzgwNzEsIA0KICAgIDAuMDU2NzkxMzE0NzM0NzkzMywgMC4wNjcyMTU4MjgxMTg2MTM0LCAwLjAzNTA4MjYxMDUwMjAxNjUsIA0KICAgIDAuMDU0Mzk0NTk3ODkyMzA2NSwgMC4wNTMzMzc1MjA2NjczMzI1LCAwLjAzNzA1MDA3MjI5ODgwODQsIA0KICAgIDAuMDYxODE1MjQ3NDQyMjgyNSwgMC4wNDAzMzk2NDE4MjA4MDE1LCAwLjA0NjI1MjQ5NzI0NTI0MjksIA0KICAgIDAuMDg3MzU4NjU4NzU4MzI0NCwgMC4wNjQ1NDQzODg2MzA1OSwgMC4wNTUzOTY2MDE0NjU0ODc1LCANCiAgICAwLjA1NzU5NDQ5MTI3OTY2MjcsIDAuMDM5NTMyODU1NTU3ODYyOSwgMC4wNDE1MTE3Njk4NDI3NjQyLCANCiAgICAwLjEzNzkyNjEyNTE4NTMyLCAwLjExNDQwMDU0MzQ0OTI1MSwgMC4wODkwOTc1OTc5MjE5NzcyLCANCiAgICAwLjA0NDk4MTg5MjQ1MjgyMDQsIDAuMDYwNDk3NzQ0OTEyODI4MiwgMC4wNTUwNzM2ODk1NzAyODgsIA0KICAgIDAuMDc4OTM2MjcxOTEzNjI3OSwgMC4wNjM5NTUxMzA0NTk5NDAyLCAwLjAzODIxOTMyMTY5MDU2OTMsIA0KICAgIDAuMDM5MTgwNjgwMDk3MTg1MywgMC4wODkyODMxMjQ5NTczMTExLCAwLjA1MjU1ODQ2MjgxNTU4MzksIA0KICAgIDAuMDQ2MTQ2ODMxOTcyODU4MywgMC4wNTAwNTE5NjYwODIxMTIyLCAwLjExOTM2NDYyNDY5NzAxNSwgDQogICAgMC4wNDg1MzgzNzI5OTEzMTk5LCAwLjA1NjYxOTM2NDMxODg2MywgMC4wNDI2NjgzMjIwNTA1MDg5LCANCiAgICAwLjA3NjMwODQyMDQ4MDEwOTQsIDAuMDQ1MjM5MDU0OTM2MTkzNywgMC4wNDI0OTc5NzcwNTc4MzA3LCANCiAgICAwLjA2NTIyMDY0MDc1MzkwMTUsIDAuMDU4NzY2MTA0MzM1OTk4OSwgMC4xMzEzOTc1ODcyMzIzNzQsIA0KICAgIDAuMDM2NTc3NTUyNTQ1ODY1LCAwLjE0NDUyMzkzNDE2NzM2MywgMC4xMjI3NzcyODMyNzA5MDgsIA0KICAgIDAuMDUwNjUzOTYwMjc3ODI3NywgMC4xMDgyMzA4MTUzMzUwNzksIDAuMDcyNjA4Nzk5Mjk1ODM2MSwgDQogICAgMC4wNjE5Mjc5ODkyNjU2MDI3LCAwLjAzODg2MTEzNDEwNDE1NywgMC4wNDc5NDYwMTY3NTUyMSwgDQogICAgMC4wNjkzNzA2MjIyNjc2OTY2LCAwLjA0MjQ0MjExNzUwMTk2LCAwLjE0NDg0MDQxMjgzMzEzMSwgDQogICAgMC4wNzQ3ODYzMTg5NzQ0MTI2LCAwLjA2NTM5NTgwODQwMDQwMTIsIDAuMDQ2NDkwNjUwMDM0MTMzNywgDQogICAgMC4wNjM0MTM3MzkzMzY4OTg0LCAwLjA2NjgwMzUwMjE4NDg2NTEsIDAuMDU0MTg4MTEwNjQ4NTA0Ng0KICAgICksIFRGUE0gPSBjKDU4My4yNjc5MzAwMDE2MTIsIDEwMzkuOTc0NzE3ODYxMDUsIDI0NS42NjMwMjM5MjUxNDgsIA0KICAgIDExMS41MTY2OTM0NDQ1NzgsIDc2My41NTA3NDQ3MjkzODMsIDc2My41NTA3NDQ3MjkzODMsIDQxNi4zODM5MTk3NjcxNDEsIA0KICAgIDM2Ny4wNzU0NTc2MDY2NzksIDUzOS42NDAxODg1Mjk1ODIsIDQzOS42NjM1NTI2Mzg5NjIsIDI3MjguMzEyNDg4MzYyOCwgDQogICAgNDU0NC4xNzEyMTgyMTExNSwgMzg2LjkyMjUwMDMxOTA3OCwgNTY4Ljc2OTY4MTMwNTg4NiwgNDIxLjM5NjU3NDkyODU0NywgDQogICAgMTE2NC4wNjI3NjE2NTAxNiwgMTI4Ljg0Mjk5NTU2NDkwMywgNjAuNjc2MjkyNTQ5MDIyMywgMzc5LjcyNDg1MTg4MjE5OSwgDQogICAgMTIxNC4zODkwMjYwNTU2NiwgNDAxLjgyMjI0NDMyOTY2LCA1NDQuNjI4NjEwMjY1NjgyLCAyODAuNjg0OTE2MjIwMDQ2LCANCiAgICAxMzIuNzY5MDE4MTA0NzIxLCA2NjIuMjIxNjEwMzExMTAxLCAxMjc5LjE3NDA2MDc5ODk5LCAzODAuNjE2MTMxOTI3NDM0LCANCiAgICAyOTEuODc5NzI1NTU1NjYzLCAyMjYuNzMwMzA2ODIwODYzLCAyMjIuNzIwODI3MTk3MDExLCA3NTEuNTU1MDI0NDA3MzYsIA0KICAgIDE1ODQuNzQwOTE3Mjg0NDIsIDM3NC41NDQ0NjAzNzU1NywgMzEyLjEwMzk1MDY1OTkxMywgMTcxLjc2MDQ3MDIzMDY0NSwgDQogICAgMTQ4LjA2MTA0MTk2OTI2NiwgMzc0LjE1NzI4MjAwNjg1OSwgNzAyMS45NDEwMDgyOTYxOCwgNjk5LjQ0NzQwODI1MjQ4MSwgDQogICAgODg0LjcxODg1NjgxMDY2MSwgMzE3LjkwNzM5MjU2MTE0NCwgMTg2LjQ3MTM2MTk2ODk3MiwgNDM4LjQ3MDgwNDYyMTE2NywgDQogICAgMzY1LjY1NzY1MzU5NDQwOSwgNTk2Ljg5NjI3MTk3MzYwNywgNTk5LjgyNDMyOTk1NjMyMSwgMTA0NC40Mjg3NjkzNTI4LCANCiAgICAyNjM4LjYxNzgzMjg4LCA0NDIuMTA5MzE0MzU4MDMxLCAyNTMuMTAwMzU4NzIyMjY2LCA2MzYuODY0NDc0OTA0MTY1LCANCiAgICA4MzkuMTEzMDAyODk4NDc3LCAzMDMuMjQyNjUzNTAwMTgsIDEzMi40Nzk5MDM1OTc4NSwgNDE3LjM3NTgzOTA0MzMyOSwgDQogICAgNzQ0LjUxOTYyNjI1Mzc0MiwgMjQ2LjIwNjkzNjMwNDM0MywgODUuODQ4MzI3NzQ0NzE4LCA0MzYuNTY3ODgzMjMyNjg3LCANCiAgICAyNjMuMDU5OTQxMDQxOTg2LCAyMzEuMTUzNDAwOTY2Njg3LCAxMTQuNzA0ODEzMzU5MjAyLCA1NDIuMTkzMTc1MTU4ODcxLCANCiAgICA0MTAuNTg3MzU4ODk2MDY4LCAzOTguNDUxOTUwMzM1MzUzLCAzMDguNTA3Nzg3NDMxMjI4LCAyMDYuMjc0ODgyODY3Mjg4LCANCiAgICAyODguNTkzNzA3MDk3MjU4LCA2NjYuNTY3MjgxNDEyNiwgNDgxLjQ2ODIzMDExNzE3OCwgMTQyLjc3MDYzNTUxNzc0NiwgDQogICAgNjg3LjQ0ODkxOTU3MDkwMSwgMTk4LjY1MTE1NzY5ODE1NywgNTE4LjMzMTQwMzEzODM4NywgNDAxLjA2MjE1NTMyOTE5MiwgDQogICAgMjk3LjQ4NzMyNDYxNjg4NSwgMzc4LjYwOTI5OTQ4ODc4MywgNDM1LjkyNzcyOTU2NDMwOCwgODcxLjg1NTQ3Mzk1NTYyMSwgDQogICAgOTIzLjE5Njc3NzcyMDEyLCAxMDU0LjUwMjYwNzIzODMzLCAyMTg5Ljk1NTI1MTUxNTk1LCA0ODguMjgyMzI1MzUzMzY5LCANCiAgICA2MDYuOTYwNDM0MTI1OTY3LCAyMDgwLjY5MTEyMDAwNTc1LCAzOTEuMTU2OTIwNDQzODU2LCA1MzUuOTQyOTU3NjY0NjQsIA0KICAgIDExNzguNzI5OTE1NjQxODcsIDI3NzAuNjY2NTM0MzYwNDUsIDQxMy4yMjk5Mzk3Nzg0NywgNzEyLjkzNTYyMTkxNjU4MSwgDQogICAgMjM4LjgyMjA2ODUwNTcwNCwgODkuOTI0Njk2NzI0MDQ5OSwgNTg5LjIyNjE3MTA5OTUwMywgNjMzLjI0OTQ3MDU3OTc2LCANCiAgICA4MDcuODk2NzQ1NjEwNDE1LCAxNzc4LjgwMTYyMDgyMDUxLCAyMTIuMzI4MDYxOTM4NDU1LCA4My4wOTA2Njc1ODcxODEyLCANCiAgICAxMzk2LjgzMTQzMjg2ODI0LCAxMzYxLjA3Nzg4MDQwMDc5LCAxMzU3LjcwOTI1ODYwMzc3LCAxNTMyLjYwMzcxNTY4NTkyLCANCiAgICAxNzUxLjQ2MTM4NjgwNjM2LCA4MjguMTQ1MTE3ODk0Mzg5LCAxMTE1LjM1NjUyNTc1MTk0LCA5OTUuNjcxNDM3ODE3NDgzLCANCiAgICAxNzUyLjkwODQwODQ4NTcyLCA2MzEuOTg5MzI5NjIxNzEsIDg0MC4wODIwNjk0NjY4MDksIDk2NS45MDQ1MDQyMTM3ODcsIA0KICAgIDk5MTAuODUwOTc4NDYyNjEsIDM4Mi41NjkwMDI5OTkyODksIDgyOC4xNDUwMTk0MDM3MjcsIDE5NC4zOTg1MzI5NzM4MTcsIA0KICAgIDEwMjIuNzkwODQ5MDgxNzEsIDE4MjMuNDk2MTA2MTMyMDcsIDExMTUuMzU2NTI1NzUxOTQsIDcyOC41OTY5MTc1NzMyNzMsIA0KICAgIDE2NDQuNzg0NDM5MDkwODYsIDExOTguNjEwNDgyMDcwODIsIDI3MjguNTMzNzcwMzQ1OTYsIDEzNDA4LjIyNzY0NDA5MTEsIA0KICAgIDIwNi4zNDY5ODU4NjY2MzgsIDc5Ljg3NTIzNTMwNDk1NiwgMjAxLjI2Nzc3Nzk2NTMyNiwgODguMzM2MjE1Mzc5MzEwMywgDQogICAgNDcxLjEzODkwMDczMDg1NCwgMjc2LjgwODMwMDE4MjM1MSwgNDE3LjIwMTkyNjM0NTYwOSwgNzU0Ljc4MTAzOTI4NTkzLCANCiAgICAxMDM3LjgzNjAyMTgwNzY3LCA5MzE1LjA1ODY3MzIxMzk2LCAzNzAuNjgxNDYwMzE0ODY4LCAzNDAuMTQyMzE0NDczOTg4LCANCiAgICAyODIuNDc3MzE1MTU4MDAzLCA2ODcuNDQ4ODE1OTY1NDMxLCA2MjcuMDkxNTc2NTcxMDU1LCA2MjcuMDk0NzU3NDA5MzgNCiAgICApLCBUSUNNUyA9IGMoMTc0LjA2MjQwMDgzOTA0MywgNDAxLjI2ODIwMDkyNjkyOCwgMjAyLjY0NDMyNzY4MDA4MiwgDQogICAgMTA0Mi43OTU2MzQzNTUxMSwgNTM3LjMxOTAwMjY4MTAwNiwgNjExLjk3MjE1NjMxNzk3NSwgMTYwLjE4ODY3NTMwNDkyNiwgDQogICAgMTY3NS40ODg3NjMyODE3OCwgNDYzLjk0NjIxOTgxMTA2MSwgNTE5Ljc4NjM3MTI1NTI4NiwgNjkwLjE2NDQyNzM2MzU4MSwgDQogICAgNDYxLjQ5ODgwMDg2NDI2MSwgMTQ2LjI2NTU5MjI0NDQyMSwgMzc5Ljc1NTUzMjY0NjQ0MiwgMTg1LjY2MjI2OTY3MDQ5MiwgDQogICAgNDE3Ljc2MTA0Njk1NjkyNiwgMTMyLjQ0Mzk4NjgzMTg3NywgMzMxLjUyNzAzMjU3MTE5NiwgNjM5Ljc2ODk4NzAyMzg5NCwgDQogICAgMTQzLjc2NzAxMjM4MDAzOSwgMjEwLjUzNTM5NTU3NjI0NSwgMTA4NS4wNzYyNDU0OTMyNywgNjQyLjEwNDA5NTg1OTU5OSwgDQogICAgMTg4My40OTIxNjUzODc0NywgMzAxLjk3OTcyMjQ4MzA0NCwgMzYxLjg0MTE5MzQyMjAwNCwgMTYzLjQ1NzAyMzQxMDM0NywgDQogICAgMjU2Ljk3OTcyNzEzNTgxNSwgMTQyLjgxMDAxOTc2NjM0NCwgMzI5LjkxNjUzNTY4OTk3NywgNTUwLjQ3MDgxMTk5NDg1LCANCiAgICAyMTguMDQxNjI0NjE1NDQ5LCAxNzUuNTIyNDUwMDU2NDAxLCAzMjEuNDE2MzI1MDU2NDU5LCA4Ny42ODQxNjQ1ODA3MjU5LCANCiAgICA3MDguODAxMDI2ODgzMDI4LCAyNTEuMDIyNTgzNTgwOTg2LCAyOTIuMzY5MTMzOTIwMTgxLCAyMTYuMDU4MDcxOTAwOTUyLCANCiAgICAzNzEuMDgxMTkwOTgwMTg2LCA2MDQuODc1NTg4MDE5MzM3LCA0MjAuNTMwODE0NjQwNjYyLCA2MTAuMTYxMzU0ODU2Nzg5LCANCiAgICA0NTguNjk2ODQxOTQxMDczLCA1ODYuMTMzNTY5MjEyNjQ0LCA3MjkuMzIwMDY0MTU2NDk5LCA0NTguNDY4Njk3MDg0OTUxLCANCiAgICAxNTMuNzYyOTIzNDk4MDk1LCAyNTAuODE0NjY1MjU5MTgxLCA1NzEuMDgzNjI3MzYyNTUxLCA0ODMuODkxODgyMTU1NjkzLCANCiAgICAxMzE5LjY0OTc1MzYzMjE1LCAyODkuMzM0Nzg1NDUzODIzLCAxOTcuNTA4NTU4MTM2NTc2LCAzMTMuMjkxNzI4OTgxNDE4LCANCiAgICAyNzYuMzQzODcyNDE2Njc5LCAyNTkuNjcxNzczNTI1MTIsIDI0MS4wODY3ODA5MzgyNTksIDIyMy44MTQ5Njc5Mjc3NzMsIA0KICAgIDU3Ny4zMzQxOTgyMDM1OTEsIDU3MC44NDg5MDk4NTUwODEsIDQ0NC4yMjIwMDI1NDMzNjUsIDQwOC41OTIzNzU0ODAwODksIA0KICAgIDM5MC4yNDk3NjU5ODMxNDEsIDMwOC40NzQ4MzQ1MDk4OTMsIDE2OC42ODA5MTk0MzMxNTQsIDYyMi41OTQwODgxNDA4MDUsIA0KICAgIDEyNS4zMTM3NzY5NDMyOTcsIDEyOS40MTI3MDg1NjY2MTMsIDI5MC41ODk2OTgzMzEwNDYsIDgxOS42NDIxNDY0ODUxODIsIA0KICAgIDQ3Ni4yOTIwNDg3Mjc5NjQsIDQwMC42MDY1Njc2OTg5MywgMjc2LjI2NDQ1NjI1ODY0OCwgMjUzLjQwMDU3OTQ1MzAwMywgDQogICAgODE1LjIzOTI5NTE0MTcxLCA3MTcuNjUzMzEzNDgxMjg5LCA3MzMuMjk2ODgwMDA1MDQsIDI0Mi45Nzg5OTU4NzEyNjgsIA0KICAgIDQyMS43MjQ5NTE3NjQyMSwgMzI0LjA0MzU4OTMxMzU4NSwgODM4LjA0MDM5NzU3ODc2NywgMzAxLjk1NTk2MTQxNTc1NCwgDQogICAgMzYzLjE5Nzc3OTUzODM0OSwgMTI0MC43Njk3NTkyMDQzLCA2NTguMjE4MzI0MTE1Njc5LCAxMjguOTQ0NzM0NTc4MjE1LCANCiAgICA0NzMuMDU5NDEyNzk2MTc0LCAxMjMuMzI3NDkyMjMyMTM3LCAxNjcuNzEwOTQyMDM2Nzc4LCAxNzEuNTcwMDA1NTA2MjI4LCANCiAgICAyMTEuMTM0MjU2NTc2ODE0LCAxODYuODc0NTA4ODM2MDk4LCA0NzkuNjk3ODkzMjYwNzA4LCAzODIuNTkzNDQ4ODI3NjI4LCANCiAgICAzODkuMTU5NjAwMjYyMDExLCAyNDMuNjQ2MDE3ODI4MTE5LCA1NjkuNjU3MzYyNDk3Njk1LCA2MjcuNDkwNzk1NzA0MjAxLCANCiAgICAyMDIuNzIzMjM5NTk5Nzk0LCA0MTcuMzk2OTMyNTMyNDc5LCAzMDIuOTE0Mjg1MTExNjk4LCA1NzIuOTU0NzgzODg4MDUsIA0KICAgIDM3NS45OTk4ODQwMDE2MDUsIDcwMi4yNDU2MTcxMDYxNDksIDQzMy4xMDUwMjU1ODMwMjIsIDM5MS4zODQ3NzM4NDY2MTUsIA0KICAgIDQxMi41ODMyNDEwMTIwNjIsIDU5Ny42MTY2NDY0MTUzMDYsIDM3My4zNjU4Nzg2ODUzOSwgNzIxLjYzMDc3NDE5OTAxMywgDQogICAgMzkxLjk5MzA5MzI4MDcxNiwgMTU2Ljk4MTQwNDQwMzc1OSwgMTExMy43Njc4MDA4NDE4OCwgNDE3LjAwMjk0ODI3ODEwMywgDQogICAgMTE2NC41MTc4NjUzMTgwNywgMjYxLjY1OTE1MTczNDE2MiwgMjU5LjY1NTQ0MjI1MTQ0MywgNDQwLjEwMDIzNjE4NDk3NSwgDQogICAgMzI3LjA1OTY5NTc4OTM1NywgMTU2Ni45OTI1MDQxMjY5NSwgNjg0LjQ1NjI2NTIwODY1NCwgMjgxLjYxOTM1NzA5MjcxOCwgDQogICAgNTQ4LjQ2Njc5NzYzNDQzNiwgMjY2LjMzMzgzODc3MjgyNCwgMzA1LjkxMTE5NzU2MTk4LCA0NTYuMjc3MjQ4NjA0NjI5LCANCiAgICAxOTIuMjA3MTQwOTkxMTMzLCAyNTEuOTMyODk2MzYyMDM2LCAxOTAuNTg2NzQyMjA5NjMxLCA2NDEuODI1MzAzNDM1ODczLCANCiAgICA0NTkuNzQxOTY1MTI4Mzk0LCAxODUuMjYyMzc3MjIxNDE0LCAzOTguMjIwNjQ0ODkzNjI4LCAxOTEuMzQ3MDk0MzQ0NDU2LCANCiAgICAyNDIuODE5MzIyMzUyMzgsIDUwMC4wNTIyOTk0Mzc5MjQsIDY5MC43ODcxNzQ3NjE3MjgsIDM1NS4zMDU0OTYwNjc0OQ0KICAgICksIFRNUkVHID0gYygwLjA1MDg0ODk0NTY2MzEwMDIsIDAuMDQ5NjEwNjU1OTk0MTU4MiwgMC4wODY1Nzg0NjMyNTE3Mjg5LCANCiAgICAwLjAyNjQxOTE5OTk2ODAwMzIsIDAuMDk5ODYwMDIxNjI4NTMyLCAwLjA2NDE5NjM2NDYxMDc2NDUsIA0KICAgIDAuMDI3OTMwNTA1NjI5OTE3LCAwLjIwMTY0NTg3NTc5OTA3NywgMC4wODY2MjQ3MDY0ODg0ODA2LCANCiAgICAwLjAzODE5NjU2Mjg1MzAyMTgsIDAuMDc4NTQzODM1OTcyNDY5LCAwLjA1NTE0OTgzOTE4OTY5NDcsIA0KICAgIDAuMDQwNjQ2MjIyOTQwOTM4MiwgMC4wNjA0MjQ3MDg0MTc5NzQ1LCAwLjAxNjI5NDIwMjExNDkwNTEsIA0KICAgIDAuMDQ5NTY3NzIzNDExNTczNywgMC4wMzQ4MzIwMDUwOTc1NDI2LCAwLjA3NjM5MzQwMzM1MDU5NTgsIA0KICAgIDAuMDQ2Mzc0Mjk5NDgxNjU1NywgMC4wNjA1NjM2NjI4NDkxNDczLCAwLjA0MzUzMjMxMzg4ODI0MzYsIA0KICAgIDAuMDI5MDI2NzAwNjEyMjI2LCAwLjAyMjQ5MTM2OTk2MzE2NywgMC4wNDg5MzE4NDMzOTA1MDI2LCANCiAgICAwLjA1MzUyNDY5MDU0NzUzNjYsIDAuMDY0NDY4NDkyMjg1NDk4NSwgMC4wNTcwNTE2NTcyNTA5NTA5LCANCiAgICAwLjA0MTY0NTM3Mjg3NTQwNDEsIDAuMDE3MzEzMjg0ODMwMjEzLCAwLjA1MzE5ODU4NjE3MjQ1MDYsIA0KICAgIDAuMDU5OTQ3Mzc4NDQ2MjUzMywgMC4wNjIyNTgwOTgxOTUxODgxLCAwLjA1MzcwMDU3MTExNDkxMjYsIA0KICAgIDAuMDM2NTAyNTgzMjQ4MTk5NSwgMC4wNjE0MDA2NDIxOTE2NzYzLCAwLjA1NzI2NTM0OTg1MDM2MDYsIA0KICAgIDAuMDQ4Mjk4OTcxOTQwNzY2LCAwLjAyNjE4OTY5NjYxODIwNzUsIDAuMDU3Mzg2MTkzMjI0OTQ5MSwgDQogICAgMC4wMjI3NjQ0ODU2MjcxMTYsIDAuMDI2NTAyODM2Nzg2NjM2MywgMC4wMzA5MzAxMzQ2Mjc2NDcyLCANCiAgICAwLjA1NzQ1NjIwMDQ0OTk4MDYsIDAuMDYzMTI3Nzk3MzExNzg5NSwgMC4wNTMzNzczNTY1NDQ4ODExLCANCiAgICAwLjAzNzk3OTM4ODY0Mjk0MjgsIDAuMDQyNTI5NDI5ODI2NDcxNiwgMC4wNjc5Nzg1NDI5NzU0ODczLCANCiAgICAwLjAzNjc3MDM5NjQyMzMyOTUsIDAuMDQxNjA0MTQ3ODcxMzYwOSwgMC4wNjU2NzU0NDEzMDMwODc3LCANCiAgICAwLjA0NDE5MzA0NTA3MzgwMTUsIDAuMDA4NDkwNDQ4OTQzNDQwNzMsIDAuMDU2MjgxODM4NDYxMjY2NSwgDQogICAgMC4wNjM3MDc0OTk0OTM5NjI2LCAwLjA2MjA4MzMyNjc2NjEyNDIsIDAuMDM5NzEyODc0MTM0Mjk2MiwgDQogICAgMC4wNzA5MDc1MTg5MDQwNjcyLCAwLjAxNzQwODMwNDM2NjMwMTIsIDAuMDQ4NjUxNTIzOTY5MTA4OSwgDQogICAgMC4wMjA2NzcyOTM4MTUyMzAyLCAwLjA2Mjk1Mjc3NjA2MTEwNzksIDAuMDY0NDc1NzQ0NDA4MjE3OSwgDQogICAgMC4wNjY2NzM0MTUwOTA0NDI4LCAwLjA1NTIwNjAxODk0NDM0MjUsIDAuMDUxODMwNDE5NTYxOTgyOSwgDQogICAgMC4wMzcwNjUzNTgyMDg2NjczLCAwLjAzNjM2OTc3NDQ1ODcxMjUsIDAuMDQyNTcwMzc2MDkxNTI1MywgDQogICAgMC4wNzE0NTY0NzU4MTAwNiwgMC4wNDIyNTE3OTcxNTkzNjU0LCAwLjA1MjE5NzIwNjQ4NzY1MzMsIA0KICAgIDAuMDU0NTIxNTI2MzU1MDI1OCwgMC4wMzc5OTgxMDc5OTkwNTk1LCAwLjA0MzAwNTIyNDEzNTUzMzYsIA0KICAgIDAuMDE1MzA5MjM4OTg1NTQ3NCwgMC4wMzQ5ODk1Nzc3OTkwNTcyLCAwLjAyODI2NzkwMjQ2NDk5MjIsIA0KICAgIDAuMDM2Mzk2OTU1MDE3ODEyLCAwLjA1MTk3MTQxNTczOTkxNjIsIDAuMDk3ODE5OTc0NzAyNzgxNSwgDQogICAgMC4wMjgwNDYyNjAzMTU3NDEzLCAwLjA4NDgyMjM0OTc2OTE5NDgsIDAuMDQ0NzIxNjMzNDU5Njc4MSwgDQogICAgMC4wNjkyMjg3ODQ1ODY3ODc5LCAwLjAyODE3NTEyMzQ5MzAxMTEsIDAuMDU5MTMwNzI3NzQ4OTM5NCwgDQogICAgMC4wNTc4MTkwOTg4NTQ0MTM4LCAwLjAzMjAxMDQ0MTAyMDQ0NTYsIDAuMDI2MDEyODA5NTY2Nzg3NiwgDQogICAgMC4wMzYxMTIxMzU4MTIwODI2LCAwLjA4ODUyMDQzODI2NzY3OTgsIDAuMDUxNDMyMTEyNzczMDMyOSwgDQogICAgMC4wNjgxMzIyMTIwNTExODc1LCAwLjA2MjIwMjExNzg0MzUxOTMsIDAuMDUyOTY1MDUwNjM5OTMyNywgDQogICAgMC4wMjkwMzcxODU0NTQ0ODM0LCAwLjAyOTU0NzUwNzYwNDQ0NDEsIDAuMDYxMTk0MzE5NjQ3MTY2NywgDQogICAgMC4wNjA0NDU1Nzk5MTY2Mjg3LCAwLjAzNDIxMzUwNjY4ODg2NSwgMC4wODUzMzQ2NTg2NTM4Njg3LCANCiAgICAwLjA1Mjc1Njk0MjYyOTc2NiwgMC4wNDQ4Njk3NjY4ODQ4OTI3LCAwLjA1MjEwNzkwNzkwNjE4MTUsIA0KICAgIDAuMDI0NzE5MDg3NTUwNTcxMywgMC4wNDU3NDk2MTI5NTU1ODc3LCAwLjA0NTg3MDQzMDYxODEwNDgsIA0KICAgIDAuMDYwODM0Mjg2MDE4MTUzMSwgMC4wNDU4Nzk4MDk2ODA5NTU2LCAwLjA2Mjc5Nzk4MzgxODIxMjIsIA0KICAgIDAuMDE5ODc3NzEwMDAzMTY1NCwgMC4wMzc2NTI0MDc2NTU0ODg3LCAwLjA0NzY0ODM1MDIxNjM1NDIsIA0KICAgIDAuMDQ5MTExMTk2NDI5NjM2NCwgMC4wMzQ2OTExNjk4ODAyNjUyLCAwLjAyOTkyOTk2NTE5NjczOTIsIA0KICAgIDAuMDQ3MDA2Mzg0NjI5MzEzNSwgMC4wMzE3NzYxMzM5MTIwODk1LCAwLjA2MTI4OTkxNDE5MDk2MTUsIA0KICAgIDAuMDEzODQxMTE2ODE5MTI4NiwgMC4wODczNzY1Njk4NTM0ODQ3LCAwLjAzMjUxMDM1NjExOTIzNzQsIA0KICAgIDAuMDI5MTk5OTMwNzg3MDgyOSwgMC4wNzE0NDI5MDUzNzcyNDcxLCAwLjAzMDMwMjg4MzE2NDM3NywgDQogICAgMC4wMzE2MjQ4Nzg2NDkwNDI3LCAwLjA1NjAyOTE4OTQ3NTk2NDEsIDAuMDM1MzYyNjUwMDI5MjUyNiwgDQogICAgMC4wMzQxODMwNjUxNTY2MzY0LCAwLjA2MjA4MDY4MTA0NjY5NiwgMC4wMzk4NDE4ODAxMjg0OTM2LCANCiAgICAwLjAyNzM2Mzk0OTg3Nzk3MTQsIDAuMDMzNjc5ODcxNTc3OTU1MiwgMC4wNDg3NTI3NzY0NDcxOTU2LCANCiAgICAwLjA1NzA1MTAyMTA3MzkxNDgsIDAuMDM0MTk1Mjc2MjcwMjQ3MywgMC4wNDM4MTk5NjEwMTgxOTYyLCANCiAgICAwLjA4NjU4OTEyMjk0MjQ2NzgpLCBHSU5JID0gYygwLjU3LCAwLjY3LCAwLjU5LCAwLjU3LCAwLjU1LCANCiAgICAwLjcsIDAuNTMsIDAuNzEsIDAuNTMsIDAuNTIsIDAuMzYsIDAuNTksIDAuNTksIDAuNTIsIDAuNTYsIA0KICAgIDAuNTUsIDAuNTksIDAuNTUsIDAuNTksIDAuNjEsIDAuNiwgMC42OCwgMC42MywgMC44NywgMC41MiwgDQogICAgMC42MSwgMC41MiwgMC41MywgMC42MiwgMC42MywgMC41NywgMC42MywgMC41NywgMC42NCwgMC42MiwgDQogICAgMC41NywgMC42MiwgMC42MywgMC41MywgMC41NSwgMC42NSwgMC41MiwgMC42MSwgMC41OSwgMC41NywgDQogICAgMC42MSwgMC42OCwgMC42MywgMC42MSwgMC40MywgMC43NSwgMC42LCAwLjU0LCAwLjU1LCAwLjU2LCANCiAgICAwLjYxLCAwLjYsIDAuNDksIDAuNiwgMC41MSwgMC41MywgMC41NiwgMC43LCAwLjU3LCAwLjYyLCANCiAgICAwLjU5LCAwLjUzLCAwLjQ3LCAwLjU5LCAwLjY2LCAwLjUsIDAuNiwgMC41LCAwLjU1LCAwLjU2LCANCiAgICAwLjU2LCAwLjQ5LCAwLjU1LCAwLjU4LCAwLjYyLCAwLjQ0LCAwLjY1LCAwLjYsIDAuNjEsIDAuNDYsIA0KICAgIDAuNDgsIDAuNjQsIDAuNTgsIDAuNTcsIDAuNTMsIDAuNCwgMC41OSwgMC42NiwgMC40OCwgMC42MywgDQogICAgMC40NCwgMC42MSwgMC41NSwgMC42NSwgMC40OCwgMC40NywgMC42MywgMC42LCAwLjU1LCAwLjY2LCANCiAgICAwLjU4LCAwLjQ0LCAwLjU4LCAwLjU2LCAwLjQ4LCAwLjQ0LCAwLjU4LCAwLjU3LCAwLjU4LCAwLjUzLCANCiAgICAwLjg1LCAwLjYxLCAwLjYxLCAwLjYyLCAwLjYzLCAwLjQ3LCAwLjc0LCAwLjU1LCAwLjYyLCAwLjc1LCANCiAgICAwLjU5LCAwLjY2LCAwLjU2LCAwLjYsIDAuNTUsIDAuNDcsIDAuNDYsIDAuNTQsIDAuNDUsIDAuNTcsIA0KICAgIDAuNTcsIDAuNDcsIDAuNTUsIDAuNTgpLCBUSEVJTCA9IGMoMC41MiwgMC44MywgMC42LCAwLjU3LCANCiAgICAwLjU1LCAwLjkzLCAwLjUxLCAwLjk2LCAwLjQ5LCAwLjQ2LCAwLjE5LCAwLjYsIDAuNjIsIDAuNDQsIA0KICAgIDAuNTMsIDAuNTEsIDAuNjEsIDAuNDgsIDAuNTcsIDAuNjYsIDAuNTMsIDAuODQsIDAuNzIsIDEuNzcsIA0KICAgIDAuNDMsIDAuNjQsIDAuNDMsIDAuNDcsIDAuNjQsIDAuNzEsIDAuNTcsIDAuNzEsIDAuNDgsIDAuNzEsIA0KICAgIDAuNTgsIDAuNDYsIDAuNjMsIDAuNzUsIDAuNDgsIDAuNTIsIDAuNzQsIDAuNDgsIDAuNjMsIDAuNjEsIA0KICAgIDAuNTUsIDAuNTksIDAuODIsIDAuNywgMC42OCwgMC4zNSwgMS4xLCAwLjYzLCAwLjUxLCAwLjQ2LCANCiAgICAwLjQ5LCAwLjY0LCAwLjY0LCAwLjQsIDAuNTcsIDAuNDIsIDAuNDgsIDAuNTQsIDAuODYsIDAuNTYsIA0KICAgIDAuNjUsIDAuNjEsIDAuNSwgMC40LCAwLjU0LCAwLjY0LCAwLjM5LCAwLjU2LCAwLjQyLCAwLjQ5LCANCiAgICAwLjU4LCAwLjU0LCAwLjQsIDAuNTEsIDAuNTcsIDAuNjMsIDAuMzUsIDAuNzcsIDAuNjMsIDAuNjYsIA0KICAgIDAuMjMsIDAuNDEsIDAuNzEsIDAuNDksIDAuNTMsIDAuNDksIDAuMjUsIDAuNjIsIDAuNzcsIDAuMzksIA0KICAgIDAuNjcsIDAuMzMsIDAuNjcsIDAuNTQsIDAuNjQsIDAuNDEsIDAuMzcsIDAuNjMsIDAuNTksIDAuNTUsIA0KICAgIDAuNzksIDAuNDcsIDAuMzIsIDAuNTgsIDAuNDMsIDAuMzgsIDAuMzksIDAuNiwgMC41MywgMC4zOSwgDQogICAgMC40NywgMS43OCwgMC40OCwgMC42NCwgMC42NSwgMC42MywgMC4zNywgMC45OSwgMC41MiwgMC42OCwgDQogICAgMS4xMywgMC42MiwgMC43OSwgMC41MSwgMC42NSwgMC41NSwgMC4zNywgMC4zMywgMC41LCAwLjM1LCANCiAgICAwLjU0LCAwLjUyLCAwLjM3LCAwLjUzLCAwLjYxKSksIHJvdy5uYW1lcyA9IGMoTkEsIC0xMzlMKSwgY2xhc3MgPSBjKCJ0YmxfZGYiLCANCiJ0YmwiLCAiZGF0YS5mcmFtZSIpKSAgDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KGRhZG9zKQ0KYXR0YWNoKGRhZG9zKQ0KIyBhbGd1bWFzIHZhcmlhdmVpcyB2b3UgZGl2aWRpciBwb3IgMTAwMDAwMCBwYXJhIG5pdmVsYXIgZXhwb3JfNiBpbXBvcl82IG1yZWdfNiB0ZnBtXzYgdGljbXNfNiBjcmVkXzYNCmBgYA0KDQoNCkVzdGltYW5kbyBvIG1vZGVsbyBsaW5lYXIgZGUgcmVncmVzc2FvIG11bHRpcGxhIGZhemVuZG8gY29uZm9ybWUgYSBleHByZXNzw6NvIGRvIGVudW5jaWFkby4NCg0KDQpSZXN1bHRhZG9zIA0KPT09PT09PT09PT09PT09PT09PT0NCg0KIyMgRXN0aW1hw6fDo28NCg0KRmF6ZW5kbyBhcyByZWdyZXNzb2VzLiBBbGd1bWFzIHZhcmnDoXZlaXMgZm9yYW0gY29uc3RydcOtZGFzIGNvbSB1c28gZGUgbG9nYXJpdG1vcyBlIHBvcnRhbnRvLCBkZXZlLXNlIG9saGFyIGEgZXNwZWNpZmljYcOnw6NvIGRlc3Rhcy4NCg0KYGBge3IgZXN0aW1hY2FvfQ0KIyByZWdyZXNzYW8gbXVsdGlwbGEgZGUgQkFSUk9+TE5ZSV9UXzErU0lORCtTQUdSTytTU0VSVitTUFVCK0grREQrRE9SQytJKENSRUQqMTBeLTYpK0koRVhQT1IqMTBeLTYpK0koSU1QT1IqMTBeLTYpK0koTVJFRyoxMF4tNikrSShURlBNKjEwXi02KStJKFRJQ01TKjEwXi02KStHSU5JDQojIHZhcmlhdmVpcyB0cmFuc2Zvcm1hZGFzDQphdHRhY2goZGFkb3MpDQpFeHBvcnRhPC1JKEVYUE9SKjEwXi02KQ0KSW1wb3J0YTwtSShJTVBPUioxMF4tNikNCk1yZWdpbzwtSShNUkVHKjEwXi02KQ0KRlBNPC1JKFRGUE0qMTBeLTYpDQpUSUNNU208LUkoVElDTVMqMTBeLTYpDQpjcmVkaXRvPC1JKENSRUQqMTBeLTYpDQptb2QxIDwtIGxtKEJBUlJPfkxOWUlfVF8xK1NJTkQrU0FHUk8rU1NFUlYrU1BVQitIK0REK0RPUkMrVA0KICAgICAgICAgICAgICtFeHBvcnRhK0ltcG9ydGErTXJlZ2lvDQogICAgICAgICAgICtGUE0rVElDTVNtK2NyZWRpdG8sIGRhdGE9ZGFkb3MpDQpgYGANCg0KVmFtb3MgdXRpbGl6YXIgbyBwYWNvdGUgKnN0YXJnYXplciogcGFyYSBvcmdhbml6YXIgYXMgc2HDrWRhcyBkZSByZXN1bHRhZG9zLiBTZSBhIHNhw61kYSBmb3NzZSBhcGVuYXMgcGVsbyBjb21hbmRvICpzdW1tYXJ5Kiwgc2FpcmlhIGRhIGZvcm1hOg0KICAgDQpgYGB7cn0NCnN1bW1hcnkobW9kMSkNCmBgYA0KDQpBZ29yYSwgY3JpYW5kbyB1bWEgdGFiZWxhIGNvbSBhcyB2w6FyaWFzIHNhw61kYXMgZGUgbW9kZWxvcywgY29tIG8gcGFjb3RlICpzdGFyZ2F6ZXIqIHRlbS1zZSwgY29tIGEgZ2VyYcOnw6NvIGRlIEFJQyBlIEJJQzoNCg0KDQpgYGB7ciAsIGVjaG89VFJVRSwgZXZhbD1UUlVFLCBtZXNzYWdlPUYsIHdhcm5pbmc9Rn0NCm1vZDEkQUlDIDwtIEFJQyhtb2QxKQ0KbW9kMSRCSUMgPC0gQklDKG1vZDEpDQpsaWJyYXJ5KHN0YXJnYXplcikNCnN0YXJnYXplcihtb2QxLCB0aXRsZSA9ICJUw610dWxvOiBSZXN1bHRhZG8gZGEgUmVncmVzc8OjbyIsIGFsaWduID0gVFJVRSwgdHlwZSA9ICJ0ZXh0IiwgDQogICAgc3R5bGUgPSAiYWxsIiwga2VlcC5zdGF0ID0gYygiYWljIiwgImJpYyIsICJyc3EiLCAiYWRqLnJzcSIsICJuIikpDQpgYGANCg0KDQojIyBDb3JyZWxhw6fDo28NCg0KYGBge3J9DQpsaWJyYXJ5KGNvcnJwbG90KQ0KY29yZWwgPC0gY29yKGRhZG9zWyw2OjI0XSkgIyBzb21lbnRlIHZhci4gZXhwbGljYXRpdmFzDQpjb3JycGxvdChjb3JlbCwgbWV0aG9kID0gIm51bWJlciIsDQogICAgICAgICB0eXBlID0gImxvd2VyIiwgbnVtYmVyLmRpZ2l0cyA9IDIpDQpgYGANCg0KIyMgVGVzdGUgZGUgTXVsdGljb2xpbmVhcmlkYWRlICh2aWYpDQoNCmBgYHtyfQ0KbGlicmFyeShjYXIpDQpyZWcxLnZpZjwtdmlmKG1vZDEpDQpyZWcxLnZpZg0KYGBgDQoNCiMgUmVncmVzc29lcyBhdXhpbGlhcmVzIHBhcmEgYSByZWdyYSBkZSBLbGVpbiANCg0KYGBge3J9DQpyZWcxLkxOWUlfVF8xPC0gbG0oTE5ZSV9UXzF+U0lORCtTQUdSTytTU0VSVitTUFVCK0grREQrRE9SQysgICAgICAgICAgICAgICAgIFQrSShFWFBPUioxMF4tNikrSShJTVBPUioxMF4tNikrSShNUkVHKjEwXi02KSsNCiAgICAgICAgICAgICAgICBJKFRGUE0qMTBeLTYpK0koVElDTVMqMTBeLTYpK0koQ1JFRCoxMF4tNiksIA0KICAgICAgICAgICAgICAgICAgIGRhdGE9ZGFkb3MpDQpzdW1tYXJ5KHJlZzEuTE5ZSV9UXzEpDQoNCnJlZzEuU0lORDwtIGxtKFNJTkR+TE5ZSV9UXzErU0FHUk8rU1NFUlYrU1BVQitIK0REK0RPUkMrVA0KICAgICAgICAgICAgICArSShFWFBPUioxMF4tNikrSShJTVBPUioxMF4tNikrSShNUkVHKjEwXi02KSsNCiAgICAgICAgICAgICAgICBJKFRGUE0qMTBeLTYpK0koVElDTVMqMTBeLTYpK0koQ1JFRCoxMF4tNiksDQogICAgICAgICAgICAgIGRhdGE9ZGFkb3MpDQpzdW1tYXJ5KHJlZzEuU0lORCkNCg0KcmVnMS5TQUdSTzwtIGxtKFNBR1JPflNJTkQrTE5ZSV9UXzErU1NFUlYrU1BVQitIK0REK0RPUkMrVA0KICAgICAgICAgICAgICAgK0koRVhQT1IqMTBeLTYpK0koSU1QT1IqMTBeLTYpK0koTVJFRyoxMF4tNikrDQogICAgICAgICAgICAgICAgIEkoVEZQTSoxMF4tNikrSShUSUNNUyoxMF4tNikrSShDUkVEKjEwXi02KSwNCiAgICAgICAgICAgICAgIGRhdGE9ZGFkb3MpDQpzdW1tYXJ5KHJlZzEuU0FHUk8pDQoNCnJlZzEuU1NFUlY8LSBsbShTU0VSVn5TQUdSTytTSU5EK0xOWUlfVF8xK1NQVUIrSCtERCtET1JDK1QNCiAgICAgICAgICAgICAgICArSShFWFBPUioxMF4tNikrSShJTVBPUioxMF4tNikrSShNUkVHKjEwXi02KSsNCiAgICAgICAgICAgICAgICAgIEkoVEZQTSoxMF4tNikrSShUSUNNUyoxMF4tNikrSShDUkVEKjEwXi02KSwNCiAgICAgICAgICAgICAgICBkYXRhPWRhZG9zKQ0Kc3VtbWFyeShyZWcxLlNTRVJWKQ0KDQpyZWcxLlNQVUI8LSBsbShTUFVCflNTRVJWK1NBR1JPK1NJTkQrTE5ZSV9UXzErSCtERCtET1JDK1QNCiAgICAgICAgICAgICAgICArSShFWFBPUioxMF4tNikrSShJTVBPUioxMF4tNikrSShNUkVHKjEwXi02KSsNCiAgICAgICAgICAgICAgICAgSShURlBNKjEwXi02KStJKFRJQ01TKjEwXi02KStJKENSRUQqMTBeLTYpLA0KICAgICAgICAgICAgICAgZGF0YT1kYWRvcykNCnN1bW1hcnkocmVnMS5TUFVCKQ0KDQpyZWcxLkg8LSBsbShIflNQVUIrU1NFUlYrU0FHUk8rU0lORCtMTllJX1RfMStERCtET1JDK1QNCiAgICAgICAgICAgICAgICArSShFWFBPUioxMF4tNikrSShJTVBPUioxMF4tNikrSShNUkVHKjEwXi02KSsNCiAgICAgICAgICAgICAgSShURlBNKjEwXi02KStJKFRJQ01TKjEwXi02KStJKENSRUQqMTBeLTYpLA0KICAgICAgICAgICAgZGF0YT1kYWRvcykNCnN1bW1hcnkocmVnMS5IKQ0KDQpyZWcxLkREPC0gbG0oRER+SCtTUFVCK1NTRVJWK1NBR1JPK1NJTkQrTE5ZSV9UXzErRE9SQytUDQogICAgICAgICAgICArSShFWFBPUioxMF4tNikrSShJTVBPUioxMF4tNikrSShNUkVHKjEwXi02KSsNCiAgICAgICAgICAgICAgSShURlBNKjEwXi02KStJKFRJQ01TKjEwXi02KStJKENSRUQqMTBeLTYpLA0KICAgICAgICAgICAgZGF0YT1kYWRvcykNCnN1bW1hcnkocmVnMS5ERCkNCg0KcmVnMS5ET1JDPC0gbG0oRE9SQ35ERCtIK1NQVUIrU1NFUlYrU0FHUk8rU0lORCtMTllJX1RfMStUDQogICAgICAgICAgICAgK0koRVhQT1IqMTBeLTYpK0koSU1QT1IqMTBeLTYpK0koTVJFRyoxMF4tNikrSShURlBNKjEwXi02KStJKFRJQ01TKjEwXi02KStJKENSRUQqMTBeLTYpLCBkYXRhPWRhZG9zKQ0Kc3VtbWFyeShyZWcxLkRPUkMpDQoNCnJlZzEuVDwtIGxtKFR+RE9SQytERCtIK1NQVUIrU1NFUlYrU0FHUk8rU0lORCtMTllJX1RfMQ0KICAgICAgICAgICAgICAgK0koRVhQT1IqMTBeLTYpK0koSU1QT1IqMTBeLTYpK0koTVJFRyoxMF4tNikrDQogICAgICAgICAgICAgIEkoVEZQTSoxMF4tNikrSShUSUNNUyoxMF4tNikrSShDUkVEKjEwXi02KSwNCiAgICAgICAgICAgIGRhdGE9ZGFkb3MpDQpzdW1tYXJ5KHJlZzEuVCkNCg0KcmVnMS5FWFBPUjwtIGxtKEkoRVhQT1IqMTBeLTYpflQrRE9SQytERCtIK1NQVUIrU1NFUlYrDQogICAgICAgICAgICAgICAgICBTQUdSTytTSU5EK0xOWUlfVF8xDQogICAgICAgICAgICArSShJTVBPUioxMF4tNikrSShNUkVHKjEwXi02KStJKFRGUE0qMTBeLTYpKw0KICAgICAgICAgICAgICBJKFRJQ01TKjEwXi02KStJKENSRUQqMTBeLTYpLCBkYXRhPWRhZG9zKQ0Kc3VtbWFyeShyZWcxLkVYUE9SKQ0KDQpyZWcxLklNUE9SPC0gbG0oSShJTVBPUioxMF4tNil+SShFWFBPUioxMF4tNikrVCtET1JDK0REK0grDQogICAgICAgICAgICAgICAgICBTUFVCK1NTRVJWK1NBR1JPK1NJTkQrTE5ZSV9UXzENCiAgICAgICAgICAgICAgICArSShNUkVHKjEwXi02KStJKFRGUE0qMTBeLTYpK0koVElDTVMqMTBeLTYpKw0KICAgICAgICAgICAgICAgICAgSShDUkVEKjEwXi02KSwgZGF0YT1kYWRvcykNCnN1bW1hcnkocmVnMS5JTVBPUikNCg0KcmVnMS5NUkVHPC0gbG0oSShNUkVHKjEwXi02KX5JKElNUE9SKjEwXi02KStJKEVYUE9SKjEwXi02KSsNCiAgICAgICAgICAgICAgICAgVCtET1JDK0REK0grU1BVQitTU0VSVitTQUdSTytTSU5EK0xOWUlfVF8xDQogICAgICAgICAgICAgICAgK0koVEZQTSoxMF4tNikrSShUSUNNUyoxMF4tNikrSShDUkVEKjEwXi02KSwNCiAgICAgICAgICAgICAgIGRhdGE9ZGFkb3MpDQpzdW1tYXJ5KHJlZzEuTVJFRykNCg0KcmVnMS5URlBNPC0gbG0oSShURlBNKjEwXi02KX5JKE1SRUcqMTBeLTYpK0koSU1QT1IqMTBeLTYpK0koRVhQT1IqMTBeLTYpK1QrRE9SQytERCtIK1NQVUIrU1NFUlYrU0FHUk8rU0lORCtMTllJX1RfMQ0KICAgICAgICAgICAgICAgK0koVElDTVMqMTBeLTYpK0koQ1JFRCoxMF4tNiksIGRhdGE9ZGFkb3MpDQpzdW1tYXJ5KHJlZzEuVEZQTSkNCg0KcmVnMS5USUNNUzwtIGxtKEkoVElDTVMqMTBeLTYpfkkoVEZQTSoxMF4tNikrSShNUkVHKjEwXi02KQ0KICAgICAgICAgICAgICAgICtJKElNUE9SKjEwXi02KStJKEVYUE9SKjEwXi02KStUK0RPUkMrREQrSA0KICAgICAgICAgICAgICAgICtTUFVCK1NTRVJWK1NBR1JPK1NJTkQrTE5ZSV9UXzErSShDUkVEKjEwXi02KSwNCiAgICAgICAgICAgICAgICBkYXRhPWRhZG9zKQ0Kc3VtbWFyeShyZWcxLlRJQ01TKQ0KDQpyZWcxLkNSRUQ8LSBsbShJKENSRUQqMTBeLTYpfkkoVElDTVMqMTBeLTYpK0koVEZQTSoxMF4tNikNCiAgICAgICAgICAgICAgICtJKE1SRUcqMTBeLTYpK0koSU1QT1IqMTBeLTYpK0koRVhQT1IqMTBeLTYpK1QNCiAgICAgICAgICAgICAgICArRE9SQytERCtIK1NQVUIrU1NFUlYrU0FHUk8rU0lORCtMTllJX1RfMSAsDQogICAgICAgICAgICAgICBkYXRhPWRhZG9zKQ0Kc3VtbWFyeShyZWcxLkNSRUQpDQpgYGANCg0KIyMgUmVzdW1vIGRvcyAkUl4yJCBEQVMgUkVHUkVTU09FUyBBVVhJTElBUkVTDQoNCmBgYHtyfQ0KcjIuTE5ZSV9UXzE8LXN1bW1hcnkocmVnMS5MTllJX1RfMSkkci5zcXVhcmVkDQpyMi5TSU5EPC1zdW1tYXJ5KHJlZzEuU0lORCkkci5zcXVhcmVkDQpyMi5TQUdSTzwtc3VtbWFyeShyZWcxLlNBR1JPKSRyLnNxdWFyZWQNCnIyLlNTRVJWPC1zdW1tYXJ5KHJlZzEuU1NFUlYpJHIuc3F1YXJlZA0KcjIuU1BVQjwtc3VtbWFyeShyZWcxLlNQVUIpJHIuc3F1YXJlZA0KcjIuSDwtc3VtbWFyeShyZWcxLkgpJHIuc3F1YXJlZA0KcjIuREQ8LXN1bW1hcnkocmVnMS5ERCkkci5zcXVhcmVkDQpyMi5ET1JDPC1zdW1tYXJ5KHJlZzEuRE9SQykkci5zcXVhcmVkDQpyMi5UPC1zdW1tYXJ5KHJlZzEuVCkkci5zcXVhcmVkDQpyMi5FWFBPUjwtc3VtbWFyeShyZWcxLkVYUE9SKSRyLnNxdWFyZWQNCnIyLklNUE9SPC1zdW1tYXJ5KHJlZzEuSU1QT1IpJHIuc3F1YXJlZA0KcjIuTVJFRzwtc3VtbWFyeShyZWcxLk1SRUcpJHIuc3F1YXJlZA0KcjIuVEZQTTwtc3VtbWFyeShyZWcxLlRGUE0pJHIuc3F1YXJlZA0KcjIuVElDTVM8LXN1bW1hcnkocmVnMS5USUNNUykkci5zcXVhcmVkDQpyMi5DUkVEPC1zdW1tYXJ5KHJlZzEuQ1JFRCkkci5zcXVhcmVkDQoNCnRhYmVsYTwtcmJpbmQocjIuTE5ZSV9UXzEsDQogICAgICAgICAgICAgIHIyLlNJTkQsDQogICAgICAgICAgICAgIHIyLlNBR1JPLA0KICAgICAgICAgICAgICByMi5TU0VSViwNCiAgICAgICAgICAgICAgcjIuU1BVQiwNCiAgICAgICAgICAgICAgcjIuSCwNCiAgICAgICAgICAgICAgcjIuREQsDQogICAgICAgICAgICAgIHIyLkRPUkMsDQogICAgICAgICAgICAgIHIyLlQsDQogICAgICAgICAgICAgIHIyLkVYUE9SLA0KICAgICAgICAgICAgICByMi5JTVBPUiwNCiAgICAgICAgICAgICAgcjIuTVJFRywNCiAgICAgICAgICAgICAgcjIuVEZQTSwNCiAgICAgICAgICAgICAgcjIuVElDTVMsDQogICAgICAgICAgICAgIHIyLkNSRUQpDQpsaWJyYXJ5KGtuaXRyKQ0Ka2FibGUodGFiZWxhLGNvbC5uYW1lcyA9ICJSMiIpDQpjKFIyX21vZDE9c3VtbWFyeShtb2QxKSRyLnNxdWFyZWQpDQpgYGANCg0KIyBIZXRlcm9jZWRhc3RpY2lkYWRlIA0KIyMgVGVzdGUgZGUgV2hpdGUgbm8gbW9kZWxvIDENCg0KYGBge3J9DQoNCiN0ZXN0ZSBkZSBXaGl0ZSBwYXJhIGhldGVyb2NlZGFzdGljaWRhZGUsIHNlbSB0ZXJtb3MgY3J1emFkb3MgcG9yIGNhdXNhIGRvIGdyYXUgZGUgbGliZXJkYWRlIGRvIG1vZGVsbyAobj03OG9icykNCg0KbSA8LSBtb2QxDQpkYXRhIDwtIGRhZG9zDQojcm90aW5hIGRvIHRlc3RlIGNvbSBiYXNlIGVtIG0gZSBkYXRhDQp1MiA8LSBtJHJlc2lkdWFsc14yDQoNCiNyZWcxPC1sbShCQVJST35MTllJX1RfMStTSU5EK1NBR1JPK1NTRVJWK1NQVUIrSCtERCtET1JDK1QNCiMgICArSShFWFBPUioxMF4tNikrSShJTVBPUioxMF4tNikrSShNUkVHKjEwXi02KStJKFRGUE0qMTBeLTYpK0koVElDTVMqMTBeLTYpK0koQ1JFRCoxMF4tNiksIGRhdGE9ZGFkb3MpDQoNCnJlZy5hdXhpbGlhcjwtbG0odTIgfiBMTllJX1RfMStTSU5EK1NBR1JPK1NTRVJWK1NQVUIrSCtERCtET1JDK1QrDQogICBJKEVYUE9SKjEwXi02KStJKElNUE9SKjEwXi02KStJKE1SRUcqMTBeLTYpKw0KICAgSShURlBNKjEwXi02KStJKFRJQ01TKjEwXi02KStJKENSRUQqMTBeLTYpKw0KICAgSShMTllJX1RfMV4yKStJKFNJTkReMikrSShTQUdST14yKSsNCiAgIEkoU1NFUlZeMikrSShTUFVCXjIpK0koSF4yKStJKEREXjIpKw0KICAgSShET1JDXjIpK0koVF4yKStJKChFWFBPUioxMF4tNileMikrDQogICBJKChJTVBPUioxMF4tNileMikrSSgoTVJFRyoxMF4tNileMikrDQogICBJKChURlBNKjEwXi02KV4yKStJKChUSUNNUyoxMF4tNileMikrDQogICBJKChDUkVEKjEwXi02KV4yKSwgZGF0YT1kYWRvcykgIA0Kc3VtbWFyeShyZWcuYXV4aWxpYXIpDQpSdTI8LXN1bW1hcnkocmVnLmF1eGlsaWFyKSRyLnNxdWFyZWQNCkxNPC1ucm93KGRhdGEpKlJ1Mg0KI29idGVuZG8gbyBudW1lcm8gZGUgcmVncmVzc29yZXMgbWVub3MgbyBpbnRlcmNlcHRvDQprIDwtIGxlbmd0aChjb2VmZmljaWVudHMocmVnLmF1eGlsaWFyKSktMQ0Kaw0KcC52YWx1ZSA8LSAxLXBjaGlzcShMTSwgaykgIyBPIFRFU1RFIFRFTSBrIFRFUk1PUyBSRUdSRVNTT1JFUyBFTSByZWcuYXV4aWxpYXINCiNjKCJMTSIsInAudmFsdWUiKQ0KIydSZXN1bHRhZG8gZG8gdGVzdGUgZGUgV2hpdGUgc2VtIHRlcm1vcyBjcnV6YWRvcw0KYyhMTT1MTSwgcC52YWx1ZT1wLnZhbHVlKQ0KYGBgDQoNCiMgTW9kZWxvIDIgY29tIG1lbm9zIHZhcmnDoXZlaXMNCg0KYGBge3IgLCBlY2hvPVRSVUUsIGV2YWw9VFJVRSwgbWVzc2FnZT1GLCB3YXJuaW5nPUZ9DQojcm9kYW5kbyBjb20gbWVub3MgdmFyaWF2ZWlzDQptb2QyPC1sbShCQVJST35MTllJX1RfMStTSU5EK1NBR1JPK1NTRVJWK1NQVUIrSA0KICAgK0ltcG9ydGErVElDTVNtLCBkYXRhPWRhZG9zKQ0Kc3VtbWFyeShtb2QyKQ0KbW9kMiRBSUMgPC0gQUlDKG1vZDIpDQptb2QyJEJJQyA8LSBCSUMobW9kMikNCnN0YXJnYXplcihtb2QxLG1vZDIsIA0KICAgICAgICAgIHRpdGxlID0gIlTDrXR1bG86IFJlc3VsdGFkbyBkYSBSZWdyZXNzw6NvIiwgDQogICAgICAgICAgYWxpZ24gPSBUUlVFLCANCiAgICAgICAgICB0eXBlID0gInRleHQiLCANCiAgICAgICAgICBzdHlsZSA9ICJhbGwiLCANCiAgICAgICAgICBrZWVwLnN0YXQgPSBjKCJhaWMiLCAiYmljIiwgInJzcSIsICJhZGoucnNxIiwgIm4iKSkNCmBgYA0KDQojIyBIZXRlcm9jZWRhc3RpY2lkYWRlDQoNCiMjIyBUZXN0ZSBkZSBXaGl0ZTogbW9kMg0KDQpgYGB7cn0NCiN0ZXN0ZSBkZSBXaGl0ZSBwYXJhIGhldGVyb2NlZGFzdGljaWRhZGUsIHNlbSB0ZXJtb3MgY3J1emFkb3MgcG9yIGNhdXNhIGRvIGdyYXUgZGUgbGliZXJkYWRlIGRvIG1vZGVsbyAobj03OG9icykNCg0KbSA8LSBtb2QyDQpkYXRhIDwtIGRhZG9zDQojcm90aW5hIGRvIHRlc3RlIGNvbSBiYXNlIGVtIG0gZSBkYXRhDQp1MiA8LSBtJHJlc2lkdWFsc14yDQoNCiNtb2QyPC1sbShCQVJST35MTllJX1RfMStTSU5EK1NBR1JPK1NTRVJWK1NQVUIrSA0KIyAgICAgICAgICtJKElNUE9SKjEwXi02KStJKFRJQ01TKjEwXi02KSwgZGF0YT1kYWRvcykNCg0KcmVnLmF1eGlsaWFyPC1sbSh1MiB+IExOWUlfVF8xK1NJTkQrU0FHUk8rU1NFUlYrU1BVQitIKw0KICAgICAgICAgSShJTVBPUioxMF4tNikrSShUSUNNUyoxMF4tNikrDQogICAgICAgICBJKExOWUlfVF8xXjIpK0koU0lORF4yKStJKFNBR1JPXjIpK0koU1NFUlZeMikrSShTUFVCXjIpK0koSF4yKSsNCiAgICAgICAgIEkoKElNUE9SKjEwXi02KV4yKStJKChUSUNNUyoxMF4tNileMiksIGRhdGE9ZGFkb3MpICANCnN1bW1hcnkocmVnLmF1eGlsaWFyKQ0KUnUyPC1zdW1tYXJ5KHJlZy5hdXhpbGlhcikkci5zcXVhcmVkDQpMTTwtbnJvdyhkYXRhKSpSdTINCiNvYnRlbmRvIG8gbnVtZXJvIGRlIHJlZ3Jlc3NvcmVzIG1lbm9zIG8gaW50ZXJjZXB0bw0KayA8LSBsZW5ndGgoY29lZmZpY2llbnRzKHJlZy5hdXhpbGlhcikpLTENCmsNCnAudmFsdWUgPC0gMS1wY2hpc3EoTE0sIGspICMgTyBURVNURSBURU0gayBURVJNT1MgUkVHUkVTU09SRVMgRU0gcmVnLmF1eGlsaWFyDQoNCiMnUmVzdWx0YWRvIGRvIHRlc3RlIGRlIFdoaXRlIHNlbSB0ZXJtb3MgY3J1emFkb3MNCmMoTE09TE0sIHAudmFsdWU9cC52YWx1ZSkNCmBgYA0KDQpPdSBwZWxvIGBicHRlc3RgOg0KDQpgYGB7cn0NCmJwdGVzdChtb2QyLH4gTE5ZSV9UXzErU0lORCtTQUdSTytTU0VSVitTUFVCK0grDQogICAgICAgICBJKElNUE9SKjEwXi02KStJKFRJQ01TKjEwXi02KSsNCiAgICAgICAgIEkoTE5ZSV9UXzFeMikrSShTSU5EXjIpK0koU0FHUk9eMikrSShTU0VSVl4yKStJKFNQVUJeMikrSShIXjIpKw0KICAgICAgICAgSSgoSU1QT1IqMTBeLTYpXjIpK0koKFRJQ01TKjEwXi02KV4yKSwgZGF0YT1kYWRvcykNCmBgYA0KDQojIyMgQ29ycmXDp8OjbyBkZSBWYXItY292IGNvbmZvcm1lIFdoaXRlDQoNCmBgYHtyfQ0KI21vZDI8LWxtKEJBUlJPfkxOWUlfVF8xK1NJTkQrU0FHUk8rU1NFUlYrU1BVQitIDQojICAgICAgICAgK0koSU1QT1IqMTBeLTYpK0koVElDTVMqMTBeLTYpLCBkYXRhPWRhZG9zKQ0KI2xpYnJhcnkoY2FyKSANCiNwb3NzaWJpbGlkYWRlczogaGNjbShyZWdyZXNzYW8xLHR5cGU9YygiaGMwIiwiaGMxIiwiaGMyIiwiaGMzIiwiaGM0IikpDQp2Y292LndoaXRlMDwtaGNjbShtb2QyLHR5cGU9YygiaGMxIikpDQojDQpjb2VmdGVzdChtb2QyLHZjb3Yud2hpdGUwKQ0KYGBgDQoNCiMjIyMgUmV2ZW5kbyBhIHNhw61kYSBkbyBtb2RlbG8gMiBzZW0gY29ycmVjYW8gZGUgV2hpdGUNCg0KYGBge3J9DQpzdW1tYXJ5KG1vZDIpDQpgYGANCg0KDQojIyMgU2HDrWRhIGRvIHN0YXJnYXplciBjb20gbW9kZWxvIDEgZSBtb2RlbG8gMiAoY29tIGUgc2VtIGNvcnJlw6fDo28gZGUgV2hpdGUpDQoNCmBgYHtyfQ0KY292IDwtIHZjb3Yud2hpdGUwDQpyb2J1c3Quc2UgPC0gc3FydChkaWFnKGNvdikpDQoNCnN0YXJnYXplcihtb2QxLCBtb2QyLG1vZDIgLA0KICAgICAgICAgIHNlPWxpc3QoTlVMTCwgTlVMTCxyb2J1c3Quc2UpLA0KICAgICAgICAgIGNvbHVtbi5sYWJlbHM9YygiTVFPLW1vZDEiLCJNUU8tbW9kMiIsInJvYnVzdG8iKSwgDQogICAgICAgICAgdGl0bGU9IlTDrXR1bG86IFJlc3VsdGFkbyBkYSBSZWdyZXNzw6NvIiwNCiAgICAgICAgICBhbGlnbj1UUlVFLA0KICAgICAgICAgIHR5cGUgPSAidGV4dCIsIHN0eWxlID0gImFsbCIsDQogICAgICAgICAga2VlcC5zdGF0PWMoImFpYyIsImJpYyIsInJzcSIsICJhZGoucnNxIiwibiIpKQ0KYGBgDQoNCiMjIEF1dG9jb3JyZWxhw6fDo28gZG9zIHJlc8OtZHVvcyAobW9kZWxvcyAxIGUgMikNCg0KYGBge3J9DQpsaWJyYXJ5KGNhcik7IGxpYnJhcnkobG10ZXN0KTtsaWJyYXJ5KHNhbmR3aWNoKQ0KDQpkdy5tb2QyPC1kd3Rlc3QobW9kMikNCmR3Lm1vZDINCmR3Lm1vZDE8LWR3dGVzdChtb2QxKQ0KZHcubW9kMQ0KYGBgDQoNCkZpeiB1bWEgcm90aW5hIHBhcmEgcm9kYXIgdsOhcmlvcyBCR3Rlc3QgYXTDqSBvcmRlbSAxMi4gRml6IHBhcmEgbyBtb2RlbG8gMi4NCg0KYGBge3J9DQojIHBhZHJhbyBkbyB0ZXN0ZSBkZSBCRywgY29tIGRpc3RyaWJ1acOnw6NvIHF1aS1xdWFkcmFkbw0KYmdvcmRlciA9IDE6MTIgICMgZGVmaW5pbmRvIGF0w6kgYSBtw6F4aW1hIG9yZGVtIGRvIGJndGVzdA0KZD1OVUxMDQpmb3IgKHAgaW4gYmdvcmRlcikgew0KICBiZ3Rlc3QuY2hpPC1iZ3Rlc3QobW9kMiwNCiAgICAgICAgICAgICAgICAgICAgIG9yZGVyID0gcCx0eXBlPWMoIkNoaXNxIiksIGRhdGEgPSBkYWRvcykNCiAgcHJpbnQoYmd0ZXN0LmNoaSkgDQogIGQgPSByYmluZChkLCANCiAgICAgICAgICAgICAgICAgZGF0YS5mcmFtZShiZ3Rlc3QuY2hpJHN0YXRpc3RpYyxiZ3Rlc3QuY2hpJHAudmFsdWUpKQ0KICB9DQpkDQpgYGANCg0KTsOjbyBjb25jbHVpdSBwb3IgYXV0b2NvcnJlbGHDp8OjbyByZXNpZHVhbCENCg0KIyMgVGVzdGUgZGUgSmFycXVlLUJlcmEgcGFyYSBub3JtYWxpZGFkZSAobW9kZWxvIDIpDQoNCmBgYHtyfQ0KdS5oYXQ8LXJlc2lkKG1vZDIpDQojbGlicmFyeSh0c2VyaWVzKQ0KSkIubW9kMjwtamFycXVlLmJlcmEudGVzdCh1LmhhdCkNCkpCLm1vZDINCmBgYA0KDQoNCiMjIFRlc3RlIFJFU0VUIGRlIFJhbXNleSBjb20gcG90ZW5jaWFzIGRlIDIgZSAzIChtb2RlbG8gMikNCg0KYGBge3J9DQpUZXN0ZVJFU0VULnBvd2VyPC1sbXRlc3Q6OnJlc2V0dGVzdChtb2QyLCBwb3dlciA9IDI6MykNClRlc3RlUkVTRVQucG93ZXINCg0KYGBgDQoNCiMjIEludmVzdGlnYcOnw6NvIGRlIG91dGxpZXJzIC0gdGVzdGUgZGUgQm9uZmVycm9uaSBwYXJhIG91dGxpZXIgKG1vZGVsbyAyKQ0KDQpgYGB7cn0NCm91dGxpZXJUZXN0KG1vZDIpDQpxcVBsb3QobW9kMikNCnZpZihtb2QyKQ0KYGBgDQoNCk8gb3V0bGllciA1OCDDqSBvIG11bmljw61waW8gZGUgSnVydWVuYS4NCg0KUmVmZXLDqm5jaWFzIHstI1JlZmVyw6puY2lhc30NCj09PT09PT09PT09PT09PT09PT09PT09PQ0KDQpNQVJRVUVaSU4sIFdpbGxpYW0gUmljYXJkby4gTyBGdW5kbyBkZSBQYXJ0aWNpcGHDp8OjbyBkb3MgTXVuaWPDrXBpb3MgZSBzdWEgY29udHJpYnVpw6fDo28gcGFyYSBhIHJlZHXDp8OjbyBkYSBkZXNpZ3VhbGRhZGUgZWNvbsO0bWljYSBlbSBNYXRvIEdyb3Nzby4gVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgTWF0byBHcm9zc28sIEZhY3VsZGFkZSBkZSBFY29ub21pYSwgUHJvZ3JhbWEgZGUgUMOzcy1HcmFkdWHDp8OjbyBlbSBBZ3JvbmVnw7NjaW8gZSBEZXNlbnZvbHZpbWVudG8gUmVnaW9uYWwuIFVGTVQ6IEN1aWFiw6EtTVQsIDIwMTQuIERpc3NlcnRhw6fDo28gKE1lc3RyYWRvKS4gRGlzcG9uw612ZWwgZW06ICA8aHR0cHM6Ly93d3cudWZtdC5ici9hZHIvYXJxdWl2b3MvNmI5M2Y5ODE1Y2ZhZDI3NWZiMDVmMzUwMmRlZmZkYTYucGRmPi4=