Loading, setting up

library(readxl)
library(tidyverse)
library(lavaan)
library(semTools)
library(jmRtools) # devtools::install_github("jrosen48/jmRtools")

d <- read_excel("R_Dataset_v2.xlsx")
# - expctncy_s__23 (Needs to be reversed)
d$expectancy_success__23 <- sjmisc::rec(d$expectancy_success__23, rec = "1=5;2=4;3=3;4=2;5=1")

Preliminary analysis

Checking for missing data

no missingness in this data

# d %>% select(tam_perceived_usefulness_1:full_cost_emotional_cost_59) %>% complete.cases()
d %>% select(tam_perceived_usefulness_1:full_cost_emotional_cost_59) %>% complete.cases() %>% table()
## .
## TRUE 
##  249

Demographic info

# age
d %>% 
  skimr::skim(Q3)
Data summary
Name Piped data
Number of rows 249
Number of columns 76
_______________________
Column type frequency:
numeric 1
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
Q3 0 1 24.64 7.13 18 21 22 26 58 ▇▁▁▁▁
# gender
d %>% 
  janitor::tabyl(Q29)
##     Q29   n     percent valid_percent
##       0   1 0.004016064   0.005434783
##  Female 157 0.630522088   0.853260870
##    Male  26 0.104417671   0.141304348
##    <NA>  65 0.261044177            NA
# ethnic background
d %>% 
  janitor::tabyl(Q31) %>% arrange(desc(n)) %>% data.table::data.table()
##                                                                    Q31   n
##  1:                           White, Caucasian, European, Not Hispanic 147
##  2:                                                 Hispanic or Latino  34
##  3:                                            Asian or Asian American  31
##  4:                                          Black or African American  22
##  5:        Hispanic or Latino,White, Caucasian, European, Not Hispanic   5
##  6:                                                             Other:   3
##  7: Black or African American,White, Caucasian, European, Not Hispanic   2
##  8:                                     Asian or Asian American,Other:   1
##  9:   Asian or Asian American,White, Caucasian, European, Not Hispanic   1
## 10:                       Black or African American,Hispanic or Latino   1
## 11:                                   Black or African American,Other:   1
## 12:                                          Hispanic or Latino,Other:   1
##         percent
##  1: 0.590361446
##  2: 0.136546185
##  3: 0.124497992
##  4: 0.088353414
##  5: 0.020080321
##  6: 0.012048193
##  7: 0.008032129
##  8: 0.004016064
##  9: 0.004016064
## 10: 0.004016064
## 11: 0.004016064
## 12: 0.004016064
# english first language
d %>% 
  janitor::tabyl(Q26)
##  Q26   n     percent
##    0   1 0.004016064
##   No  37 0.148594378
##  Yes 211 0.847389558
# computer access at home, years of usage, hours of use not examined

Descriptives at the item-level

d %>% select(tam_perceived_usefulness_1:full_cost_emotional_cost_59) %>% 
  mutate_all(as.numeric) %>% 
  psych::describe()
##                                       vars   n mean   sd median trimmed  mad
## tam_perceived_usefulness_1               1 249 4.35 0.70      4    4.43 1.48
## tam_subjective_norm_2                    2 249 3.95 0.78      4    3.98 1.48
## tam_perceived_ease_use_3                 3 249 4.15 0.72      4    4.23 0.00
## tam_subjective_norm_4                    4 249 3.88 0.80      4    3.89 1.48
## tam_facilitating_condition_5             5 249 4.03 0.77      4    4.10 0.00
## tam_computer_attitudes_6                 6 249 4.06 0.86      4    4.14 1.48
## tam_computer_attitudes_7                 7 246 4.06 0.85      4    4.14 1.48
## tam_computer_attitudes_8                 8 247 4.14 0.84      4    4.25 1.48
## tam_perceived_usefulness_9               9 247 4.16 0.74      4    4.22 1.48
## tam_perceived_ease_use_10               10 249 3.80 0.90      4    3.89 0.00
## tam_perceived_usefulness_11             11 247 3.96 0.84      4    4.02 1.48
## tam_perceived_ease_use_12               12 248 3.14 0.98      3    3.15 1.48
## tam_facilitating_condition_13           13 248 3.59 0.88      4    3.63 1.48
## tam_computer_attitudes_14               14 248 3.61 0.95      4    3.67 1.48
## tam_perceived_usefulness_15             15 248 4.26 0.65      4    4.32 0.00
## tam_perceived_ease_use_16               16 247 3.91 0.81      4    3.99 0.00
## tam_computer_attitudes_17               17 247 3.23 1.05      3    3.19 1.48
## intention_use__18                       18 249 4.67 0.79      5    4.66 1.48
## intention_use__19                       19 249 4.58 0.72      5    4.57 1.48
## expectancy_success__20                  20 249 3.84 0.70      4    3.83 0.00
## expectancy_success__21                  21 249 3.83 0.87      4    3.91 0.00
## expectancy_success__22                  22 249 3.90 0.74      4    3.92 0.00
## expectancy_success__23                  23 249 2.00 0.90      2    1.90 1.48
## expectancy_success__24                  24 249 3.39 0.97      3    3.44 1.48
## expectancy_success__25                  25 248 3.48 1.01      4    3.54 1.48
## task_value__26                          26 249 3.57 0.96      4    3.63 1.48
## task_value_attainment_value_27          27 249 3.61 0.97      4    3.67 1.48
## task_value_utility_value_28             28 249 4.21 0.84      4    4.31 1.48
## task_value_interest_value_29            29 249 3.57 1.06      4    3.63 1.48
## task_value_utility_value_30             30 249 4.31 0.73      4    4.39 1.48
## task_value_attainment_value_31          31 249 3.15 1.17      3    3.19 1.48
## task_value_interest_value_32            32 248 4.00 0.84      4    4.07 1.48
## task_value_attainment_value_33          33 248 3.74 0.95      4    3.82 1.48
## task_value_utility_value_34             34 249 4.24 0.72      4    4.31 1.48
## task_value_utility_value_35             35 249 4.38 0.68      4    4.48 1.48
## task_value_attainment_value_36          36 249 3.14 1.16      3    3.17 1.48
## task_value_interest_value_37            37 248 3.96 0.88      4    4.04 1.48
## task_value_attainment_value_38          38 248 3.63 1.03      4    3.70 1.48
## task_value_utility_value_39             39 249 4.31 0.70      4    4.40 1.48
## task_value_interest_value_40            40 249 3.64 0.98      4    3.69 1.48
## full_cost_emotional_cost_41             41 249 3.59 1.90      3    3.49 1.48
## full_cost_task_effort_cost_42           42 249 3.05 1.70      2    2.90 1.48
## full_cost_loss_valued_alternatives_43   43 249 3.46 1.68      3    3.40 1.48
## full_cost_outside_effort_cost_44        44 248 3.36 1.63      3    3.32 1.48
## full_cost_task_effort_cost_45           45 249 3.12 1.80      2    2.95 1.48
## full_cost_task_effort_cost_46           46 248 2.97 1.73      2    2.79 1.48
## full_cost_outside_effort_cost_47        47 249 3.12 1.73      3    2.97 1.48
## full_cost_emotional_cost_48             48 249 2.99 1.67      2    2.83 1.48
## full_cost_loss_valued_alternatives_49   49 248 3.05 1.65      3    2.92 1.48
## full_cost_outside_effort_cost_50        50 249 3.05 1.65      2    2.93 1.48
## full_cost_task_effort_cost_51           51 249 3.26 1.72      3    3.14 1.48
## full_cost_outside_effort_cost_52        52 249 3.04 1.66      2    2.91 1.48
## full_cost_loss_valued_alternatives_53   53 249 3.08 1.71      2    2.93 1.48
## full_cost_emotional_cost_54             54 249 3.00 1.73      2    2.82 1.48
## full_cost_emotional_cost_55             55 248 2.79 1.78      2    2.58 1.48
## full_cost_loss_valued_alternatives_56   56 249 2.81 1.65      2    2.65 1.48
## full_cost_task_effort_cost_57           57 248 2.90 1.64      2    2.75 1.48
## full_cost_emotional_cost_58             58 249 2.78 1.69      2    2.59 1.48
## full_cost_emotional_cost_59             59 249 3.01 1.87      2    2.77 1.48
##                                       min max range  skew kurtosis   se
## tam_perceived_usefulness_1              1   5     4 -1.29     3.47 0.04
## tam_subjective_norm_2                   1   5     4 -0.37    -0.05 0.05
## tam_perceived_ease_use_3                1   5     4 -1.06     2.58 0.05
## tam_subjective_norm_4                   1   5     4 -0.25    -0.28 0.05
## tam_facilitating_condition_5            1   5     4 -0.95     1.67 0.05
## tam_computer_attitudes_6                1   5     4 -0.70     0.05 0.05
## tam_computer_attitudes_7                1   5     4 -0.82     0.63 0.05
## tam_computer_attitudes_8                1   5     4 -0.93     0.71 0.05
## tam_perceived_usefulness_9              1   5     4 -0.62     0.43 0.05
## tam_perceived_ease_use_10               1   5     4 -0.73     0.29 0.06
## tam_perceived_usefulness_11             1   5     4 -0.54    -0.04 0.05
## tam_perceived_ease_use_12               1   5     4 -0.15    -0.88 0.06
## tam_facilitating_condition_13           1   5     4 -0.55     0.15 0.06
## tam_computer_attitudes_14               1   5     4 -0.52     0.10 0.06
## tam_perceived_usefulness_15             1   5     4 -0.93     2.57 0.04
## tam_perceived_ease_use_16               1   5     4 -1.08     1.98 0.05
## tam_computer_attitudes_17               1   5     4  0.09    -0.89 0.07
## intention_use__18                       2   6     4 -0.12    -0.20 0.05
## intention_use__19                       2   6     4 -0.16     0.13 0.05
## expectancy_success__20                  1   5     4 -0.39     0.62 0.04
## expectancy_success__21                  1   5     4 -0.99     1.37 0.06
## expectancy_success__22                  1   5     4 -0.63     1.20 0.05
## expectancy_success__23                  1   5     4  0.90     0.65 0.06
## expectancy_success__24                  1   5     4 -0.63     0.32 0.06
## expectancy_success__25                  1   5     4 -0.49     0.06 0.06
## task_value__26                          1   5     4 -0.36     0.03 0.06
## task_value_attainment_value_27          1   5     4 -0.42    -0.18 0.06
## task_value_utility_value_28             2   5     3 -0.82    -0.06 0.05
## task_value_interest_value_29            1   5     4 -0.35    -0.63 0.07
## task_value_utility_value_30             2   5     3 -0.72    -0.13 0.05
## task_value_attainment_value_31          1   5     4 -0.16    -0.77 0.07
## task_value_interest_value_32            1   5     4 -0.59     0.01 0.05
## task_value_attainment_value_33          1   5     4 -0.54    -0.01 0.06
## task_value_utility_value_34             2   5     3 -0.53    -0.47 0.05
## task_value_utility_value_35             2   5     3 -0.79     0.08 0.04
## task_value_attainment_value_36          1   5     4 -0.11    -0.74 0.07
## task_value_interest_value_37            1   5     4 -0.59    -0.15 0.06
## task_value_attainment_value_38          1   5     4 -0.57    -0.20 0.07
## task_value_utility_value_39             2   5     3 -0.72     0.10 0.04
## task_value_interest_value_40            1   5     4 -0.26    -0.74 0.06
## full_cost_emotional_cost_41             1   9     8  0.55    -0.41 0.12
## full_cost_task_effort_cost_42           1   9     8  0.92     0.52 0.11
## full_cost_loss_valued_alternatives_43   1   9     8  0.34    -0.84 0.11
## full_cost_outside_effort_cost_44        1   7     6  0.20    -1.12 0.10
## full_cost_task_effort_cost_45           1   9     8  0.84     0.27 0.11
## full_cost_task_effort_cost_46           1   9     8  1.02     0.85 0.11
## full_cost_outside_effort_cost_47        1   9     8  0.87     0.56 0.11
## full_cost_emotional_cost_48             1   9     8  0.82     0.15 0.11
## full_cost_loss_valued_alternatives_49   1   9     8  0.90     0.69 0.10
## full_cost_outside_effort_cost_50        1   9     8  0.76     0.05 0.10
## full_cost_task_effort_cost_51           1   9     8  0.71    -0.03 0.11
## full_cost_outside_effort_cost_52        1   9     8  0.88     0.52 0.11
## full_cost_loss_valued_alternatives_53   1   9     8  0.76    -0.05 0.11
## full_cost_emotional_cost_54             1   9     8  0.93     0.40 0.11
## full_cost_emotional_cost_55             1   9     8  1.12     0.83 0.11
## full_cost_loss_valued_alternatives_56   1   9     8  0.93     0.36 0.10
## full_cost_task_effort_cost_57           1   9     8  0.78    -0.21 0.10
## full_cost_emotional_cost_58             1   9     8  1.12     0.98 0.11
## full_cost_emotional_cost_59             1   9     8  1.07     0.67 0.12
d %>% 
  select(tam_perceived_usefulness_1:full_cost_emotional_cost_59) %>% 
  mutate_all(as.numeric) %>% 
  corrr::correlate()
## # A tibble: 59 x 60
##    rowname tam_perceived_u… tam_subjective_… tam_perceived_e… tam_subjective_…
##    <chr>              <dbl>            <dbl>            <dbl>            <dbl>
##  1 tam_pe…           NA                0.438            0.478            0.408
##  2 tam_su…            0.438           NA                0.234            0.623
##  3 tam_pe…            0.478            0.234           NA                0.227
##  4 tam_su…            0.408            0.623            0.227           NA    
##  5 tam_fa…            0.369            0.404            0.344            0.314
##  6 tam_co…            0.483            0.464            0.366            0.348
##  7 tam_co…            0.475            0.373            0.434            0.219
##  8 tam_co…            0.500            0.320            0.480            0.201
##  9 tam_pe…            0.606            0.481            0.386            0.477
## 10 tam_pe…            0.327            0.359            0.522            0.157
## # … with 49 more rows, and 55 more variables:
## #   tam_facilitating_condition_5 <dbl>, tam_computer_attitudes_6 <dbl>,
## #   tam_computer_attitudes_7 <dbl>, tam_computer_attitudes_8 <dbl>,
## #   tam_perceived_usefulness_9 <dbl>, tam_perceived_ease_use_10 <dbl>,
## #   tam_perceived_usefulness_11 <dbl>, tam_perceived_ease_use_12 <dbl>,
## #   tam_facilitating_condition_13 <dbl>, tam_computer_attitudes_14 <dbl>,
## #   tam_perceived_usefulness_15 <dbl>, tam_perceived_ease_use_16 <dbl>,
## #   tam_computer_attitudes_17 <dbl>, intention_use__18 <dbl>,
## #   intention_use__19 <dbl>, expectancy_success__20 <dbl>,
## #   expectancy_success__21 <dbl>, expectancy_success__22 <dbl>,
## #   expectancy_success__23 <dbl>, expectancy_success__24 <dbl>,
## #   expectancy_success__25 <dbl>, task_value__26 <dbl>,
## #   task_value_attainment_value_27 <dbl>, task_value_utility_value_28 <dbl>,
## #   task_value_interest_value_29 <dbl>, task_value_utility_value_30 <dbl>,
## #   task_value_attainment_value_31 <dbl>, task_value_interest_value_32 <dbl>,
## #   task_value_attainment_value_33 <dbl>, task_value_utility_value_34 <dbl>,
## #   task_value_utility_value_35 <dbl>, task_value_attainment_value_36 <dbl>,
## #   task_value_interest_value_37 <dbl>, task_value_attainment_value_38 <dbl>,
## #   task_value_utility_value_39 <dbl>, task_value_interest_value_40 <dbl>,
## #   full_cost_emotional_cost_41 <dbl>, full_cost_task_effort_cost_42 <dbl>,
## #   full_cost_loss_valued_alternatives_43 <dbl>,
## #   full_cost_outside_effort_cost_44 <dbl>,
## #   full_cost_task_effort_cost_45 <dbl>, full_cost_task_effort_cost_46 <dbl>,
## #   full_cost_outside_effort_cost_47 <dbl>, full_cost_emotional_cost_48 <dbl>,
## #   full_cost_loss_valued_alternatives_49 <dbl>,
## #   full_cost_outside_effort_cost_50 <dbl>,
## #   full_cost_task_effort_cost_51 <dbl>,
## #   full_cost_outside_effort_cost_52 <dbl>,
## #   full_cost_loss_valued_alternatives_53 <dbl>,
## #   full_cost_emotional_cost_54 <dbl>, full_cost_emotional_cost_55 <dbl>,
## #   full_cost_loss_valued_alternatives_56 <dbl>,
## #   full_cost_task_effort_cost_57 <dbl>, full_cost_emotional_cost_58 <dbl>,
## #   full_cost_emotional_cost_59 <dbl>

Descriptives at the composite level

composite_mean_maker <- function (x, ...) {
  out <- dplyr::select(x, ...)
  out <- mutate_all(out, as.numeric)
  out <- apply(out, 1, function(x) mean(x, na.rm = T))
  out[is.nan(out)] <- NA
  return(out)
}

o <- d %>% 
  transmute(perceived_usefulness = composite_mean_maker(., tam_perceived_usefulness_1,
                                                        tam_perceived_usefulness_9,
                                                        tam_perceived_usefulness_11,
                                                        tam_perceived_usefulness_15),
            subjective_norms = composite_mean_maker(., 
                                                    tam_subjective_norm_2,
                                                    tam_subjective_norm_4),
            facilitating_conditions = composite_mean_maker(.,
                                                          tam_facilitating_condition_5,
                                                          tam_facilitating_condition_13),
            perceived_ease_use = composite_mean_maker(., tam_perceived_ease_use_3,
                                                      tam_perceived_ease_use_10,
                                                      # tam_perceived_ease_use_12,
                                                      tam_perceived_ease_use_16),
            computer_attitudes = composite_mean_maker(., tam_computer_attitudes_6,
                                                      tam_computer_attitudes_7,
                                                      tam_computer_attitudes_8,
                                                      tam_computer_attitudes_14),
            #tam_computer_attitudes_17),
            attainment = composite_mean_maker(., task_value_attainment_value_27,
                                              task_value_attainment_value_31,
                                              task_value_attainment_value_33,
                                              task_value_attainment_value_36,
                                              task_value_attainment_value_38),
            interest = composite_mean_maker(., task_value_interest_value_29,
                                            task_value_interest_value_32,
                                            task_value_interest_value_37,
                                            task_value_interest_value_40),
            utility = composite_mean_maker(., task_value_utility_value_28,
                                           task_value_utility_value_30,
                                           task_value_utility_value_34,
                                           task_value_utility_value_35,
                                           task_value_utility_value_39),
            expectancy = composite_mean_maker(., expectancy_success__20,
                                              expectancy_success__21,
                                              expectancy_success__22,
                                              #expectancy_success__23,
                                              expectancy_success__24,
                                              expectancy_success__25),
            task_value = composite_mean_maker(., task_value_attainment_value_27,
                                              task_value_attainment_value_31, 
                                              task_value_attainment_value_33,
                                              task_value_attainment_value_36,
                                              task_value_attainment_value_38,
                                              task_value_interest_value_29,
                                              task_value_interest_value_32,
                                              task_value_interest_value_37,
                                              task_value_interest_value_40,
                                              task_value_utility_value_28,
                                              task_value_utility_value_30,
                                              task_value_utility_value_34,
                                              task_value_utility_value_35,
                                              task_value_utility_value_39),
            task_effort = composite_mean_maker(., full_cost_task_effort_cost_42,
                                               full_cost_task_effort_cost_45,
                                               full_cost_task_effort_cost_46,
                                               full_cost_task_effort_cost_51,
                                               full_cost_task_effort_cost_57),
            outside_effort = composite_mean_maker(., full_cost_outside_effort_cost_44,
                                                  full_cost_outside_effort_cost_47,
                                                  full_cost_outside_effort_cost_50,
                                                  full_cost_outside_effort_cost_52),
            lova = composite_mean_maker(., full_cost_loss_valued_alternatives_43,
                                        full_cost_loss_valued_alternatives_49,
                                        full_cost_loss_valued_alternatives_53,
                                        full_cost_loss_valued_alternatives_56),
            emotional_costs = composite_mean_maker(., full_cost_emotional_cost_41,
                                                   full_cost_emotional_cost_48,
                                                   full_cost_emotional_cost_54,
                                                   full_cost_emotional_cost_55,
                                                   full_cost_emotional_cost_58,
                                                   full_cost_emotional_cost_59),
            cost = composite_mean_maker(., full_cost_task_effort_cost_42,
                                        full_cost_task_effort_cost_45,
                                        full_cost_task_effort_cost_46,
                                        full_cost_task_effort_cost_51,
                                        full_cost_task_effort_cost_57,
                                        full_cost_outside_effort_cost_44,
                                        full_cost_outside_effort_cost_47,
                                        full_cost_outside_effort_cost_50,
                                        full_cost_outside_effort_cost_52,
                                        full_cost_loss_valued_alternatives_43,
                                        full_cost_loss_valued_alternatives_49,
                                        full_cost_loss_valued_alternatives_53,
                                        full_cost_loss_valued_alternatives_56,
                                        full_cost_emotional_cost_41,
                                        full_cost_emotional_cost_48,
                                        full_cost_emotional_cost_54,
                                        full_cost_emotional_cost_55,
                                        full_cost_emotional_cost_58,
                                        full_cost_emotional_cost_59),
            behavioral_intentions = composite_mean_maker(., intention_use__18, intention_use__19),
            Site)
o %>% 
  select(perceived_usefulness,
         perceived_ease_use,
         computer_attitudes,
         behavioral_intentions,
         subjective_norms,
         facilitating_conditions,
         attainment,
         interest,
         utility,
         expectancy,
         task_effort,
         outside_effort,
         lova,
         emotional_costs) %>% 
  psych::describe()
##                         vars   n mean   sd median trimmed  mad min  max range
## perceived_usefulness       1 249 4.18 0.58   4.00    4.21 0.74 1.0 5.00  4.00
## perceived_ease_use         2 249 3.96 0.69   4.00    4.01 0.49 1.0 5.00  4.00
## computer_attitudes         3 249 3.97 0.75   4.00    4.02 0.74 1.0 5.00  4.00
## behavioral_intentions      4 249 4.62 0.67   5.00    4.64 0.00 2.0 6.00  4.00
## subjective_norms           5 249 3.92 0.71   4.00    3.93 0.74 1.0 5.00  4.00
## facilitating_conditions    6 249 3.81 0.74   4.00    3.84 0.74 1.0 5.00  4.00
## attainment                 7 249 3.46 0.87   3.40    3.48 0.89 1.2 5.00  3.80
## interest                   8 249 3.79 0.83   4.00    3.84 0.74 1.0 5.00  4.00
## utility                    9 249 4.29 0.60   4.40    4.35 0.59 2.0 5.00  3.00
## expectancy                10 249 3.68 0.67   3.60    3.70 0.59 1.2 5.00  3.80
## task_effort               11 249 3.06 1.56   2.60    2.94 1.48 1.0 9.00  8.00
## outside_effort            12 249 3.15 1.51   2.75    3.07 1.48 1.0 8.25  7.25
## lova                      13 249 3.10 1.47   2.75    3.02 1.48 1.0 9.00  8.00
## emotional_costs           14 249 3.03 1.57   2.50    2.90 1.48 1.0 9.00  8.00
##                          skew kurtosis   se
## perceived_usefulness    -0.91     3.08 0.04
## perceived_ease_use      -1.02     2.02 0.04
## computer_attitudes      -0.75     0.63 0.05
## behavioral_intentions   -0.43     0.64 0.04
## subjective_norms        -0.41     0.42 0.05
## facilitating_conditions -0.76     1.40 0.05
## attainment              -0.27    -0.32 0.05
## interest                -0.52    -0.20 0.05
## utility                 -0.71     0.29 0.04
## expectancy              -0.39     0.75 0.04
## task_effort              0.88     0.60 0.10
## outside_effort           0.53    -0.49 0.10
## lova                     0.68     0.17 0.09
## emotional_costs          0.89     0.53 0.10
o %>% 
  select(perceived_usefulness,
         perceived_ease_use,
         computer_attitudes,
         behavioral_intentions,
         subjective_norms,
         facilitating_conditions,
         attainment,
         interest,
         utility,
         expectancy,
         task_effort,
         outside_effort,
         lova,
         emotional_costs) %>% 
  apaTables::apa.cor.table(filename = "composite-descriptives.doc")
## 
## 
## Means, standard deviations, and correlations with confidence intervals
##  
## 
##   Variable                   M    SD   1            2            3           
##   1. perceived_usefulness    4.18 0.58                                       
##                                                                              
##   2. perceived_ease_use      3.96 0.69 .49**                                 
##                                        [.39, .58]                            
##                                                                              
##   3. computer_attitudes      3.97 0.75 .62**        .67**                    
##                                        [.53, .69]   [.59, .73]               
##                                                                              
##   4. behavioral_intentions   4.62 0.67 .20**        .20**        .21**       
##                                        [.08, .32]   [.08, .32]   [.08, .32]  
##                                                                              
##   5. subjective_norms        3.92 0.71 .56**        .29**        .39**       
##                                        [.47, .64]   [.17, .40]   [.28, .49]  
##                                                                              
##   6. facilitating_conditions 3.81 0.74 .45**        .51**        .49**       
##                                        [.34, .54]   [.41, .60]   [.39, .58]  
##                                                                              
##   7. attainment              3.46 0.87 .42**        .44**        .62**       
##                                        [.31, .52]   [.34, .54]   [.53, .69]  
##                                                                              
##   8. interest                3.79 0.83 .46**        .53**        .76**       
##                                        [.36, .55]   [.43, .61]   [.70, .81]  
##                                                                              
##   9. utility                 4.29 0.60 .48**        .37**        .49**       
##                                        [.38, .57]   [.26, .47]   [.39, .58]  
##                                                                              
##   10. expectancy             3.68 0.67 .46**        .31**        .38**       
##                                        [.36, .56]   [.19, .42]   [.26, .48]  
##                                                                              
##   11. task_effort            3.06 1.56 -.28**       -.42**       -.41**      
##                                        [-.39, -.16] [-.51, -.31] [-.51, -.30]
##                                                                              
##   12. outside_effort         3.15 1.51 -.31**       -.40**       -.40**      
##                                        [-.42, -.19] [-.50, -.29] [-.50, -.29]
##                                                                              
##   13. lova                   3.10 1.47 -.34**       -.42**       -.47**      
##                                        [-.44, -.22] [-.51, -.31] [-.56, -.36]
##                                                                              
##   14. emotional_costs        3.03 1.57 -.30**       -.51**       -.46**      
##                                        [-.41, -.18] [-.60, -.41] [-.55, -.36]
##                                                                              
##   4            5            6            7            8            9           
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##                                                                                
##   .12                                                                          
##   [-.00, .24]                                                                  
##                                                                                
##   .19**        .37**                                                           
##   [.07, .31]   [.25, .47]                                                      
##                                                                                
##   .12          .39**        .36**                                              
##   [-.01, .24]  [.28, .49]   [.25, .47]                                         
##                                                                                
##   .16*         .40**        .45**        .76**                                 
##   [.03, .27]   [.29, .50]   [.34, .54]   [.70, .81]                            
##                                                                                
##   .22**        .41**        .33**        .64**        .67**                    
##   [.10, .34]   [.30, .50]   [.22, .44]   [.56, .71]   [.59, .73]               
##                                                                                
##   .12          .41**        .35**        .49**        .47**        .51**       
##   [-.00, .24]  [.30, .51]   [.23, .45]   [.39, .58]   [.37, .56]   [.41, .60]  
##                                                                                
##   -.14*        -.18**       -.29**       -.30**       -.36**       -.34**      
##   [-.26, -.02] [-.30, -.06] [-.40, -.17] [-.41, -.19] [-.46, -.25] [-.44, -.22]
##                                                                                
##   -.17**       -.18**       -.29**       -.32**       -.36**       -.35**      
##   [-.29, -.04] [-.30, -.06] [-.40, -.17] [-.42, -.20] [-.47, -.25] [-.45, -.23]
##                                                                                
##   -.15*        -.18**       -.31**       -.35**       -.41**       -.35**      
##   [-.27, -.03] [-.30, -.06] [-.41, -.19] [-.46, -.24] [-.51, -.30] [-.45, -.23]
##                                                                                
##   -.16*        -.15*        -.34**       -.33**       -.39**       -.30**      
##   [-.28, -.04] [-.27, -.03] [-.44, -.22] [-.44, -.22] [-.49, -.28] [-.41, -.19]
##                                                                                
##   10           11         12         13        
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##                                                
##   -.30**                                       
##   [-.41, -.18]                                 
##                                                
##   -.32**       .93**                           
##   [-.43, -.20] [.92, .95]                      
##                                                
##   -.35**       .88**      .90**                
##   [-.46, -.24] [.85, .91] [.87, .92]           
##                                                
##   -.32**       .90**      .88**      .88**     
##   [-.43, -.21] [.87, .92] [.84, .90] [.85, .91]
##                                                
## 
## Note. M and SD are used to represent mean and standard deviation, respectively.
## Values in square brackets indicate the 95% confidence interval.
## The confidence interval is a plausible range of population correlations 
## that could have caused the sample correlation (Cumming, 2014).
## * indicates p < .05. ** indicates p < .01.
## 

Means (and SD) by site

o %>% 
  group_by(Site) %>% 
  skimr::skim() %>% 
  DT::datatable()

Manova by site (overall)

res.man <- manova(cbind(perceived_usefulness,
                        perceived_ease_use,
                        computer_attitudes,
                        behavioral_intentions,
                        subjective_norms,
                        facilitating_conditions,
                        attainment,
                        interest,
                        utility,
                        expectancy,
                        task_effort,
                        outside_effort,
                        lova,
                        emotional_costs) ~ Site, data = o)

summary(res.man)
##            Df  Pillai approx F num Df den Df Pr(>F)
## Site        2 0.14741     1.33     28    468  0.123
## Residuals 246
# summary.aov(res.man)

Manova by site (by groups of variables)

man_tam <- manova(cbind(perceived_usefulness,
                        perceived_ease_use,
                        computer_attitudes,
                        behavioral_intentions,
                        subjective_norms,
                        facilitating_conditions) ~ Site, data = o)

man_evt <- manova(cbind(attainment,
                        interest,
                        utility,
                        expectancy) ~ Site, data = o)

man_cost <- manova(cbind(task_effort,
                         outside_effort,
                         lova,
                         emotional_costs) ~ Site, data = o)

summary(man_tam)
##            Df   Pillai approx F num Df den Df  Pr(>F)  
## Site        2 0.082617   1.7379     12    484 0.05611 .
## Residuals 246                                          
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#summary.aov(man_tam)

summary(man_evt)
##            Df   Pillai approx F num Df den Df Pr(>F)
## Site        2 0.022545  0.69546      8    488 0.6957
## Residuals 246
#summary.aov(man_evt)

summary(man_cost)
##            Df   Pillai approx F num Df den Df Pr(>F)
## Site        2 0.033796   1.0485      8    488 0.3984
## Residuals 246
#summary.aov(man_cost)

Stage 1

Changes made: - tm_prcvd_s__12 - tam_perceived_ease_use_12 - done - tm_cmptr_tt_17 - tam_computer_attitudes_17 - done

A two-factor CFA will be conducted on the subjective norms and facilitating conditions scales (see “independent variables”; Teo et al. (2008).

fitmod <- '

# factors 

subjective_norms =~ 
tam_subjective_norm_2 +
tam_subjective_norm_4

facilitating_conditions =~ 
tam_facilitating_condition_5 +
tam_facilitating_condition_13
'

m1 <- cfa(fitmod, data = d)
summary(m1, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-5 ended normally after 27 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          9
##                                                       
##   Number of observations                           249
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 3.822
##   Degrees of freedom                                 1
##   P-value (Chi-square)                           0.051
## 
## Model Test Baseline Model:
## 
##   Test statistic                               285.066
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.990
##   Tucker-Lewis Index (TLI)                       0.939
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1056.151
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                                2130.303
##   Bayesian (BIC)                              2161.960
##   Sample-size adjusted Bayesian (BIC)         2133.429
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.106
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.228
##   P-value RMSEA <= 0.05                          0.125
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.019
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                              Estimate  Std.Err  z-value  P(>|z|)   Std.lv
##   subjective_norms =~                                                    
##     tm_sbjctv_nr_2              1.000                               0.719
##     tm_sbjctv_nr_4              0.751    0.124    6.062    0.000    0.540
##   facilitating_conditions =~                                             
##     tm_fclttng_c_5              1.000                               0.692
##     tm_fclttng__13              0.844    0.142    5.923    0.000    0.584
##   Std.all
##          
##     0.921
##     0.677
##          
##     0.899
##     0.667
## 
## Covariances:
##                       Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   subjective_norms ~~                                                      
##     fclttng_cndtns       0.244    0.041    5.947    0.000    0.491    0.491
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .tm_sbjctv_nr_2    0.092    0.078    1.175    0.240    0.092    0.151
##    .tm_sbjctv_nr_4    0.345    0.054    6.438    0.000    0.345    0.542
##    .tm_fclttng_c_5    0.114    0.075    1.530    0.126    0.114    0.192
##    .tm_fclttng__13    0.425    0.065    6.545    0.000    0.425    0.555
##     subjectiv_nrms    0.516    0.094    5.466    0.000    1.000    1.000
##     fclttng_cndtns    0.479    0.090    5.300    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     tm_sbjctv_nr_2    0.849
##     tm_sbjctv_nr_4    0.458
##     tm_fclttng_c_5    0.808
##     tm_fclttng__13    0.445
reliability(m1)
##        subjective_norms facilitating_conditions     total
## alpha         0.7679555               0.7460645 0.7259727
## omega         0.7838175               0.7514774 0.8308124
## omega2        0.7838175               0.7514774 0.8308124
## omega3        0.7838175               0.7514774 0.8380743
## avevar        0.6490670               0.6036118 0.6253376
# run the code below to confirm that the above gives the same values for alpha
# psych::alpha(data.frame(d$tam_subjective_norm_2, d$tam_subjective_norm_4))
lavInspect(m1)
## $lambda
##                               sbjct_ fcltt_
## tam_subjective_norm_2              0      0
## tam_subjective_norm_4              1      0
## tam_facilitating_condition_5       0      0
## tam_facilitating_condition_13      0      2
## 
## $theta
##                               tm___2 tm___4 tm___5 t___13
## tam_subjective_norm_2         3                          
## tam_subjective_norm_4         0      4                   
## tam_facilitating_condition_5  0      0      5            
## tam_facilitating_condition_13 0      0      0      6     
## 
## $psi
##                         sbjct_ fcltt_
## subjective_norms        7            
## facilitating_conditions 9      8

A separate two-factor CFA will be conducted on perceived usefulness and perceived ease of use (see “mediators”; Teo et al., 2008)

fitmod <- '

# factors 

perceived_usefulness =~ 
tam_perceived_usefulness_1 + 
tam_perceived_usefulness_9 + 
tam_perceived_usefulness_11 +
tam_perceived_usefulness_15

perceived_ease_use =~ 
tam_perceived_ease_use_3 + 
tam_perceived_ease_use_10 + 
# tam_perceived_ease_use_12 +
tam_perceived_ease_use_16
'

m2 <- cfa(fitmod, data = d)
summary(m2, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-5 ended normally after 26 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         15
##                                                       
##   Number of observations                           249
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                73.021
##   Degrees of freedom                                13
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                               705.039
##   Degrees of freedom                                21
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.912
##   Tucker-Lewis Index (TLI)                       0.858
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1681.858
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                                3393.716
##   Bayesian (BIC)                              3446.477
##   Sample-size adjusted Bayesian (BIC)         3398.927
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.136
##   90 Percent confidence interval - lower         0.107
##   90 Percent confidence interval - upper         0.167
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.063
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                           Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   perceived_usefulness =~                                                      
##     tm_prcvd_sfl_1           1.000                               0.553    0.796
##     tm_prcvd_sfl_9           1.020    0.090   11.337    0.000    0.565    0.762
##     tm_prcvd_sf_11           0.863    0.102    8.485    0.000    0.478    0.570
##     tm_prcvd_sf_15           0.861    0.079   10.915    0.000    0.477    0.729
##   perceived_ease_use =~                                                        
##     tm_prcvd_s_s_3           1.000                               0.469    0.648
##     tm_prcvd_s__10           1.580    0.162    9.725    0.000    0.740    0.823
##     tm_prcvd_s__16           1.387    0.143    9.679    0.000    0.650    0.804
## 
## Covariances:
##                           Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   perceived_usefulness ~~                                                      
##     perceived_es_s           0.154    0.026    5.849    0.000    0.593    0.593
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .tm_prcvd_sfl_1    0.177    0.025    7.199    0.000    0.177    0.366
##    .tm_prcvd_sfl_9    0.230    0.029    7.973    0.000    0.230    0.419
##    .tm_prcvd_sf_11    0.475    0.047   10.094    0.000    0.475    0.675
##    .tm_prcvd_sf_15    0.200    0.023    8.574    0.000    0.200    0.468
##    .tm_prcvd_s_s_3    0.303    0.032    9.485    0.000    0.303    0.580
##    .tm_prcvd_s__10    0.260    0.044    5.946    0.000    0.260    0.322
##    .tm_prcvd_s__16    0.230    0.035    6.514    0.000    0.230    0.353
##     percevd_sflnss    0.306    0.044    6.890    0.000    1.000    1.000
##     perceived_es_s    0.220    0.042    5.264    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     tm_prcvd_sfl_1    0.634
##     tm_prcvd_sfl_9    0.581
##     tm_prcvd_sf_11    0.325
##     tm_prcvd_sf_15    0.532
##     tm_prcvd_s_s_3    0.420
##     tm_prcvd_s__10    0.678
##     tm_prcvd_s__16    0.647
reliability(m2)
##        perceived_usefulness perceived_ease_use     total
## alpha             0.7993080          0.7953703 0.8285637
## omega             0.7988605          0.8131696 0.8678772
## omega2            0.7988605          0.8131696 0.8678772
## omega3            0.7956951          0.8181357 0.8610541
## avevar            0.4997926          0.5998507 0.5476780

A one-factor CFA will be conducted on the computer attitude scale (see “dependent variables”; Teo et al., 2008)

fitmod <- '

# factors 

computer_attitudes =~ 
tam_computer_attitudes_6 +
tam_computer_attitudes_7 +
tam_computer_attitudes_8 +
tam_computer_attitudes_14
# tam_computer_attitudes_17

'

m3 <- cfa(fitmod, data = d)
summary(m3, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-5 ended normally after 20 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          8
##                                                       
##   Number of observations                           249
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 8.878
##   Degrees of freedom                                 2
##   P-value (Chi-square)                           0.012
## 
## Model Test Baseline Model:
## 
##   Test statistic                               563.138
##   Degrees of freedom                                 6
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.988
##   Tucker-Lewis Index (TLI)                       0.963
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1000.114
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                                2016.228
##   Bayesian (BIC)                              2044.367
##   Sample-size adjusted Bayesian (BIC)         2019.007
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.118
##   90 Percent confidence interval - lower         0.047
##   90 Percent confidence interval - upper         0.201
##   P-value RMSEA <= 0.05                          0.056
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.021
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                         Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   computer_attitudes =~                                                      
##     tm_cmptr_ttt_6         1.000                               0.673    0.780
##     tm_cmptr_ttt_7         1.150    0.076   15.113    0.000    0.774    0.911
##     tm_cmptr_ttt_8         1.020    0.074   13.784    0.000    0.686    0.822
##     tm_cmptr_tt_14         1.026    0.086   11.930    0.000    0.690    0.728
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .tm_cmptr_ttt_6    0.292    0.032    9.184    0.000    0.292    0.392
##    .tm_cmptr_ttt_7    0.122    0.024    5.129    0.000    0.122    0.169
##    .tm_cmptr_ttt_8    0.226    0.027    8.398    0.000    0.226    0.325
##    .tm_cmptr_tt_14    0.422    0.043    9.765    0.000    0.422    0.470
##     computer_tttds    0.452    0.064    7.076    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     tm_cmptr_ttt_6    0.608
##     tm_cmptr_ttt_7    0.831
##     tm_cmptr_ttt_8    0.675
##     tm_cmptr_tt_14    0.530
reliability(m3)
##        computer_attitudes     total
## alpha           0.8825973 0.8825973
## omega           0.8823508 0.8823508
## omega2          0.8823508 0.8823508
## omega3          0.8800392 0.8800392
## avevar          0.6528908 0.6528908

First, a four-factor CFA will be conducted on interest value, attainment value, utility value, and expectancy for success

fitmod <- '

attainment =~ 
task_value_attainment_value_27 +
task_value_attainment_value_31 +
task_value_attainment_value_33 + 
task_value_attainment_value_36 +
task_value_attainment_value_38

interest =~
task_value_interest_value_29 + 
task_value_interest_value_32 +
task_value_interest_value_37 + 
task_value_interest_value_40

utility =~
task_value_utility_value_28 + 
task_value_utility_value_30 +
task_value_utility_value_34 + 
task_value_utility_value_35 +
task_value_utility_value_39

expectancy =~ 
expectancy_success__20 +
expectancy_success__21 +
expectancy_success__22 +
# expectancy_success__23 +
expectancy_success__24 +
expectancy_success__25

'

m4 <- cfa(fitmod, data = d)
summary(m4, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-5 ended normally after 58 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         44
##                                                       
##   Number of observations                           249
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               524.812
##   Degrees of freedom                               146
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3249.972
##   Degrees of freedom                               171
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.877
##   Tucker-Lewis Index (TLI)                       0.856
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4744.785
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                                9577.569
##   Bayesian (BIC)                              9732.337
##   Sample-size adjusted Bayesian (BIC)         9592.855
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.102
##   90 Percent confidence interval - lower         0.093
##   90 Percent confidence interval - upper         0.112
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.076
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   attainment =~                                                         
##     tsk_vl_ttn__27    1.000                               0.773    0.800
##     tsk_vl_ttn__31    1.240    0.087   14.297    0.000    0.959    0.821
##     tsk_vl_ttn__33    0.759    0.075   10.083    0.000    0.587    0.618
##     tsk_vl_ttn__36    1.235    0.086   14.339    0.000    0.955    0.822
##     tsk_vl_ttn__38    1.025    0.077   13.283    0.000    0.793    0.775
##   interest =~                                                           
##     tsk_vl_ntr__29    1.000                               0.836    0.787
##     tsk_vl_ntr__32    0.835    0.057   14.554    0.000    0.698    0.836
##     tsk_vl_ntr__37    0.894    0.060   14.895    0.000    0.748    0.851
##     tsk_vl_ntr__40    1.024    0.066   15.407    0.000    0.856    0.874
##   utility =~                                                            
##     tsk_vl_tlt__28    1.000                               0.567    0.680
##     tsk_vl_tlt__30    0.966    0.090   10.750    0.000    0.548    0.756
##     tsk_vl_tlt__34    1.108    0.091   12.158    0.000    0.629    0.877
##     tsk_vl_tlt__35    1.009    0.086   11.799    0.000    0.572    0.843
##     tsk_vl_tlt__39    0.845    0.086    9.856    0.000    0.480    0.686
##   expectancy =~                                                         
##     expctncy_s__20    1.000                               0.478    0.683
##     expctncy_s__21    1.166    0.132    8.850    0.000    0.558    0.639
##     expctncy_s__22    0.962    0.111    8.687    0.000    0.460    0.626
##     expctncy_s__24    1.554    0.150   10.329    0.000    0.744    0.768
##     expctncy_s__25    1.673    0.158   10.583    0.000    0.801    0.795
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   attainment ~~                                                         
##     interest          0.535    0.067    8.001    0.000    0.828    0.828
##     utility           0.293    0.044    6.731    0.000    0.668    0.668
##     expectancy        0.210    0.035    6.036    0.000    0.568    0.568
##   interest ~~                                                           
##     utility           0.333    0.048    6.895    0.000    0.703    0.703
##     expectancy        0.221    0.037    5.933    0.000    0.551    0.551
##   utility ~~                                                            
##     expectancy        0.153    0.027    5.749    0.000    0.564    0.564
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .tsk_vl_ttn__27    0.337    0.037    9.144    0.000    0.337    0.361
##    .tsk_vl_ttn__31    0.446    0.051    8.812    0.000    0.446    0.327
##    .tsk_vl_ttn__33    0.557    0.053   10.464    0.000    0.557    0.618
##    .tsk_vl_ttn__36    0.437    0.050    8.778    0.000    0.437    0.324
##    .tsk_vl_ttn__38    0.418    0.044    9.457    0.000    0.418    0.400
##    .tsk_vl_ntr__29    0.429    0.045    9.597    0.000    0.429    0.380
##    .tsk_vl_ntr__32    0.210    0.024    8.923    0.000    0.210    0.302
##    .tsk_vl_ntr__37    0.213    0.025    8.617    0.000    0.213    0.276
##    .tsk_vl_ntr__40    0.227    0.028    8.024    0.000    0.227    0.236
##    .tsk_vl_tlt__28    0.374    0.037   10.176    0.000    0.374    0.537
##    .tsk_vl_tlt__30    0.225    0.023    9.622    0.000    0.225    0.428
##    .tsk_vl_tlt__34    0.119    0.016    7.295    0.000    0.119    0.232
##    .tsk_vl_tlt__35    0.133    0.016    8.274    0.000    0.133    0.289
##    .tsk_vl_tlt__39    0.258    0.025   10.143    0.000    0.258    0.529
##    .expctncy_s__20    0.262    0.028    9.482    0.000    0.262    0.534
##    .expctncy_s__21    0.450    0.046    9.838    0.000    0.450    0.591
##    .expctncy_s__22    0.328    0.033    9.928    0.000    0.328    0.608
##    .expctncy_s__24    0.384    0.046    8.361    0.000    0.384    0.410
##    .expctncy_s__25    0.374    0.048    7.842    0.000    0.374    0.369
##     attainment        0.598    0.081    7.384    0.000    1.000    1.000
##     interest          0.699    0.096    7.265    0.000    1.000    1.000
##     utility           0.322    0.055    5.885    0.000    1.000    1.000
##     expectancy        0.229    0.040    5.729    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     tsk_vl_ttn__27    0.639
##     tsk_vl_ttn__31    0.673
##     tsk_vl_ttn__33    0.382
##     tsk_vl_ttn__36    0.676
##     tsk_vl_ttn__38    0.600
##     tsk_vl_ntr__29    0.620
##     tsk_vl_ntr__32    0.698
##     tsk_vl_ntr__37    0.724
##     tsk_vl_ntr__40    0.764
##     tsk_vl_tlt__28    0.463
##     tsk_vl_tlt__30    0.572
##     tsk_vl_tlt__34    0.768
##     tsk_vl_tlt__35    0.711
##     tsk_vl_tlt__39    0.471
##     expctncy_s__20    0.466
##     expctncy_s__21    0.409
##     expctncy_s__22    0.392
##     expctncy_s__24    0.590
##     expctncy_s__25    0.631
reliability(m4)
##        attainment  interest   utility expectancy     total
## alpha   0.8738405 0.8982114 0.8733059  0.8282388 0.9339553
## omega   0.8828526 0.9012426 0.8756847  0.8371888 0.9533286
## omega2  0.8828526 0.9012426 0.8756847  0.8371888 0.9533286
## omega3  0.8892302 0.9033106 0.8774662  0.8332584 0.9334171
## avevar  0.6079011 0.6966856 0.5866401  0.5197320 0.6033295

Since interest value, attainment value, and utility value are often highly correlated (e.g., Linnenbrink-Garcia et al., 2018), a competing CFA will be conducted with expectancy for success and task value (interest, attainment, and utility value).)

fitmod <- '

# factors 

task_value =~ 
task_value_attainment_value_27 +
task_value_attainment_value_31 +
task_value_attainment_value_33 + 
task_value_attainment_value_36 +
task_value_attainment_value_38 +
task_value_interest_value_29 + 
task_value_interest_value_32 +
task_value_interest_value_37 + 
task_value_interest_value_40 +
task_value_utility_value_28 + 
task_value_utility_value_30 +
task_value_utility_value_34 + 
task_value_utility_value_35 +
task_value_utility_value_39

expectancy =~ 
expectancy_success__20 +
expectancy_success__21 +
expectancy_success__22 +
# expectancy_success__23 +
expectancy_success__24 +
expectancy_success__25

'

m5 <- cfa(fitmod, data = d)
summary(m5, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-5 ended normally after 37 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         39
##                                                       
##   Number of observations                           249
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               842.374
##   Degrees of freedom                               151
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3249.972
##   Degrees of freedom                               171
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.775
##   Tucker-Lewis Index (TLI)                       0.746
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4903.566
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                                9885.131
##   Bayesian (BIC)                             10022.312
##   Sample-size adjusted Bayesian (BIC)         9898.680
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.136
##   90 Percent confidence interval - lower         0.127
##   90 Percent confidence interval - upper         0.145
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.082
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   task_value =~                                                         
##     tsk_vl_ttn__27    1.000                               0.700    0.723
##     tsk_vl_ttn__31    1.203    0.107   11.251    0.000    0.842    0.720
##     tsk_vl_ttn__33    0.884    0.087   10.143    0.000    0.618    0.651
##     tsk_vl_ttn__36    1.233    0.106   11.619    0.000    0.863    0.743
##     tsk_vl_ttn__38    1.057    0.094   11.297    0.000    0.740    0.723
##     tsk_vl_ntr__29    1.163    0.097   12.004    0.000    0.814    0.766
##     tsk_vl_ntr__32    0.936    0.076   12.289    0.000    0.655    0.784
##     tsk_vl_ntr__37    0.996    0.080   12.439    0.000    0.697    0.793
##     tsk_vl_ntr__40    1.160    0.089   13.019    0.000    0.812    0.828
##     tsk_vl_tlt__28    0.865    0.076   11.350    0.000    0.606    0.726
##     tsk_vl_tlt__30    0.659    0.067    9.904    0.000    0.461    0.637
##     tsk_vl_tlt__34    0.709    0.066   10.790    0.000    0.496    0.692
##     tsk_vl_tlt__35    0.630    0.062   10.102    0.000    0.441    0.649
##     tsk_vl_tlt__39    0.587    0.064    9.122    0.000    0.411    0.588
##   expectancy =~                                                         
##     expctncy_s__20    1.000                               0.478    0.682
##     expctncy_s__21    1.162    0.132    8.808    0.000    0.555    0.636
##     expctncy_s__22    0.965    0.111    8.700    0.000    0.461    0.628
##     expctncy_s__24    1.561    0.151   10.346    0.000    0.746    0.771
##     expctncy_s__25    1.673    0.158   10.567    0.000    0.800    0.794
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   task_value ~~                                                         
##     expectancy        0.209    0.033    6.272    0.000    0.626    0.626
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .tsk_vl_ttn__27    0.446    0.043   10.418    0.000    0.446    0.477
##    .tsk_vl_ttn__31    0.658    0.063   10.432    0.000    0.658    0.481
##    .tsk_vl_ttn__33    0.519    0.049   10.661    0.000    0.519    0.576
##    .tsk_vl_ttn__36    0.605    0.059   10.328    0.000    0.605    0.448
##    .tsk_vl_ttn__38    0.500    0.048   10.420    0.000    0.500    0.477
##    .tsk_vl_ntr__29    0.465    0.046   10.197    0.000    0.465    0.413
##    .tsk_vl_ntr__32    0.269    0.027   10.082    0.000    0.269    0.386
##    .tsk_vl_ntr__37    0.287    0.029   10.014    0.000    0.287    0.371
##    .tsk_vl_ntr__40    0.301    0.031    9.680    0.000    0.301    0.314
##    .tsk_vl_tlt__28    0.329    0.032   10.406    0.000    0.329    0.473
##    .tsk_vl_tlt__30    0.312    0.029   10.699    0.000    0.312    0.595
##    .tsk_vl_tlt__34    0.268    0.025   10.540    0.000    0.268    0.522
##    .tsk_vl_tlt__35    0.267    0.025   10.668    0.000    0.267    0.579
##    .tsk_vl_tlt__39    0.320    0.030   10.803    0.000    0.320    0.655
##    .expctncy_s__20    0.262    0.028    9.490    0.000    0.262    0.535
##    .expctncy_s__21    0.453    0.046    9.859    0.000    0.453    0.595
##    .expctncy_s__22    0.327    0.033    9.920    0.000    0.327    0.606
##    .expctncy_s__24    0.380    0.046    8.318    0.000    0.380    0.406
##    .expctncy_s__25    0.376    0.048    7.861    0.000    0.376    0.370
##     task_value        0.490    0.075    6.502    0.000    1.000    1.000
##     expectancy        0.229    0.040    5.723    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     tsk_vl_ttn__27    0.523
##     tsk_vl_ttn__31    0.519
##     tsk_vl_ttn__33    0.424
##     tsk_vl_ttn__36    0.552
##     tsk_vl_ttn__38    0.523
##     tsk_vl_ntr__29    0.587
##     tsk_vl_ntr__32    0.614
##     tsk_vl_ntr__37    0.629
##     tsk_vl_ntr__40    0.686
##     tsk_vl_tlt__28    0.527
##     tsk_vl_tlt__30    0.405
##     tsk_vl_tlt__34    0.478
##     tsk_vl_tlt__35    0.421
##     tsk_vl_tlt__39    0.345
##     expctncy_s__20    0.465
##     expctncy_s__21    0.405
##     expctncy_s__22    0.394
##     expctncy_s__24    0.594
##     expctncy_s__25    0.630
reliability(m5)
##        task_value expectancy     total
## alpha   0.9344332  0.8282388 0.9339553
## omega   0.9379325  0.8371757 0.9456888
## omega2  0.9379325  0.8371757 0.9456888
## omega3  0.9362768  0.8331195 0.9450770
## avevar  0.5317287  0.5197659 0.5288548

A four-factor CFA will be conducted on task effort cost, outside effort cost, loss of valued alternatives, and emotional cost.

fitmod <- '

task_effort =~ 
full_cost_task_effort_cost_42 + 
full_cost_task_effort_cost_45 +
full_cost_task_effort_cost_46 + 
full_cost_task_effort_cost_51 +
full_cost_task_effort_cost_57

outside_effort =~
full_cost_outside_effort_cost_44 +
full_cost_outside_effort_cost_47 +
full_cost_outside_effort_cost_50 +
full_cost_outside_effort_cost_52

lova =~ 
full_cost_loss_valued_alternatives_43 +
full_cost_loss_valued_alternatives_49 +
full_cost_loss_valued_alternatives_53 + 
full_cost_loss_valued_alternatives_56

emotional_costs =~
full_cost_emotional_cost_41 + 
full_cost_emotional_cost_48 +
full_cost_emotional_cost_54 + 
full_cost_emotional_cost_55 +
full_cost_emotional_cost_58 + 
full_cost_emotional_cost_59

'

m6 <- cfa(fitmod, data = d)
summary(m6, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-5 ended normally after 77 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         44
##                                                       
##   Number of observations                           249
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               911.894
##   Degrees of freedom                               146
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              6489.349
##   Degrees of freedom                               171
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.879
##   Tucker-Lewis Index (TLI)                       0.858
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6459.973
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                               13007.946
##   Bayesian (BIC)                             13162.714
##   Sample-size adjusted Bayesian (BIC)        13023.232
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.145
##   90 Percent confidence interval - lower         0.136
##   90 Percent confidence interval - upper         0.154
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.041
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                      Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   task_effort =~                                                          
##     fll_cst_t___42      1.000                               1.576    0.931
##     fll_cst_t___45      1.010    0.042   23.902    0.000    1.591    0.887
##     fll_cst_t___46      1.003    0.038   26.439    0.000    1.580    0.916
##     fll_cst_t___51      0.884    0.046   19.090    0.000    1.392    0.813
##     fll_cst_t___57      0.938    0.037   25.277    0.000    1.478    0.904
##   outside_effort =~                                                       
##     fll_cst_t___44      1.000                               1.266    0.779
##     fll_cst_t___47      1.158    0.076   15.332    0.000    1.465    0.848
##     fll_cst_t___50      1.185    0.070   16.923    0.000    1.500    0.912
##     fll_cst_t___52      1.203    0.071   17.056    0.000    1.522    0.917
##   lova =~                                                                 
##     fll_cst_l___43      1.000                               1.185    0.708
##     fll_cst_l___49      1.191    0.090   13.267    0.000    1.411    0.857
##     fll_cst_l___53      1.230    0.093   13.189    0.000    1.458    0.852
##     fll_cst_l___56      1.282    0.090   14.296    0.000    1.519    0.924
##   emotional_costs =~                                                      
##     fll_cst_mt__41      1.000                               1.304    0.689
##     fll_cst_mt__48      1.126    0.086   13.114    0.000    1.468    0.880
##     fll_cst_mt__54      1.172    0.089   13.211    0.000    1.528    0.887
##     fll_cst_mt__55      1.215    0.091   13.294    0.000    1.585    0.893
##     fll_cst_mt__58      1.197    0.087   13.720    0.000    1.560    0.925
##     fll_cst_mt__59      1.254    0.096   13.088    0.000    1.636    0.878
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   task_effort ~~                                                         
##     outside_effort     1.994    0.212    9.395    0.000    1.000    1.000
##     lova               1.766    0.204    8.650    0.000    0.946    0.946
##     emotional_csts     1.952    0.229    8.531    0.000    0.950    0.950
##   outside_effort ~~                                                      
##     lova               1.457    0.179    8.128    0.000    0.971    0.971
##     emotional_csts     1.545    0.195    7.923    0.000    0.936    0.936
##   lova ~~                                                                
##     emotional_csts     1.488    0.195    7.637    0.000    0.963    0.963
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .fll_cst_t___42    0.382    0.041    9.406    0.000    0.382    0.133
##    .fll_cst_t___45    0.683    0.067   10.201    0.000    0.683    0.213
##    .fll_cst_t___46    0.479    0.049    9.781    0.000    0.479    0.161
##    .fll_cst_t___51    0.993    0.093   10.666    0.000    0.993    0.339
##    .fll_cst_t___57    0.491    0.049    9.996    0.000    0.491    0.184
##    .fll_cst_t___44    1.040    0.096   10.801    0.000    1.040    0.394
##    .fll_cst_t___47    0.837    0.080   10.515    0.000    0.837    0.280
##    .fll_cst_t___50    0.457    0.047    9.709    0.000    0.457    0.169
##    .fll_cst_t___52    0.440    0.046    9.574    0.000    0.440    0.160
##    .fll_cst_l___43    1.399    0.130   10.739    0.000    1.399    0.499
##    .fll_cst_l___49    0.721    0.073    9.938    0.000    0.721    0.266
##    .fll_cst_l___53    0.804    0.080    9.995    0.000    0.804    0.275
##    .fll_cst_l___56    0.396    0.048    8.279    0.000    0.396    0.146
##    .fll_cst_mt__41    1.883    0.174   10.837    0.000    1.883    0.526
##    .fll_cst_mt__48    0.627    0.063    9.919    0.000    0.627    0.225
##    .fll_cst_mt__54    0.632    0.064    9.822    0.000    0.632    0.213
##    .fll_cst_mt__55    0.636    0.065    9.729    0.000    0.636    0.202
##    .fll_cst_mt__58    0.412    0.046    8.999    0.000    0.412    0.145
##    .fll_cst_mt__59    0.794    0.080    9.942    0.000    0.794    0.229
##     task_effort       2.483    0.255    9.720    0.000    1.000    1.000
##     outside_effort    1.602    0.219    7.315    0.000    1.000    1.000
##     lova              1.404    0.221    6.365    0.000    1.000    1.000
##     emotional_csts    1.700    0.276    6.152    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     fll_cst_t___42    0.867
##     fll_cst_t___45    0.787
##     fll_cst_t___46    0.839
##     fll_cst_t___51    0.661
##     fll_cst_t___57    0.816
##     fll_cst_t___44    0.606
##     fll_cst_t___47    0.720
##     fll_cst_t___50    0.831
##     fll_cst_t___52    0.840
##     fll_cst_l___43    0.501
##     fll_cst_l___49    0.734
##     fll_cst_l___53    0.725
##     fll_cst_l___56    0.854
##     fll_cst_mt__41    0.474
##     fll_cst_mt__48    0.775
##     fll_cst_mt__54    0.787
##     fll_cst_mt__55    0.798
##     fll_cst_mt__58    0.855
##     fll_cst_mt__59    0.771
reliability(m6)
##        task_effort outside_effort      lova emotional_costs     total
## alpha    0.9486422      0.9240200 0.9026252       0.9438111 0.9800623
## omega    0.9503830      0.9226744 0.9033944       0.9430058 0.9818120
## omega2   0.9503830      0.9226744 0.9033944       0.9430058 0.9818120
## omega3   0.9539666      0.9162184 0.8998393       0.9366268 0.9778926
## avevar   0.7934170      0.7498741 0.7021160       0.7348412 0.7467073

Next, since these four cost factors are often highly correlated (see Flake et al., 2015), a one-factor CFA will be conducted for an overall cost factor.

fitmod <- '

cost =~ 
full_cost_task_effort_cost_42 + 
full_cost_task_effort_cost_45 +
full_cost_task_effort_cost_46 + 
full_cost_task_effort_cost_51 +
full_cost_task_effort_cost_57 +
full_cost_outside_effort_cost_44 +
full_cost_outside_effort_cost_47 +
full_cost_outside_effort_cost_50 +
full_cost_outside_effort_cost_52 +
full_cost_loss_valued_alternatives_43 +
full_cost_loss_valued_alternatives_49 +
full_cost_loss_valued_alternatives_53 + 
full_cost_loss_valued_alternatives_56 +
full_cost_emotional_cost_41 + 
full_cost_emotional_cost_48 +
full_cost_emotional_cost_54 + 
full_cost_emotional_cost_55 +
full_cost_emotional_cost_58 + 
full_cost_emotional_cost_59

'

m7 <- cfa(fitmod, data = d)
summary(m7, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-5 ended normally after 33 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         38
##                                                       
##   Number of observations                           249
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                              1059.153
##   Degrees of freedom                               152
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              6489.349
##   Degrees of freedom                               171
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.856
##   Tucker-Lewis Index (TLI)                       0.838
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6533.602
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                               13143.205
##   Bayesian (BIC)                             13276.868
##   Sample-size adjusted Bayesian (BIC)        13156.406
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.155
##   90 Percent confidence interval - lower         0.146
##   90 Percent confidence interval - upper         0.164
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.042
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   cost =~                                                               
##     fll_cst_t___42    1.000                               1.551    0.917
##     fll_cst_t___45    1.004    0.046   21.771    0.000    1.558    0.869
##     fll_cst_t___46    1.000    0.042   23.918    0.000    1.551    0.899
##     fll_cst_t___51    0.898    0.048   18.666    0.000    1.393    0.813
##     fll_cst_t___57    0.962    0.039   24.990    0.000    1.493    0.913
##     fll_cst_t___44    0.821    0.047   17.293    0.000    1.274    0.784
##     fll_cst_t___47    0.939    0.046   20.259    0.000    1.457    0.844
##     fll_cst_t___50    0.951    0.040   23.724    0.000    1.476    0.897
##     fll_cst_t___52    0.972    0.040   24.599    0.000    1.508    0.908
##     fll_cst_l___43    0.763    0.053   14.341    0.000    1.184    0.707
##     fll_cst_l___49    0.884    0.045   19.695    0.000    1.372    0.833
##     fll_cst_l___53    0.916    0.047   19.519    0.000    1.421    0.830
##     fll_cst_l___56    0.959    0.039   24.382    0.000    1.488    0.905
##     fll_cst_mt__41    0.818    0.062   13.135    0.000    1.268    0.670
##     fll_cst_mt__48    0.945    0.042   22.470    0.000    1.467    0.879
##     fll_cst_mt__54    0.958    0.045   21.390    0.000    1.486    0.863
##     fll_cst_mt__55    0.976    0.047   20.834    0.000    1.514    0.854
##     fll_cst_mt__58    0.991    0.040   24.854    0.000    1.537    0.911
##     fll_cst_mt__59    1.025    0.049   20.826    0.000    1.590    0.853
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .fll_cst_t___42    0.458    0.045   10.175    0.000    0.458    0.160
##    .fll_cst_t___45    0.789    0.075   10.583    0.000    0.789    0.245
##    .fll_cst_t___46    0.569    0.055   10.367    0.000    0.569    0.191
##    .fll_cst_t___51    0.992    0.092   10.793    0.000    0.992    0.338
##    .fll_cst_t___57    0.447    0.044   10.224    0.000    0.447    0.167
##    .fll_cst_t___44    1.019    0.094   10.860    0.000    1.019    0.385
##    .fll_cst_t___47    0.860    0.080   10.696    0.000    0.860    0.288
##    .fll_cst_t___50    0.530    0.051   10.389    0.000    0.530    0.196
##    .fll_cst_t___52    0.484    0.047   10.280    0.000    0.484    0.176
##    .fll_cst_l___43    1.401    0.128   10.971    0.000    1.401    0.500
##    .fll_cst_l___49    0.828    0.077   10.733    0.000    0.828    0.305
##    .fll_cst_l___53    0.911    0.085   10.744    0.000    0.911    0.311
##    .fll_cst_l___56    0.488    0.047   10.308    0.000    0.488    0.181
##    .fll_cst_mt__41    1.975    0.179   11.006    0.000    1.975    0.551
##    .fll_cst_mt__48    0.631    0.060   10.521    0.000    0.631    0.227
##    .fll_cst_mt__54    0.759    0.072   10.614    0.000    0.759    0.256
##    .fll_cst_mt__55    0.854    0.080   10.656    0.000    0.854    0.271
##    .fll_cst_mt__58    0.484    0.047   10.244    0.000    0.484    0.170
##    .fll_cst_mt__59    0.943    0.088   10.657    0.000    0.943    0.272
##     cost              2.407    0.254    9.471    0.000    1.000    1.000
## 
## R-Square:
##                    Estimate
##     fll_cst_t___42    0.840
##     fll_cst_t___45    0.755
##     fll_cst_t___46    0.809
##     fll_cst_t___51    0.662
##     fll_cst_t___57    0.833
##     fll_cst_t___44    0.615
##     fll_cst_t___47    0.712
##     fll_cst_t___50    0.804
##     fll_cst_t___52    0.824
##     fll_cst_l___43    0.500
##     fll_cst_l___49    0.695
##     fll_cst_l___53    0.689
##     fll_cst_l___56    0.819
##     fll_cst_mt__41    0.449
##     fll_cst_mt__48    0.773
##     fll_cst_mt__54    0.744
##     fll_cst_mt__55    0.729
##     fll_cst_mt__58    0.830
##     fll_cst_mt__59    0.728
reliability(m7)
##             cost     total
## alpha  0.9800623 0.9800623
## omega  0.9801412 0.9801412
## omega2 0.9801412 0.9801412
## omega3 0.9773473 0.9773473
## avevar 0.7231239 0.7231239

A final CFA will be conducted as one factor on the behavioral intentions items (Liu et al., 2010; Taylor & Todd, 1995; Venkatesh & Davis, 1996)

fitmod <- '

behavioral_intentions =~
intention_use__18 +
intention_use__19

'

m8 <- cfa(fitmod, data = d)
summary(m8, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-5 ended normally after 16 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          4
##                                                       
##   Number of observations                           249
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                    NA
##   Degrees of freedom                                -1
##   P-value (Unknown)                                 NA
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                       NA
##   Tucker-Lewis Index (TLI)                          NA
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)               -515.491
##   Loglikelihood unrestricted model (H1)       -515.491
##                                                       
##   Akaike (AIC)                                1038.981
##   Bayesian (BIC)                              1053.051
##   Sample-size adjusted Bayesian (BIC)         1040.371
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                             NA
##   90 Percent confidence interval - lower            NA
##   90 Percent confidence interval - upper            NA
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                            Estimate  Std.Err  z-value  P(>|z|)   Std.lv
##   behavioral_intentions =~                                             
##     intentin_s__18            1.000                               0.740
##     intentin_s__19            0.596       NA                      0.441
##   Std.all
##          
##     0.937
##     0.614
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .intentin_s__18    0.076       NA                      0.076    0.122
##    .intentin_s__19    0.322       NA                      0.322    0.623
##     behavrl_ntntns    0.548       NA                      1.000    1.000
## 
## R-Square:
##                    Estimate
##     intentin_s__18    0.878
##     intentin_s__19    0.377
reliability(m8)
##        behavioral_intentions     total
## alpha              0.7285285 0.7285285
## omega              0.7783599 0.7783599
## omega2             0.7783599 0.7783599
## omega3             0.7783599 0.7783599
## avevar             0.6513644 0.6513644

Stage 2

The first model (Figure 1) will attempt to replicate the model established in Teo et al. (2008). Specifically, facilitating conditions and subjective norms will predict ease of use and usefulness, ease of use will predict usefulness, and computer attitude will be the final endogenous factor.

fitmod <- '

# factors 

subjective_norms =~ 
tam_subjective_norm_2 +
tam_subjective_norm_4

facilitating_conditions =~ 
tam_facilitating_condition_5 +
tam_facilitating_condition_13

perceived_usefulness =~ 
tam_perceived_usefulness_1 + 
tam_perceived_usefulness_9 + 
tam_perceived_usefulness_11 +
tam_perceived_usefulness_15

perceived_ease_use =~ 
tam_perceived_ease_use_3 + 
tam_perceived_ease_use_10 + 
# tam_perceived_ease_use_12 +
tam_perceived_ease_use_16

computer_attitudes =~ 
tam_computer_attitudes_6 +
tam_computer_attitudes_7 +
tam_computer_attitudes_8 +
tam_computer_attitudes_14
# tam_computer_attitudes_17

# regressions

computer_attitudes ~ perceived_ease_use + perceived_usefulness + subjective_norms + facilitating_conditions
perceived_ease_use ~ facilitating_conditions
perceived_usefulness ~  subjective_norms + perceived_ease_use
'

m2_1 <- sem(fitmod, data = d, meanstructure = T)
summary(m2_1, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-5 ended normally after 49 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         53
##                                                       
##   Number of observations                           249
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               285.921
##   Degrees of freedom                                82
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2119.114
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.899
##   Tucker-Lewis Index (TLI)                       0.870
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3555.287
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                                7216.574
##   Bayesian (BIC)                              7402.999
##   Sample-size adjusted Bayesian (BIC)         7234.986
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.100
##   90 Percent confidence interval - lower         0.087
##   90 Percent confidence interval - upper         0.113
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.056
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                              Estimate  Std.Err  z-value  P(>|z|)   Std.lv
##   subjective_norms =~                                                    
##     tm_sbjctv_nr_2              1.000                               0.656
##     tm_sbjctv_nr_4              0.894    0.093    9.573    0.000    0.587
##   facilitating_conditions =~                                             
##     tm_fclttng_c_5              1.000                               0.639
##     tm_fclttng__13              0.986    0.106    9.309    0.000    0.630
##   perceived_usefulness =~                                                
##     tm_prcvd_sfl_1              1.000                               0.543
##     tm_prcvd_sfl_9              1.063    0.087   12.284    0.000    0.577
##     tm_prcvd_sf_11              0.870    0.101    8.628    0.000    0.472
##     tm_prcvd_sf_15              0.871    0.077   11.349    0.000    0.473
##   perceived_ease_use =~                                                  
##     tm_prcvd_s_s_3              1.000                               0.459
##     tm_prcvd_s__10              1.600    0.160   10.003    0.000    0.735
##     tm_prcvd_s__16              1.435    0.144    9.994    0.000    0.659
##   computer_attitudes =~                                                  
##     tm_cmptr_ttt_6              1.000                               0.659
##     tm_cmptr_ttt_7              1.115    0.078   14.385    0.000    0.735
##     tm_cmptr_ttt_8              1.085    0.076   14.216    0.000    0.715
##     tm_cmptr_tt_14              1.082    0.088   12.247    0.000    0.713
##   Std.all
##          
##     0.841
##     0.736
##          
##     0.829
##     0.720
##          
##     0.782
##     0.780
##     0.564
##     0.725
##          
##     0.635
##     0.817
##     0.816
##          
##     0.765
##     0.867
##     0.858
##     0.754
## 
## Regressions:
##                          Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   computer_attitudes ~                                                        
##     perceived_es_s          0.702    0.142    4.959    0.000    0.489    0.489
##     percevd_sflnss          0.579    0.131    4.420    0.000    0.477    0.477
##     subjectiv_nrms         -0.073    0.095   -0.764    0.445   -0.072   -0.072
##     fclttng_cndtns          0.056    0.091    0.618    0.537    0.054    0.054
##   perceived_ease_use ~                                                        
##     fclttng_cndtns          0.466    0.068    6.805    0.000    0.648    0.648
##   perceived_usefulness ~                                                      
##     subjectiv_nrms          0.471    0.067    7.042    0.000    0.569    0.569
##     perceived_es_s          0.460    0.087    5.282    0.000    0.389    0.389
## 
## Covariances:
##                       Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   subjective_norms ~~                                                      
##     fclttng_cndtns       0.227    0.039    5.893    0.000    0.542    0.542
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .tm_sbjctv_nr_2    3.952    0.049   79.965    0.000    3.952    5.068
##    .tm_sbjctv_nr_4    3.880    0.051   76.757    0.000    3.880    4.864
##    .tm_fclttng_c_5    4.032    0.049   82.600    0.000    4.032    5.235
##    .tm_fclttng__13    3.593    0.055   64.792    0.000    3.593    4.106
##    .tm_prcvd_sfl_1    4.345    0.044   98.827    0.000    4.345    6.263
##    .tm_prcvd_sfl_9    4.162    0.047   88.819    0.000    4.162    5.629
##    .tm_prcvd_sf_11    3.960    0.053   74.596    0.000    3.960    4.727
##    .tm_prcvd_sf_15    4.262    0.041  103.046    0.000    4.262    6.530
##    .tm_prcvd_s_s_3    4.153    0.046   90.618    0.000    4.153    5.743
##    .tm_prcvd_s__10    3.803    0.057   66.737    0.000    3.803    4.229
##    .tm_prcvd_s__16    3.915    0.051   76.466    0.000    3.915    4.846
##    .tm_cmptr_ttt_6    4.056    0.055   74.312    0.000    4.056    4.709
##    .tm_cmptr_ttt_7    4.057    0.054   75.553    0.000    4.057    4.788
##    .tm_cmptr_ttt_8    4.142    0.053   78.438    0.000    4.142    4.971
##    .tm_cmptr_tt_14    3.613    0.060   60.220    0.000    3.613    3.816
##     subjectiv_nrms    0.000                               0.000    0.000
##     fclttng_cndtns    0.000                               0.000    0.000
##    .percevd_sflnss    0.000                               0.000    0.000
##    .perceived_es_s    0.000                               0.000    0.000
##    .computer_tttds    0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .tm_sbjctv_nr_2    0.178    0.040    4.483    0.000    0.178    0.292
##    .tm_sbjctv_nr_4    0.292    0.039    7.413    0.000    0.292    0.459
##    .tm_fclttng_c_5    0.185    0.039    4.782    0.000    0.185    0.313
##    .tm_fclttng__13    0.369    0.048    7.652    0.000    0.369    0.482
##    .tm_prcvd_sfl_1    0.187    0.022    8.359    0.000    0.187    0.388
##    .tm_prcvd_sfl_9    0.214    0.025    8.395    0.000    0.214    0.391
##    .tm_prcvd_sf_11    0.479    0.046   10.354    0.000    0.479    0.682
##    .tm_prcvd_sf_15    0.202    0.022    9.218    0.000    0.202    0.475
##    .tm_prcvd_s_s_3    0.312    0.031    9.911    0.000    0.312    0.596
##    .tm_prcvd_s__10    0.268    0.037    7.280    0.000    0.268    0.332
##    .tm_prcvd_s__16    0.218    0.030    7.320    0.000    0.218    0.334
##    .tm_cmptr_ttt_6    0.308    0.032    9.613    0.000    0.308    0.415
##    .tm_cmptr_ttt_7    0.178    0.023    7.783    0.000    0.178    0.248
##    .tm_cmptr_ttt_8    0.183    0.023    8.054    0.000    0.183    0.264
##    .tm_cmptr_tt_14    0.387    0.040    9.723    0.000    0.387    0.432
##     subjectiv_nrms    0.430    0.064    6.774    0.000    1.000    1.000
##     fclttng_cndtns    0.408    0.061    6.635    0.000    1.000    1.000
##    .percevd_sflnss    0.109    0.022    5.050    0.000    0.369    0.369
##    .perceived_es_s    0.123    0.026    4.716    0.000    0.581    0.581
##    .computer_tttds    0.115    0.022    5.107    0.000    0.264    0.264
## 
## R-Square:
##                    Estimate
##     tm_sbjctv_nr_2    0.708
##     tm_sbjctv_nr_4    0.541
##     tm_fclttng_c_5    0.687
##     tm_fclttng__13    0.518
##     tm_prcvd_sfl_1    0.612
##     tm_prcvd_sfl_9    0.609
##     tm_prcvd_sf_11    0.318
##     tm_prcvd_sf_15    0.525
##     tm_prcvd_s_s_3    0.404
##     tm_prcvd_s__10    0.668
##     tm_prcvd_s__16    0.666
##     tm_cmptr_ttt_6    0.585
##     tm_cmptr_ttt_7    0.752
##     tm_cmptr_ttt_8    0.736
##     tm_cmptr_tt_14    0.568
##     percevd_sflnss    0.631
##     perceived_es_s    0.419
##     computer_tttds    0.736

The second model (Figure 2) will extend Teo et al.’s (2008) original model by including behavioral intentions as a final endogenous variable, which will be predicted by computer attitude.

fitmod <- '

# factors 

subjective_norms =~ 
tam_subjective_norm_2 +
tam_subjective_norm_4

facilitating_conditions =~ 
tam_facilitating_condition_5 +
tam_facilitating_condition_13

perceived_usefulness =~ 
tam_perceived_usefulness_1 + 
tam_perceived_usefulness_9 + 
tam_perceived_usefulness_11 +
tam_perceived_usefulness_15

perceived_ease_use =~ 
tam_perceived_ease_use_3 + 
tam_perceived_ease_use_10 + 
# tam_perceived_ease_use_12 +
tam_perceived_ease_use_16

computer_attitudes =~ 
tam_computer_attitudes_6 +
tam_computer_attitudes_7 +
tam_computer_attitudes_8 +
tam_computer_attitudes_14
# tam_computer_attitudes_17

behavioral_intentions =~
intention_use__18 +
intention_use__19

# regressions

computer_attitudes ~ perceived_ease_use + perceived_usefulness + subjective_norms + facilitating_conditions
perceived_ease_use ~ facilitating_conditions
perceived_usefulness ~  subjective_norms + perceived_ease_use
behavioral_intentions ~ computer_attitudes
'

m2_2 <- sem(fitmod, data = d)
summary(m2_2, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-5 ended normally after 56 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         43
##                                                       
##   Number of observations                           249
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                               317.981
##   Degrees of freedom                               110
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                              2266.996
##   Degrees of freedom                               136
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.902
##   Tucker-Lewis Index (TLI)                       0.879
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4062.959
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                                8211.918
##   Bayesian (BIC)                              8363.168
##   Sample-size adjusted Bayesian (BIC)         8226.856
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.087
##   90 Percent confidence interval - lower         0.076
##   90 Percent confidence interval - upper         0.098
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.057
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                              Estimate  Std.Err  z-value  P(>|z|)   Std.lv
##   subjective_norms =~                                                    
##     tm_sbjctv_nr_2              1.000                               0.656
##     tm_sbjctv_nr_4              0.894    0.093    9.570    0.000    0.586
##   facilitating_conditions =~                                             
##     tm_fclttng_c_5              1.000                               0.639
##     tm_fclttng__13              0.986    0.106    9.315    0.000    0.630
##   perceived_usefulness =~                                                
##     tm_prcvd_sfl_1              1.000                               0.543
##     tm_prcvd_sfl_9              1.061    0.086   12.275    0.000    0.576
##     tm_prcvd_sf_11              0.869    0.101    8.630    0.000    0.472
##     tm_prcvd_sf_15              0.871    0.077   11.372    0.000    0.473
##   perceived_ease_use =~                                                  
##     tm_prcvd_s_s_3              1.000                               0.459
##     tm_prcvd_s__10              1.600    0.160   10.000    0.000    0.735
##     tm_prcvd_s__16              1.436    0.144    9.995    0.000    0.660
##   computer_attitudes =~                                                  
##     tm_cmptr_ttt_6              1.000                               0.659
##     tm_cmptr_ttt_7              1.116    0.077   14.397    0.000    0.735
##     tm_cmptr_ttt_8              1.079    0.076   14.142    0.000    0.711
##     tm_cmptr_tt_14              1.087    0.088   12.308    0.000    0.716
##   behavioral_intentions =~                                               
##     intentin_s__18              1.000                               0.447
##     intentin_s__19              1.635    0.617    2.648    0.008    0.731
##   Std.all
##          
##     0.841
##     0.735
##          
##     0.829
##     0.720
##          
##     0.783
##     0.779
##     0.564
##     0.725
##          
##     0.635
##     0.817
##     0.816
##          
##     0.765
##     0.868
##     0.854
##     0.757
##          
##     0.566
##     1.017
## 
## Regressions:
##                           Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   computer_attitudes ~                                                         
##     perceived_es_s           0.701    0.141    4.967    0.000    0.488    0.488
##     percevd_sflnss           0.579    0.130    4.436    0.000    0.477    0.477
##     subjectiv_nrms          -0.072    0.095   -0.759    0.448   -0.071   -0.071
##     fclttng_cndtns           0.060    0.090    0.662    0.508    0.058    0.058
##   perceived_ease_use ~                                                         
##     fclttng_cndtns           0.465    0.068    6.804    0.000    0.647    0.647
##   perceived_usefulness ~                                                       
##     subjectiv_nrms           0.471    0.067    7.041    0.000    0.569    0.569
##     perceived_es_s           0.461    0.087    5.285    0.000    0.390    0.390
##   behavioral_intentions ~                                                      
##     computer_tttds           0.172    0.079    2.172    0.030    0.254    0.254
## 
## Covariances:
##                       Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   subjective_norms ~~                                                      
##     fclttng_cndtns       0.227    0.039    5.895    0.000    0.542    0.542
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .tm_sbjctv_nr_2    0.178    0.040    4.476    0.000    0.178    0.292
##    .tm_sbjctv_nr_4    0.292    0.039    7.416    0.000    0.292    0.459
##    .tm_fclttng_c_5    0.185    0.039    4.780    0.000    0.185    0.312
##    .tm_fclttng__13    0.369    0.048    7.660    0.000    0.369    0.482
##    .tm_prcvd_sfl_1    0.186    0.022    8.350    0.000    0.186    0.387
##    .tm_prcvd_sfl_9    0.215    0.026    8.420    0.000    0.215    0.393
##    .tm_prcvd_sf_11    0.479    0.046   10.355    0.000    0.479    0.682
##    .tm_prcvd_sf_15    0.202    0.022    9.210    0.000    0.202    0.474
##    .tm_prcvd_s_s_3    0.312    0.031    9.914    0.000    0.312    0.597
##    .tm_prcvd_s__10    0.269    0.037    7.291    0.000    0.269    0.332
##    .tm_prcvd_s__16    0.218    0.030    7.314    0.000    0.218    0.333
##    .tm_cmptr_ttt_6    0.308    0.032    9.620    0.000    0.308    0.415
##    .tm_cmptr_ttt_7    0.178    0.023    7.789    0.000    0.178    0.247
##    .tm_cmptr_ttt_8    0.188    0.023    8.182    0.000    0.188    0.271
##    .tm_cmptr_tt_14    0.383    0.040    9.701    0.000    0.383    0.428
##    .intentin_s__18    0.424    0.082    5.145    0.000    0.424    0.680
##    .intentin_s__19   -0.018    0.195   -0.090    0.928   -0.018   -0.034
##     subjectiv_nrms    0.431    0.064    6.775    0.000    1.000    1.000
##     fclttng_cndtns    0.408    0.061    6.639    0.000    1.000    1.000
##    .percevd_sflnss    0.109    0.022    5.054    0.000    0.369    0.369
##    .perceived_es_s    0.122    0.026    4.716    0.000    0.581    0.581
##    .computer_tttds    0.113    0.022    5.087    0.000    0.261    0.261
##    .behavrl_ntntns    0.187    0.074    2.518    0.012    0.936    0.936
## 
## R-Square:
##                    Estimate
##     tm_sbjctv_nr_2    0.708
##     tm_sbjctv_nr_4    0.541
##     tm_fclttng_c_5    0.688
##     tm_fclttng__13    0.518
##     tm_prcvd_sfl_1    0.613
##     tm_prcvd_sfl_9    0.607
##     tm_prcvd_sf_11    0.318
##     tm_prcvd_sf_15    0.526
##     tm_prcvd_s_s_3    0.403
##     tm_prcvd_s__10    0.668
##     tm_prcvd_s__16    0.667
##     tm_cmptr_ttt_6    0.585
##     tm_cmptr_ttt_7    0.753
##     tm_cmptr_ttt_8    0.729
##     tm_cmptr_tt_14    0.572
##     intentin_s__18    0.320
##     intentin_s__19       NA
##     percevd_sflnss    0.631
##     perceived_es_s    0.419
##     computer_tttds    0.739
##     behavrl_ntntns    0.064

Stage 3

The third model (Figure 3) is based on the EVT and will examine expectancy, values, and costs as mediators of attitudes and behavioral intentions.

fitmod <- '

# factors 

computer_attitudes =~ 
tam_computer_attitudes_6 +
tam_computer_attitudes_7 +
tam_computer_attitudes_8 +
tam_computer_attitudes_14
# tam_computer_attitudes_17

expectancy =~ 
expectancy_success__20 +
expectancy_success__21 +
expectancy_success__22 +
# expectancy_success__23 +
expectancy_success__24 +
expectancy_success__25

attainment =~ 
task_value_attainment_value_27 +
task_value_attainment_value_31 +
task_value_attainment_value_33 + 
task_value_attainment_value_36 +
task_value_attainment_value_38

interest =~
task_value_interest_value_29 + 
task_value_interest_value_32 +
task_value_interest_value_37 + 
task_value_interest_value_40

utility =~
task_value_utility_value_28 + 
task_value_utility_value_30 +
task_value_utility_value_34 + 
task_value_utility_value_35 +
task_value_utility_value_39

task_effort =~ 
full_cost_task_effort_cost_42 + 
full_cost_task_effort_cost_45 +
full_cost_task_effort_cost_46 + 
full_cost_task_effort_cost_51 +
full_cost_task_effort_cost_57

outside_effort =~
full_cost_outside_effort_cost_44 +
full_cost_outside_effort_cost_47 +
full_cost_outside_effort_cost_50 +
full_cost_outside_effort_cost_52

lova =~ 
full_cost_loss_valued_alternatives_43 +
full_cost_loss_valued_alternatives_49 +
full_cost_loss_valued_alternatives_53 + 
full_cost_loss_valued_alternatives_56

emotional_costs =~
full_cost_emotional_cost_41 + 
full_cost_emotional_cost_48 +
full_cost_emotional_cost_54 + 
full_cost_emotional_cost_55 +
full_cost_emotional_cost_58 + 
full_cost_emotional_cost_59

behavioral_intentions =~
intention_use__18 +
intention_use__19

# regressions

expectancy ~ computer_attitudes
attainment ~ computer_attitudes
interest ~ computer_attitudes
utility ~ computer_attitudes
task_effort ~ computer_attitudes
outside_effort ~ computer_attitudes
lova ~ computer_attitudes
emotional_costs ~ computer_attitudes

behavioral_intentions ~ 
expectancy +
attainment +
interest +
utility +
task_effort +
outside_effort +
lova + 
emotional_costs
'

m2_3 <- sem(fitmod, data = d)
summary(m2_3, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-5 ended normally after 175 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                        104
##                                                       
##   Number of observations                           249
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                              3353.701
##   Degrees of freedom                               886
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             11633.221
##   Degrees of freedom                               946
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.769
##   Tucker-Lewis Index (TLI)                       0.753
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -13059.132
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                               26326.263
##   Bayesian (BIC)                             26692.079
##   Sample-size adjusted Bayesian (BIC)        26362.393
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.106
##   90 Percent confidence interval - lower         0.102
##   90 Percent confidence interval - upper         0.110
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.155
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                            Estimate  Std.Err  z-value  P(>|z|)   Std.lv
##   computer_attitudes =~                                                
##     tm_cmptr_ttt_6            1.000                               0.301
##     tm_cmptr_ttt_7            1.225    0.267    4.596    0.000    0.369
##     tm_cmptr_ttt_8            1.170    0.258    4.534    0.000    0.352
##     tm_cmptr_tt_14            1.580    0.323    4.886    0.000    0.476
##   expectancy =~                                                        
##     expctncy_s__20            1.000                               0.480
##     expctncy_s__21            1.201    0.133    9.024    0.000    0.577
##     expctncy_s__22            0.983    0.112    8.803    0.000    0.472
##     expctncy_s__24            1.539    0.152   10.149    0.000    0.740
##     expctncy_s__25            1.620    0.158   10.223    0.000    0.778
##   attainment =~                                                        
##     tsk_vl_ttn__27            1.000                               0.780
##     tsk_vl_ttn__31            1.249    0.087   14.393    0.000    0.974
##     tsk_vl_ttn__33            0.712    0.076    9.384    0.000    0.556
##     tsk_vl_ttn__36            1.233    0.086   14.278    0.000    0.962
##     tsk_vl_ttn__38            1.004    0.077   12.958    0.000    0.783
##   interest =~                                                          
##     tsk_vl_ntr__29            1.000                               0.803
##     tsk_vl_ntr__32            0.881    0.064   13.767    0.000    0.708
##     tsk_vl_ntr__37            0.956    0.067   14.223    0.000    0.768
##     tsk_vl_ntr__40            1.054    0.075   14.053    0.000    0.846
##   utility =~                                                           
##     tsk_vl_tlt__28            1.000                               0.531
##     tsk_vl_tlt__30            1.023    0.103    9.914    0.000    0.543
##     tsk_vl_tlt__34            1.204    0.108   11.176    0.000    0.639
##     tsk_vl_tlt__35            1.103    0.101   10.969    0.000    0.585
##     tsk_vl_tlt__39            0.886    0.097    9.117    0.000    0.471
##   task_effort =~                                                       
##     fll_cst_t___42            1.000                               1.578
##     fll_cst_t___45            1.018    0.041   24.581    0.000    1.606
##     fll_cst_t___46            1.003    0.038   26.620    0.000    1.583
##     fll_cst_t___51            0.871    0.047   18.532    0.000    1.375
##     fll_cst_t___57            0.934    0.037   24.995    0.000    1.473
##   outside_effort =~                                                    
##     fll_cst_t___44            1.000                               1.290
##     fll_cst_t___47            1.143    0.072   15.818    0.000    1.474
##     fll_cst_t___50            1.155    0.067   17.244    0.000    1.490
##     fll_cst_t___52            1.174    0.067   17.423    0.000    1.514
##   lova =~                                                              
##     fll_cst_l___43            1.000                               1.188
##     fll_cst_l___49            1.200    0.089   13.425    0.000    1.425
##     fll_cst_l___53            1.240    0.093   13.348    0.000    1.473
##     fll_cst_l___56            1.265    0.089   14.175    0.000    1.503
##   emotional_costs =~                                                   
##     fll_cst_mt__41            1.000                               1.316
##     fll_cst_mt__48            1.122    0.084   13.348    0.000    1.476
##     fll_cst_mt__54            1.166    0.087   13.435    0.000    1.535
##     fll_cst_mt__55            1.204    0.089   13.466    0.000    1.585
##     fll_cst_mt__58            1.177    0.085   13.813    0.000    1.549
##     fll_cst_mt__59            1.243    0.094   13.248    0.000    1.635
##   behavioral_intentions =~                                             
##     intentin_s__18            1.000                               0.431
##     intentin_s__19            1.796    0.525    3.419    0.001    0.774
##   Std.all
##          
##     0.349
##     0.435
##     0.422
##     0.502
##          
##     0.686
##     0.661
##     0.642
##     0.764
##     0.772
##          
##     0.807
##     0.834
##     0.585
##     0.828
##     0.765
##          
##     0.756
##     0.847
##     0.874
##     0.864
##          
##     0.637
##     0.749
##     0.891
##     0.862
##     0.673
##          
##     0.932
##     0.896
##     0.918
##     0.803
##     0.901
##          
##     0.793
##     0.853
##     0.906
##     0.912
##          
##     0.709
##     0.866
##     0.861
##     0.914
##          
##     0.695
##     0.885
##     0.891
##     0.893
##     0.918
##     0.878
##          
##     0.544
##     1.064
## 
## Regressions:
##                           Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   expectancy ~                                                                 
##     computer_tttds           0.626    0.156    4.010    0.000    0.393    0.393
##   attainment ~                                                                 
##     computer_tttds           1.016    0.244    4.167    0.000    0.392    0.392
##   interest ~                                                                   
##     computer_tttds           1.279    0.281    4.555    0.000    0.480    0.480
##   utility ~                                                                    
##     computer_tttds           0.684    0.170    4.018    0.000    0.388    0.388
##   task_effort ~                                                                
##     computer_tttds          -5.139    0.897   -5.729    0.000   -0.981   -0.981
##   outside_effort ~                                                             
##     computer_tttds          -4.243    0.761   -5.573    0.000   -0.991   -0.991
##   lova ~                                                                       
##     computer_tttds          -3.860    0.712   -5.424    0.000   -0.979   -0.979
##   emotional_costs ~                                                            
##     computer_tttds          -4.196    0.779   -5.386    0.000   -0.960   -0.960
##   behavioral_intentions ~                                                      
##     expectancy               0.039    0.061    0.631    0.528    0.043    0.043
##     attainment              -0.083    0.044   -1.875    0.061   -0.149   -0.149
##     interest                 0.086    0.045    1.905    0.057    0.160    0.160
##     utility                  0.138    0.068    2.028    0.043    0.170    0.170
##     task_effort              0.050    0.113    0.441    0.659    0.182    0.182
##     outside_effort          -0.175    0.207   -0.842    0.400   -0.523   -0.523
##     lova                     0.125    0.165    0.758    0.448    0.345    0.345
##     emotional_csts          -0.038    0.085   -0.448    0.654   -0.117   -0.117
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .tm_cmptr_ttt_6    0.653    0.059   11.118    0.000    0.653    0.878
##    .tm_cmptr_ttt_7    0.584    0.053   11.092    0.000    0.584    0.811
##    .tm_cmptr_ttt_8    0.572    0.052   11.096    0.000    0.572    0.822
##    .tm_cmptr_tt_14    0.672    0.061   11.062    0.000    0.672    0.748
##    .expctncy_s__20    0.260    0.028    9.287    0.000    0.260    0.530
##    .expctncy_s__21    0.429    0.045    9.526    0.000    0.429    0.563
##    .expctncy_s__22    0.317    0.033    9.683    0.000    0.317    0.587
##    .expctncy_s__24    0.390    0.048    8.168    0.000    0.390    0.416
##    .expctncy_s__25    0.410    0.051    8.016    0.000    0.410    0.404
##    .tsk_vl_ttn__27    0.327    0.038    8.614    0.000    0.327    0.349
##    .tsk_vl_ttn__31    0.417    0.052    8.036    0.000    0.417    0.305
##    .tsk_vl_ttn__33    0.593    0.057   10.464    0.000    0.593    0.658
##    .tsk_vl_ttn__36    0.425    0.052    8.170    0.000    0.425    0.315
##    .tsk_vl_ttn__38    0.434    0.047    9.239    0.000    0.434    0.414
##    .tsk_vl_ntr__29    0.483    0.050    9.683    0.000    0.483    0.428
##    .tsk_vl_ntr__32    0.197    0.024    8.279    0.000    0.197    0.282
##    .tsk_vl_ntr__37    0.183    0.024    7.486    0.000    0.183    0.237
##    .tsk_vl_ntr__40    0.244    0.031    7.818    0.000    0.244    0.254
##    .tsk_vl_tlt__28    0.414    0.040   10.365    0.000    0.414    0.595
##    .tsk_vl_tlt__30    0.231    0.024    9.643    0.000    0.231    0.439
##    .tsk_vl_tlt__34    0.106    0.016    6.441    0.000    0.106    0.206
##    .tsk_vl_tlt__35    0.118    0.016    7.528    0.000    0.118    0.256
##    .tsk_vl_tlt__39    0.267    0.026   10.188    0.000    0.267    0.546
##    .fll_cst_t___42    0.374    0.042    8.953    0.000    0.374    0.131
##    .fll_cst_t___45    0.634    0.065    9.834    0.000    0.634    0.197
##    .fll_cst_t___46    0.468    0.050    9.398    0.000    0.468    0.157
##    .fll_cst_t___51    1.041    0.098   10.575    0.000    1.041    0.355
##    .fll_cst_t___57    0.505    0.052    9.757    0.000    0.505    0.189
##    .fll_cst_t___44    0.979    0.093   10.542    0.000    0.979    0.370
##    .fll_cst_t___47    0.810    0.080   10.157    0.000    0.810    0.272
##    .fll_cst_t___50    0.487    0.052    9.351    0.000    0.487    0.180
##    .fll_cst_t___52    0.464    0.051    9.177    0.000    0.464    0.168
##    .fll_cst_l___43    1.392    0.130   10.695    0.000    1.392    0.497
##    .fll_cst_l___49    0.679    0.070    9.717    0.000    0.679    0.251
##    .fll_cst_l___53    0.759    0.078    9.785    0.000    0.759    0.259
##    .fll_cst_l___56    0.444    0.052    8.535    0.000    0.444    0.164
##    .fll_cst_mt__41    1.852    0.171   10.803    0.000    1.852    0.517
##    .fll_cst_mt__48    0.604    0.062    9.772    0.000    0.604    0.217
##    .fll_cst_mt__54    0.611    0.063    9.676    0.000    0.611    0.206
##    .fll_cst_mt__55    0.636    0.066    9.640    0.000    0.636    0.202
##    .fll_cst_mt__58    0.449    0.049    9.090    0.000    0.449    0.158
##    .fll_cst_mt__59    0.796    0.081    9.869    0.000    0.796    0.229
##    .intentin_s__18    0.442    0.065    6.850    0.000    0.442    0.704
##    .intentin_s__19   -0.070    0.164   -0.427    0.669   -0.070   -0.133
##     computer_tttds    0.091    0.032    2.810    0.005    1.000    1.000
##    .expectancy        0.195    0.035    5.639    0.000    0.846    0.846
##    .attainment        0.515    0.070    7.306    0.000    0.846    0.846
##    .interest          0.496    0.074    6.709    0.000    0.770    0.770
##    .utility           0.239    0.045    5.364    0.000    0.849    0.849
##    .task_effort       0.095    0.028    3.413    0.001    0.038    0.038
##    .outside_effort    0.030    0.020    1.487    0.137    0.018    0.018
##    .lova              0.059    0.022    2.636    0.008    0.042    0.042
##    .emotional_csts    0.134    0.030    4.478    0.000    0.078    0.078
##    .behavrl_ntntns    0.163    0.051    3.165    0.002    0.877    0.877
## 
## R-Square:
##                    Estimate
##     tm_cmptr_ttt_6    0.122
##     tm_cmptr_ttt_7    0.189
##     tm_cmptr_ttt_8    0.178
##     tm_cmptr_tt_14    0.252
##     expctncy_s__20    0.470
##     expctncy_s__21    0.437
##     expctncy_s__22    0.413
##     expctncy_s__24    0.584
##     expctncy_s__25    0.596
##     tsk_vl_ttn__27    0.651
##     tsk_vl_ttn__31    0.695
##     tsk_vl_ttn__33    0.342
##     tsk_vl_ttn__36    0.685
##     tsk_vl_ttn__38    0.586
##     tsk_vl_ntr__29    0.572
##     tsk_vl_ntr__32    0.718
##     tsk_vl_ntr__37    0.763
##     tsk_vl_ntr__40    0.746
##     tsk_vl_tlt__28    0.405
##     tsk_vl_tlt__30    0.561
##     tsk_vl_tlt__34    0.794
##     tsk_vl_tlt__35    0.744
##     tsk_vl_tlt__39    0.454
##     fll_cst_t___42    0.869
##     fll_cst_t___45    0.803
##     fll_cst_t___46    0.843
##     fll_cst_t___51    0.645
##     fll_cst_t___57    0.811
##     fll_cst_t___44    0.630
##     fll_cst_t___47    0.728
##     fll_cst_t___50    0.820
##     fll_cst_t___52    0.832
##     fll_cst_l___43    0.503
##     fll_cst_l___49    0.749
##     fll_cst_l___53    0.741
##     fll_cst_l___56    0.836
##     fll_cst_mt__41    0.483
##     fll_cst_mt__48    0.783
##     fll_cst_mt__54    0.794
##     fll_cst_mt__55    0.798
##     fll_cst_mt__58    0.842
##     fll_cst_mt__59    0.771
##     intentin_s__18    0.296
##     intentin_s__19       NA
##     expectancy        0.154
##     attainment        0.154
##     interest          0.230
##     utility           0.151
##     task_effort       0.962
##     outside_effort    0.982
##     lova              0.958
##     emotional_csts    0.922
##     behavrl_ntntns    0.123

The fourth model (Figure 4) is guided by both TAMs and EVT and will test expectancy, values, and costs as antecedents of both computer attitude and behavioral intentions.

fitmod <- '

# factors

computer_attitudes =~ 
tam_computer_attitudes_6 +
tam_computer_attitudes_7 +
tam_computer_attitudes_8 +
tam_computer_attitudes_14
# tam_computer_attitudes_17

expectancy =~ 
expectancy_success__20 +
expectancy_success__21 +
expectancy_success__22 +
# expectancy_success__23 +
expectancy_success__24 +
expectancy_success__25

attainment =~ 
task_value_attainment_value_27 +
task_value_attainment_value_31 +
task_value_attainment_value_33 + 
task_value_attainment_value_36 +
task_value_attainment_value_38

interest =~
task_value_interest_value_29 + 
task_value_interest_value_32 +
task_value_interest_value_37 + 
task_value_interest_value_40

utility =~
task_value_utility_value_28 + 
task_value_utility_value_30 +
task_value_utility_value_34 + 
task_value_utility_value_35 +
task_value_utility_value_39

task_effort =~ 
full_cost_task_effort_cost_42 + 
full_cost_task_effort_cost_45 +
full_cost_task_effort_cost_46 + 
full_cost_task_effort_cost_51 +
full_cost_task_effort_cost_57

outside_effort =~
full_cost_outside_effort_cost_44 +
full_cost_outside_effort_cost_47 +
full_cost_outside_effort_cost_50 +
full_cost_outside_effort_cost_52

lova =~ 
full_cost_loss_valued_alternatives_43 +
full_cost_loss_valued_alternatives_49 +
full_cost_loss_valued_alternatives_53 + 
full_cost_loss_valued_alternatives_56

emotional_costs =~
full_cost_emotional_cost_41 + 
full_cost_emotional_cost_48 +
full_cost_emotional_cost_54 + 
full_cost_emotional_cost_55 +
full_cost_emotional_cost_58 + 
full_cost_emotional_cost_59

behavioral_intentions =~
intention_use__18 +
intention_use__19

# regressions 

computer_attitudes ~ expectancy
computer_attitudes ~ attainment
computer_attitudes ~ interest
computer_attitudes ~ utility
computer_attitudes ~ task_effort
computer_attitudes ~ outside_effort
computer_attitudes ~ lova
computer_attitudes ~ emotional_costs

behavioral_intentions ~ expectancy
behavioral_intentions ~ attainment
behavioral_intentions ~ interest
behavioral_intentions ~ utility
behavioral_intentions ~ task_effort
behavioral_intentions ~ outside_effort
behavioral_intentions ~ lova
behavioral_intentions ~ emotional_costs
behavioral_intentions ~ computer_attitudes
'

m2_4 <- sem(fitmod, data = d)
summary(m2_4, fit.measures = TRUE, standardized = TRUE, rsquare = TRUE)
## lavaan 0.6-5 ended normally after 143 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                        133
##                                                       
##   Number of observations                           249
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                              2323.911
##   Degrees of freedom                               857
##   P-value (Chi-square)                           0.000
## 
## Model Test Baseline Model:
## 
##   Test statistic                             11633.221
##   Degrees of freedom                               946
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.863
##   Tucker-Lewis Index (TLI)                       0.848
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -12544.237
##   Loglikelihood unrestricted model (H1)             NA
##                                                       
##   Akaike (AIC)                               25354.474
##   Bayesian (BIC)                             25822.295
##   Sample-size adjusted Bayesian (BIC)        25400.678
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.083
##   90 Percent confidence interval - lower         0.079
##   90 Percent confidence interval - upper         0.087
##   P-value RMSEA <= 0.05                          0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.061
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                            Estimate  Std.Err  z-value  P(>|z|)   Std.lv
##   computer_attitudes =~                                                
##     tm_cmptr_ttt_6            1.000                               0.671
##     tm_cmptr_ttt_7            1.126    0.073   15.372    0.000    0.755
##     tm_cmptr_ttt_8            1.038    0.073   14.233    0.000    0.696
##     tm_cmptr_tt_14            1.056    0.085   12.453    0.000    0.709
##   expectancy =~                                                        
##     expctncy_s__20            1.000                               0.488
##     expctncy_s__21            1.147    0.127    9.018    0.000    0.560
##     expctncy_s__22            0.945    0.107    8.839    0.000    0.461
##     expctncy_s__24            1.505    0.144   10.443    0.000    0.735
##     expctncy_s__25            1.628    0.151   10.761    0.000    0.795
##   attainment =~                                                        
##     tsk_vl_ttn__27            1.000                               0.772
##     tsk_vl_ttn__31            1.242    0.087   14.242    0.000    0.958
##     tsk_vl_ttn__33            0.762    0.076   10.088    0.000    0.588
##     tsk_vl_ttn__36            1.241    0.087   14.335    0.000    0.957
##     tsk_vl_ttn__38            1.027    0.078   13.245    0.000    0.793
##   interest =~                                                          
##     tsk_vl_ntr__29            1.000                               0.806
##     tsk_vl_ntr__32            0.863    0.062   13.950    0.000    0.695
##     tsk_vl_ntr__37            0.946    0.065   14.651    0.000    0.762
##     tsk_vl_ntr__40            1.071    0.072   14.914    0.000    0.863
##   utility =~                                                           
##     tsk_vl_tlt__28            1.000                               0.566
##     tsk_vl_tlt__30            0.968    0.090   10.744    0.000    0.548
##     tsk_vl_tlt__34            1.111    0.091   12.158    0.000    0.629
##     tsk_vl_tlt__35            1.010    0.086   11.788    0.000    0.572
##     tsk_vl_tlt__39            0.847    0.086    9.857    0.000    0.480
##   task_effort =~                                                       
##     fll_cst_t___42            1.000                               1.575
##     fll_cst_t___45            1.010    0.042   23.865    0.000    1.591
##     fll_cst_t___46            1.004    0.038   26.449    0.000    1.581
##     fll_cst_t___51            0.884    0.046   19.092    0.000    1.393
##     fll_cst_t___57            0.939    0.037   25.239    0.000    1.478
##   outside_effort =~                                                    
##     fll_cst_t___44            1.000                               1.260
##     fll_cst_t___47            1.163    0.076   15.232    0.000    1.465
##     fll_cst_t___50            1.191    0.071   16.787    0.000    1.500
##     fll_cst_t___52            1.210    0.071   16.952    0.000    1.524
##   lova =~                                                              
##     fll_cst_l___43            1.000                               1.186
##     fll_cst_l___49            1.191    0.089   13.337    0.000    1.413
##     fll_cst_l___53            1.227    0.093   13.218    0.000    1.456
##     fll_cst_l___56            1.279    0.089   14.341    0.000    1.518
##   emotional_costs =~                                                   
##     fll_cst_mt__41            1.000                               1.311
##     fll_cst_mt__48            1.124    0.085   13.263    0.000    1.473
##     fll_cst_mt__54            1.169    0.088   13.353    0.000    1.532
##     fll_cst_mt__55            1.209    0.090   13.405    0.000    1.585
##     fll_cst_mt__58            1.185    0.086   13.789    0.000    1.554
##     fll_cst_mt__59            1.247    0.095   13.184    0.000    1.634
##   behavioral_intentions =~                                             
##     intentin_s__18            1.000                               0.438
##     intentin_s__19            1.701    0.511    3.328    0.001    0.745
##   Std.all
##          
##     0.778
##     0.890
##     0.834
##     0.748
##          
##     0.697
##     0.642
##     0.628
##     0.759
##     0.789
##          
##     0.798
##     0.820
##     0.619
##     0.824
##     0.775
##          
##     0.759
##     0.832
##     0.867
##     0.880
##          
##     0.679
##     0.756
##     0.877
##     0.843
##     0.687
##          
##     0.930
##     0.887
##     0.916
##     0.814
##     0.904
##          
##     0.775
##     0.848
##     0.912
##     0.918
##          
##     0.709
##     0.858
##     0.851
##     0.923
##          
##     0.692
##     0.883
##     0.890
##     0.893
##     0.921
##     0.877
##          
##     0.555
##     1.037
## 
## Regressions:
##                           Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   computer_attitudes ~                                                         
##     expectancy              -0.068    0.091   -0.744    0.457   -0.049   -0.049
##     attainment              -0.111    0.090   -1.228    0.219   -0.128   -0.128
##     interest                 0.870    0.114    7.613    0.000    1.044    1.044
##     utility                 -0.165    0.094   -1.747    0.081   -0.139   -0.139
##     task_effort              0.158    0.280    0.565    0.572    0.372    0.372
##     outside_effort          -0.151    0.383   -0.396    0.692   -0.284   -0.284
##     lova                     0.113    0.240    0.469    0.639    0.199    0.199
##     emotional_csts          -0.213    0.167   -1.278    0.201   -0.416   -0.416
##   behavioral_intentions ~                                                      
##     expectancy               0.056    0.086    0.642    0.521    0.062    0.062
##     attainment              -0.133    0.095   -1.401    0.161   -0.234   -0.234
##     interest                 0.045    0.154    0.291    0.771    0.083    0.083
##     utility                  0.173    0.105    1.645    0.100    0.224    0.224
##     task_effort             -0.215    0.269   -0.802    0.423   -0.774   -0.774
##     outside_effort           0.264    0.368    0.719    0.472    0.760    0.760
##     lova                    -0.097    0.229   -0.423    0.672   -0.263   -0.263
##     emotional_csts           0.057    0.157    0.364    0.716    0.171    0.171
##     computer_tttds           0.072    0.131    0.548    0.584    0.110    0.110
## 
## Covariances:
##                     Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   expectancy ~~                                                          
##     attainment         0.215    0.035    6.085    0.000    0.570    0.570
##     interest           0.217    0.037    5.934    0.000    0.552    0.552
##     utility            0.157    0.027    5.801    0.000    0.567    0.567
##     task_effort       -0.264    0.060   -4.422    0.000   -0.344   -0.344
##     outside_effort    -0.224    0.050   -4.496    0.000   -0.364   -0.364
##     lova              -0.230    0.049   -4.711    0.000   -0.396   -0.396
##     emotional_csts    -0.229    0.052   -4.395    0.000   -0.358   -0.358
##   attainment ~~                                                          
##     interest           0.512    0.065    7.862    0.000    0.824    0.824
##     utility            0.292    0.043    6.723    0.000    0.668    0.668
##     task_effort       -0.394    0.089   -4.407    0.000   -0.324   -0.324
##     outside_effort    -0.316    0.074   -4.295    0.000   -0.325   -0.325
##     lova              -0.364    0.074   -4.957    0.000   -0.398   -0.398
##     emotional_csts    -0.363    0.079   -4.603    0.000   -0.359   -0.359
##   interest ~~                                                            
##     utility            0.320    0.047    6.814    0.000    0.702    0.702
##     task_effort       -0.514    0.097   -5.314    0.000   -0.405   -0.405
##     outside_effort    -0.411    0.080   -5.129    0.000   -0.405   -0.405
##     lova              -0.464    0.081   -5.690    0.000   -0.485   -0.485
##     emotional_csts    -0.467    0.087   -5.365    0.000   -0.442   -0.442
##   utility ~~                                                             
##     task_effort       -0.315    0.068   -4.625    0.000   -0.353   -0.353
##     outside_effort    -0.261    0.057   -4.611    0.000   -0.365   -0.365
##     lova              -0.255    0.055   -4.650    0.000   -0.379   -0.379
##     emotional_csts    -0.243    0.058   -4.203    0.000   -0.328   -0.328
##   task_effort ~~                                                         
##     outside_effort     1.984    0.212    9.368    0.000    1.000    1.000
##     lova               1.767    0.204    8.659    0.000    0.946    0.946
##     emotional_csts     1.961    0.229    8.558    0.000    0.950    0.950
##   outside_effort ~~                                                      
##     lova               1.452    0.179    8.121    0.000    0.971    0.971
##     emotional_csts     1.545    0.195    7.931    0.000    0.935    0.935
##   lova ~~                                                                
##     emotional_csts     1.497    0.195    7.663    0.000    0.963    0.963
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .tm_cmptr_ttt_6    0.293    0.031    9.621    0.000    0.293    0.395
##    .tm_cmptr_ttt_7    0.150    0.021    7.282    0.000    0.150    0.208
##    .tm_cmptr_ttt_8    0.212    0.024    8.832    0.000    0.212    0.304
##    .tm_cmptr_tt_14    0.396    0.040    9.893    0.000    0.396    0.441
##    .expctncy_s__20    0.253    0.027    9.350    0.000    0.253    0.515
##    .expctncy_s__21    0.448    0.046    9.823    0.000    0.448    0.588
##    .expctncy_s__22    0.327    0.033    9.919    0.000    0.327    0.606
##    .expctncy_s__24    0.397    0.047    8.534    0.000    0.397    0.424
##    .expctncy_s__25    0.384    0.048    7.979    0.000    0.384    0.378
##    .tsk_vl_ttn__27    0.340    0.037    9.178    0.000    0.340    0.364
##    .tsk_vl_ttn__31    0.448    0.051    8.830    0.000    0.448    0.328
##    .tsk_vl_ttn__33    0.555    0.053   10.463    0.000    0.555    0.616
##    .tsk_vl_ttn__36    0.433    0.049    8.754    0.000    0.433    0.321
##    .tsk_vl_ttn__38    0.419    0.044    9.464    0.000    0.419    0.400
##    .tsk_vl_ntr__29    0.479    0.047   10.162    0.000    0.479    0.424
##    .tsk_vl_ntr__32    0.214    0.023    9.480    0.000    0.214    0.307
##    .tsk_vl_ntr__37    0.192    0.022    8.876    0.000    0.192    0.248
##    .tsk_vl_ntr__40    0.216    0.025    8.554    0.000    0.216    0.225
##    .tsk_vl_tlt__28    0.375    0.037   10.198    0.000    0.375    0.539
##    .tsk_vl_tlt__30    0.225    0.023    9.648    0.000    0.225    0.428
##    .tsk_vl_tlt__34    0.119    0.016    7.339    0.000    0.119    0.231
##    .tsk_vl_tlt__35    0.134    0.016    8.331    0.000    0.134    0.290
##    .tsk_vl_tlt__39    0.258    0.025   10.157    0.000    0.258    0.528
##    .fll_cst_t___42    0.385    0.041    9.427    0.000    0.385    0.134
##    .fll_cst_t___45    0.684    0.067   10.206    0.000    0.684    0.213
##    .fll_cst_t___46    0.476    0.049    9.777    0.000    0.476    0.160
##    .fll_cst_t___51    0.992    0.093   10.667    0.000    0.992    0.338
##    .fll_cst_t___57    0.491    0.049   10.002    0.000    0.491    0.184
##    .fll_cst_t___44    1.055    0.097   10.827    0.000    1.055    0.399
##    .fll_cst_t___47    0.837    0.079   10.541    0.000    0.837    0.280
##    .fll_cst_t___50    0.457    0.047    9.753    0.000    0.457    0.169
##    .fll_cst_t___52    0.433    0.045    9.582    0.000    0.433    0.157
##    .fll_cst_l___43    1.395    0.130   10.761    0.000    1.395    0.498
##    .fll_cst_l___49    0.713    0.071    9.980    0.000    0.713    0.263
##    .fll_cst_l___53    0.809    0.080   10.063    0.000    0.809    0.276
##    .fll_cst_l___56    0.399    0.047    8.413    0.000    0.399    0.148
##    .fll_cst_mt__41    1.865    0.172   10.833    0.000    1.865    0.521
##    .fll_cst_mt__48    0.613    0.062    9.889    0.000    0.613    0.220
##    .fll_cst_mt__54    0.619    0.063    9.799    0.000    0.619    0.209
##    .fll_cst_mt__55    0.636    0.065    9.741    0.000    0.636    0.202
##    .fll_cst_mt__58    0.432    0.047    9.136    0.000    0.432    0.152
##    .fll_cst_mt__59    0.798    0.080    9.961    0.000    0.798    0.230
##    .intentin_s__18    0.432    0.067    6.450    0.000    0.432    0.692
##    .intentin_s__19   -0.039    0.158   -0.248    0.804   -0.039   -0.076
##    .computer_tttds    0.094    0.021    4.486    0.000    0.210    0.210
##     expectancy        0.238    0.041    5.883    0.000    1.000    1.000
##     attainment        0.595    0.081    7.358    0.000    1.000    1.000
##     interest          0.649    0.094    6.937    0.000    1.000    1.000
##     utility           0.321    0.055    5.877    0.000    1.000    1.000
##     task_effort       2.480    0.255    9.712    0.000    1.000    1.000
##     outside_effort    1.588    0.218    7.270    0.000    1.000    1.000
##     lova              1.407    0.221    6.382    0.000    1.000    1.000
##     emotional_csts    1.718    0.277    6.196    0.000    1.000    1.000
##    .behavrl_ntntns    0.174    0.058    3.024    0.002    0.906    0.906
## 
## R-Square:
##                    Estimate
##     tm_cmptr_ttt_6    0.605
##     tm_cmptr_ttt_7    0.792
##     tm_cmptr_ttt_8    0.696
##     tm_cmptr_tt_14    0.559
##     expctncy_s__20    0.485
##     expctncy_s__21    0.412
##     expctncy_s__22    0.394
##     expctncy_s__24    0.576
##     expctncy_s__25    0.622
##     tsk_vl_ttn__27    0.636
##     tsk_vl_ttn__31    0.672
##     tsk_vl_ttn__33    0.384
##     tsk_vl_ttn__36    0.679
##     tsk_vl_ttn__38    0.600
##     tsk_vl_ntr__29    0.576
##     tsk_vl_ntr__32    0.693
##     tsk_vl_ntr__37    0.752
##     tsk_vl_ntr__40    0.775
##     tsk_vl_tlt__28    0.461
##     tsk_vl_tlt__30    0.572
##     tsk_vl_tlt__34    0.769
##     tsk_vl_tlt__35    0.710
##     tsk_vl_tlt__39    0.472
##     fll_cst_t___42    0.866
##     fll_cst_t___45    0.787
##     fll_cst_t___46    0.840
##     fll_cst_t___51    0.662
##     fll_cst_t___57    0.816
##     fll_cst_t___44    0.601
##     fll_cst_t___47    0.720
##     fll_cst_t___50    0.831
##     fll_cst_t___52    0.843
##     fll_cst_l___43    0.502
##     fll_cst_l___49    0.737
##     fll_cst_l___53    0.724
##     fll_cst_l___56    0.852
##     fll_cst_mt__41    0.479
##     fll_cst_mt__48    0.780
##     fll_cst_mt__54    0.791
##     fll_cst_mt__55    0.798
##     fll_cst_mt__58    0.848
##     fll_cst_mt__59    0.770
##     intentin_s__18    0.308
##     intentin_s__19       NA
##     computer_tttds    0.790
##     behavrl_ntntns    0.094