library(rio)
linkToData='https://github.com/JhazminRios29/clase1/raw/master/DATA%20(3).xlsx'
data=import(linkToData)
#Visualizando

install.packages("ggplot2")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/3.6'
## (as 'lib' is unspecified)
library(ggplot2)
data
##                            Departamento
## 1                              Amazonas
## 2                                  <NA>
## 3                                  <NA>
## 4                                  <NA>
## 5                                  <NA>
## 6                                  <NA>
## 7                                  <NA>
## 8                                Áncash
## 9                                  <NA>
## 10                                 <NA>
## 11                                 <NA>
## 12                                 <NA>
## 13                                 <NA>
## 14                                 <NA>
## 15                                 <NA>
## 16                                 <NA>
## 17                                 <NA>
## 18                                 <NA>
## 19                                 <NA>
## 20                                 <NA>
## 21                                 <NA>
## 22                                 <NA>
## 23                                 <NA>
## 24                                 <NA>
## 25                                 <NA>
## 26                                 <NA>
## 27                                 <NA>
## 28                             Apurímac
## 29                                 <NA>
## 30                                 <NA>
## 31                                 <NA>
## 32                                 <NA>
## 33                                 <NA>
## 34                                 <NA>
## 35                             Arequipa
## 36                                 <NA>
## 37                                 <NA>
## 38                                 <NA>
## 39                                 <NA>
## 40                                 <NA>
## 41                                 <NA>
## 42                                 <NA>
## 43                             Ayacucho
## 44                                 <NA>
## 45                                 <NA>
## 46                                 <NA>
## 47                                 <NA>
## 48                                 <NA>
## 49                                 <NA>
## 50                                 <NA>
## 51                                 <NA>
## 52                                 <NA>
## 53                                 <NA>
## 54                            Cajamarca
## 55                                 <NA>
## 56                                 <NA>
## 57                                 <NA>
## 58                                 <NA>
## 59                                 <NA>
## 60                                 <NA>
## 61                                 <NA>
## 62                                 <NA>
## 63                                 <NA>
## 64                                 <NA>
## 65                                 <NA>
## 66                                 <NA>
## 67                                Cusco
## 68                                 <NA>
## 69                                 <NA>
## 70                                 <NA>
## 71                                 <NA>
## 72                                 <NA>
## 73                                 <NA>
## 74                                 <NA>
## 75                                 <NA>
## 76                                 <NA>
## 77                                 <NA>
## 78                                 <NA>
## 79                                 <NA>
## 80                         Huancavelica
## 81                                 <NA>
## 82                                 <NA>
## 83                                 <NA>
## 84                                 <NA>
## 85                                 <NA>
## 86                                 <NA>
## 87                              Huánuco
## 88                                 <NA>
## 89                                 <NA>
## 90                                 <NA>
## 91                                 <NA>
## 92                                 <NA>
## 93                                 <NA>
## 94                                 <NA>
## 95                                 <NA>
## 96                                 <NA>
## 97                                 <NA>
## 98                                  Ica
## 99                                 <NA>
## 100                                <NA>
## 101                                <NA>
## 102                                <NA>
## 103                               Junín
## 104                                <NA>
## 105                                <NA>
## 106                                <NA>
## 107                                <NA>
## 108                                <NA>
## 109                                <NA>
## 110                                <NA>
## 111                                <NA>
## 112                         La Libertad
## 113                                <NA>
## 114                                <NA>
## 115                                <NA>
## 116                                <NA>
## 117                                <NA>
## 118                                <NA>
## 119                                <NA>
## 120                                <NA>
## 121                                <NA>
## 122                                <NA>
## 123                                <NA>
## 124                          Lambayeque
## 125                                <NA>
## 126                                <NA>
## 127                                Lima
## 128                                <NA>
## 129                                <NA>
## 130                                <NA>
## 131                                <NA>
## 132                                <NA>
## 133                                <NA>
## 134                                <NA>
## 135                                <NA>
## 136                                <NA>
## 137                              Loreto
## 138                                <NA>
## 139                                <NA>
## 140                                <NA>
## 141                                <NA>
## 142                                <NA>
## 143                                <NA>
## 144                       Madre de Dios
## 145                                <NA>
## 146                                <NA>
## 147                            Moquegua
## 148                                <NA>
## 149                                <NA>
## 150                               Pasco
## 151                                <NA>
## 152                                <NA>
## 153                               Piura
## 154                                <NA>
## 155                                <NA>
## 156                                <NA>
## 157                                <NA>
## 158                                <NA>
## 159                                <NA>
## 160                                <NA>
## 161 Provincia Constitucional del Callao
## 162                                Puno
## 163                                <NA>
## 164                                <NA>
## 165                                <NA>
## 166                                <NA>
## 167                                <NA>
## 168                                <NA>
## 169                                <NA>
## 170                                <NA>
## 171                                <NA>
## 172                                <NA>
## 173                                <NA>
## 174                                <NA>
## 175                          San Martín
## 176                                <NA>
## 177                                <NA>
## 178                                <NA>
## 179                                <NA>
## 180                                <NA>
## 181                                <NA>
## 182                                <NA>
## 183                                <NA>
## 184                                <NA>
## 185                               Tacna
## 186                                <NA>
## 187                                <NA>
## 188                                <NA>
## 189                              Tumbes
## 190                                <NA>
## 191                                <NA>
## 192                             Ucayali
## 193                                <NA>
## 194                                <NA>
## 195                                <NA>
##                               Provincia  MOR     EV         IDIO       VIV
## 1                                 Bagua 16.9  12991 0.2454885630 0.7820969
## 2                               Bongará 21.4   6410 0.0020556180 0.8425926
## 3                           Chachapoyas 20.4   9427 0.0036320906 0.7907919
## 4                          Condorcanqui 28.5   8281 0.9058878797 0.4505415
## 5                                  Luya 24.5  10576 0.0010222449 0.8763681
## 6                  Rodríguez de Mendoza 14.3   6090 0.0010505051 0.8586932
## 7                             Utcubamba 19.4  18253 0.0032615979 0.8273204
## 8                                  Aija 41.9   1144 0.3779717931 0.6075424
## 9                      Antonio Raymondi 32.0   1875 0.7643605605 0.8699090
## 10                             Asunción 32.6   1126 0.8087682181 0.8779180
## 11                            Bolognesi 27.1   4850 0.1581143527 0.6994278
## 12                              Carhuaz 22.8   7925 0.7340990252 0.8701681
## 13            Carlos Fermín Fitzcarrald 28.3   2312 0.9096199585 0.8851282
## 14                                Casma 16.4   5469 0.1393454946 0.7758907
## 15                              Corongo 20.7   1398 0.0946888072 0.7865223
## 16                               Huaraz 23.0  17941 0.3640127137 0.7869267
## 17                                Huari 24.9   6102 0.7821222391 0.8082139
## 18                              Huarmey 13.6   3990 0.0652927508 0.8252869
## 19                              Huaylas 19.1   9182 0.5725788814 0.7175274
## 20                   Mariscal Luzuriaga 26.4   2352 0.9105105105 0.7826762
## 21                                Ocros 12.9   1918 0.0851945660 0.6956188
## 22                             Pallasca 37.6   3912 0.0051202711 0.6301375
## 23                            Pomabamba 17.5   2899 0.8489637405 0.8483965
## 24                               Recuay 26.6   2653 0.3650740987 0.7335432
## 25                                Santa 12.9  40518 0.0250912287 0.8683386
## 26                               Sihuas 25.6   5010 0.3689259207 0.9001767
## 27                               Yungay 37.4  10704 0.7325770482 0.6822133
## 28                              Abancay 17.5  13126 0.4831680758 0.6761962
## 29                          Andahuaylas 18.3  22026 0.7375944608 0.8666699
## 30                            Antabamba 41.2   2163 0.7750813330 0.7811671
## 31                             Aymaraes 27.2   5544 0.7123125067 0.8014204
## 32                           Chincheros 26.4   6506 0.8057715966 0.7471992
## 33                           Cotabambas 24.3   4197 0.9037901565 0.9275256
## 34                                 Grau 30.2   3384 0.8156405419 0.8447617
## 35                             Arequipa 16.1  72673 0.1412686418 0.7810000
## 36                               Camaná 13.2   6420 0.1590370562 0.7933962
## 37                             Caravelí 12.9   5472 0.1557947508 0.7403431
## 38                             Castilla 23.9   5288 0.2012825474 0.7358333
## 39                             Caylloma 23.4  13070 0.3542947885 0.6846604
## 40                           Condesuyos 22.0   3220 0.2687614909 0.7354485
## 41                                Islay 21.2   5145 0.1406876906 0.7931824
## 42                             La Unión 25.1   3632 0.5969304229 0.7818935
## 43                             Cangallo 22.4   6949 0.9026007922 0.9262534
## 44                             Huamanga 25.7  29322 0.5054988954 0.8039439
## 45                        Huanca Sancos 26.9   1976 0.8109442709 0.8330626
## 46                               Huanta 24.8  17510 0.6742124171 0.8089886
## 47                               La Mar 22.9  18895 0.8328085401 0.8376204
## 48                              Lucanas 25.3  13127 0.4270301793 0.7431646
## 49                         Parinacochas 43.4   5038 0.5528798411 0.7736300
## 50                 Páucar del Sara Sara 19.0   2111 0.5048972537 0.7308979
## 51                                Sucre 28.5   2009 0.7668411278 0.7486461
## 52                       Víctor Fajardo 21.4   4803 0.8642361981 0.8678534
## 53                        Vilcas Huamán 26.4   3763 0.8973769605 0.8804958
## 54                            Cajabamba 16.9  14148 0.0008598703 0.8745239
## 55                            Cajamarca 22.6  40794 0.0118220618 0.7919398
## 56                             Celendín 31.3  15567 0.0008832105 0.8571364
## 57                                Chota 19.6  28763 0.0032494662 0.9059354
## 58                            Contumazá 22.1   4789 0.0010506694 0.8264287
## 59                              Cutervo 18.5  25564 0.0008845849 0.8874671
## 60                            Hualgayoc 18.6  33521 0.0011612475 0.9142621
## 61                                 Jaén 20.5  31288 0.0079981373 0.7721503
## 62                          San Ignacio 21.5  30051 0.0087058416 0.8780383
## 63                           San Marcos 31.8   9242 0.0033237175 0.8967720
## 64                           San Miguel 19.0  10011 0.0012633405 0.8868788
## 65                            San Pablo 34.8   3669 0.0013518553 0.8683527
## 66                           Santa Cruz 21.0   7265 0.0005315037 0.8922003
## 67                              Acomayo 44.0   5228 0.8754764431 0.8715876
## 68                                 Anta 19.5  11357 0.7038206140 0.8302409
## 69                                Calca 23.5  14680 0.7027782745 0.8207821
## 70                                Canas 45.1   6984 0.9175701352 0.9326131
## 71                              Canchis 28.3  20764 0.5872454659 0.7773632
## 72                         Chumbivílcas 30.9  18579 0.9123323101 0.9397103
## 73                                Cusco 15.6  45726 0.1855929124 0.6414359
## 74                              Espinar 30.6  14624 0.6912044266 0.8712463
## 75                        La Convención 18.1  41311 0.4774174944 0.7750523
## 76                               Paruro 37.5   6635 0.9229336919 0.8037265
## 77                          Paucartambo 39.8  12553 0.8631771613 0.9016574
## 78                         Quispicanchi 39.1  17269 0.7557503598 0.7749434
## 79                             Urubamba 17.0  10234 0.5156139238 0.7145397
## 80                             Acobamba 23.9  11726 0.8604281387 0.7919411
## 81                             Angaraes 31.4   6918 0.7877539973 0.7805251
## 82                       Castrovirreyna 27.5   3328 0.2240082825 0.7040927
## 83                            Churcampa 28.8   8710 0.7922724986 0.6714034
## 84                         Huancavelica 34.9  29363 0.5517743594 0.8102975
## 85                             Huaytará 21.7   4460 0.2593673079 0.6407428
## 86                             Tayacaja 24.8  19303 0.6523894850 0.8117733
## 87                                 Ambo 19.3  11297 0.2530078867 0.8516018
## 88                          Dos de Mayo 36.3   6654 0.3995737269 0.8832404
## 89                          Huacaybamba 27.1   3118 0.7898409007 0.9068943
## 90                            Huamalíes 23.0  10215 0.5339549214 0.8395686
## 91                              Huánuco 21.2  43889 0.2386471946 0.7637156
## 92                           Lauricocha 24.7   5561 0.1045283477 0.8446608
## 93                        Leoncio Prado 17.3  22959 0.0839951689 0.7658068
## 94                              Marañón 36.8   4636 0.2482376431 0.9042024
## 95                             Pachitea 27.8  12545 0.4712161920 0.8300414
## 96                          Puerto Inca 21.6   7160 0.1029746680 0.7910094
## 97                            Yarowilca 29.4   7333 0.6109631011 0.9328365
## 98                              Chincha 10.3  19813 0.0254217703 0.8015418
## 99                                  Ica 10.8  26455 0.0536116152 0.8027519
## 100                               Nazca  9.5   6844 0.0790800888 0.6350561
## 101                               Palpa 10.3   1475 0.0745813052 0.8186654
## 102                               Pisco 12.3  12991 0.0441888825 0.8039913
## 103                         Chanchamayo 19.1  31021 0.1360817450 0.7317907
## 104                             Chupaca 25.4   9664 0.0677872748 0.8066284
## 105                          Concepción 26.8   9953 0.0718788737 0.7573213
## 106                            Huancayo 21.5  62014 0.1220196990 0.6967929
## 107                               Jauja 25.8  12803 0.0225185833 0.6880273
## 108                               Junín 30.6   4851 0.1549227127 0.7165609
## 109                              Satipo 25.8  41467 0.3122761060 0.7078938
## 110                               Tarma 21.2  23438 0.0541062165 0.7267595
## 111                               Yauli 17.4   4186 0.0401873138 0.4263194
## 112                              Ascope 15.7  10365 0.0017166680 0.8201242
## 113                             Bolívar 20.7   2665 0.0064419573 0.8456246
## 114                              Chepén 14.7   7532 0.0016604342 0.7749433
## 115                          Gran Chimú 20.8   5551 0.0009848059 0.8473810
## 116                              Julcán 26.4   6484 0.0004594683 0.8718416
## 117                              Otuzco 19.6  21457 0.0017051639 0.8742680
## 118                           Pacasmayo 11.4   7278 0.0021413756 0.7984786
## 119                               Pataz 28.8  11330 0.0099415448 0.8418966
## 120                     Sánchez Carrión 29.2  23826 0.0007537729 0.8863797
## 121                   Santiago de Chuco 19.6   7878 0.0039664887 0.7726470
## 122                            Trujillo 12.9  79437 0.0036853646 0.7902482
## 123                                Virú 14.6   8276 0.0039097235 0.7693884
## 124                            Chiclayo 12.9  83813 0.0042001782 0.7536106
## 125                           Ferreñafe 32.2   9828 0.2293893599 0.8732049
## 126                          Lambayeque 21.4  24554 0.0049908075 0.8728926
## 127                            Barranca 10.1  16800 0.0342238381 0.7189611
## 128                           Cajatambo 25.6   1464 0.1389277983 0.6654389
## 129                              Cañete 11.1  22462 0.0156617612 0.7618227
## 130                               Canta 15.7   2417 0.0408067174 0.6646653
## 131                              Huaral 10.8  21958 0.0362907629 0.7462452
## 132                          Huarochirí 24.1  13879 0.0182021558 0.6474198
## 133                              Huaura 14.0  23991 0.0212710280 0.7398813
## 134                                Lima 10.9 712535 0.0675540589 0.7534620
## 135                                Oyón 22.4   2400 0.0762067360 0.5778852
## 136                              Yauyos 28.2   6432 0.0638053267 0.7346670
## 137                       Alto Amazonas 26.8  18258 0.1386189527 0.8893598
## 138                   Datem del Marañón 31.3  11400 0.4931814063 0.6593053
## 139                              Loreto 32.6  10813 0.0924578116 0.9272697
## 140             Mariscal Ramón Castilla 31.7  11722 0.1008021826 0.9164586
## 141                              Maynas 24.6  75219 0.0160466139 0.8906006
## 142                             Requena 31.0  13933 0.0253699789 0.9288669
## 143                             Ucayali 35.3  11989 0.1055518706 0.9209401
## 144                                Manu 24.9   3417 0.4015916253 0.5874367
## 145                           Tahuamanu  9.2   1519 0.1130099773 0.7265023
## 146                           Tambopata 24.3  10675 0.1546845439 0.6611566
## 147               General Sánchez Cerro 11.8   4784 0.3953576385 0.7896082
## 148                                 Ilo 14.7   5936 0.1321813471 0.8324410
## 149                      Mariscal Nieto 11.4   8625 0.2036139205 0.8044019
## 150              Daniel Alcides Carrión 29.1   7740 0.0898774899 0.5153672
## 151                            Oxapampa 23.2  18198 0.1840493217 0.7471018
## 152                               Pasco 19.4  17422 0.0509023209 0.6673730
## 153                             Ayabaca 33.9  27718 0.0011256772 0.8468006
## 154                         Huancabamba 41.3  23130 0.0014108279 0.9129753
## 155                            Morropón 27.1  26194 0.0022834384 0.8980590
## 156                               Paita 17.2  11520 0.0018055376 0.9020664
## 157                               Piura 19.0  72998 0.0026703598 0.8783113
## 158                             Sechura 28.3   8767 0.0015283804 0.9174438
## 159                             Sullana 14.2  35192 0.0044356186 0.8710447
## 160                              Talara 17.7  10933 0.0022111117 0.8094868
## 161 Provincia Constitucional del Callao 10.1  68672 0.0491503158 0.7803990
## 162                            Azángaro 45.3  29045 0.8143051084 0.8824321
## 163                            Carabaya 52.1  17722 0.8478336929 0.8383293
## 164                            Chucuito 25.3  33382 0.7308936955 0.9222909
## 165                           El Collao 25.0  25228 0.7733056583 0.9459967
## 166                            Huancané 30.1  18352 0.8414976882 0.9359649
## 167                               Lampa 32.6   8716 0.7497265608 0.8144226
## 168                              Melgar 39.4  15420 0.7079639732 0.6830981
## 169                                Moho 32.1   9309 0.8614209551 0.9267793
## 170                                Puno 36.6  49731 0.5423945932 0.8165708
## 171               San Antonio de Putina 40.8   6486 0.6967688834 0.7798417
## 172                           San Román 26.5  43853 0.3838350512 0.7510167
## 173                              Sandia 35.3  20650 0.6438410210 0.8182663
## 174                             Yunguyo 24.1  14742 0.6856776532 0.9506660
## 175                          Bellavista 27.6  11889 0.0067929688 0.8646030
## 176                           El Dorado 26.4  10078 0.0176345197 0.9048115
## 177                            Huallaga 14.0   6206 0.0016223089 0.8867886
## 178                               Lamas 21.2  22339 0.0523782907 0.9031284
## 179                    Mariscal Cáceres 22.3  11402 0.0040200580 0.8243683
## 180                           Moyobamba 18.5  23111 0.0112437198 0.8338765
## 181                              Picota 20.9   8505 0.0030233022 0.8811598
## 182                               Rioja 16.1  21100 0.0210254935 0.8017022
## 183                          San Martín 21.1  27793 0.0057288225 0.8233855
## 184                             Tocache 22.7  15621 0.0421823021 0.7458411
## 185                           Candarave 28.2   2410 0.2174076393 0.8134683
## 186                       Jorge Basadre 18.3   1118 0.2008483563 0.5631562
## 187                               Tacna 14.7  37505 0.1902530347 0.8409904
## 188                              Tarata 19.9   2449 0.1758477416 0.8082227
## 189               Contralmirante Villar 11.9   2355 0.0009486466 0.8924382
## 190                              Tumbes 12.0  18498 0.0024576836 0.8463211
## 191                           Zarumilla 15.0   7433 0.0034027850 0.8440782
## 192                             Atalaya 47.1   6320 0.5077498664 0.7849683
## 193                    Coronel Portillo 22.4  51278 0.0704480353 0.8644931
## 194                          Padre Abad 13.2  11454 0.1047972220 0.8179934
## 195                               Purús 31.3    522 0.6933174224 0.9089878
##     Cap
## 1     0
## 2     0
## 3     1
## 4     0
## 5     0
## 6     0
## 7     0
## 8     0
## 9     0
## 10    0
## 11    0
## 12    0
## 13    0
## 14    0
## 15    0
## 16    1
## 17    0
## 18    0
## 19    0
## 20    0
## 21    0
## 22    0
## 23    0
## 24    0
## 25    0
## 26    0
## 27    0
## 28    1
## 29    0
## 30    0
## 31    0
## 32    0
## 33    0
## 34    0
## 35    1
## 36    0
## 37    0
## 38    0
## 39    0
## 40    0
## 41    0
## 42    0
## 43    0
## 44    1
## 45    0
## 46    0
## 47    0
## 48    0
## 49    0
## 50    0
## 51    0
## 52    0
## 53    0
## 54    0
## 55    1
## 56    0
## 57    0
## 58    0
## 59    0
## 60    0
## 61    0
## 62    0
## 63    0
## 64    0
## 65    0
## 66    0
## 67    0
## 68    0
## 69    0
## 70    0
## 71    0
## 72    0
## 73    1
## 74    0
## 75    0
## 76    0
## 77    0
## 78    0
## 79    0
## 80    0
## 81    0
## 82    0
## 83    0
## 84    1
## 85    0
## 86    0
## 87    0
## 88    0
## 89    0
## 90    0
## 91    1
## 92    0
## 93    0
## 94    0
## 95    0
## 96    0
## 97    0
## 98    0
## 99    1
## 100   0
## 101   0
## 102   0
## 103   0
## 104   0
## 105   0
## 106   1
## 107   0
## 108   0
## 109   0
## 110   0
## 111   0
## 112   0
## 113   0
## 114   0
## 115   0
## 116   0
## 117   0
## 118   0
## 119   0
## 120   0
## 121   0
## 122   1
## 123   0
## 124   1
## 125   0
## 126   0
## 127   0
## 128   0
## 129   0
## 130   0
## 131   0
## 132   0
## 133   0
## 134   1
## 135   0
## 136   0
## 137   0
## 138   0
## 139   0
## 140   0
## 141   1
## 142   0
## 143   0
## 144   0
## 145   0
## 146   1
## 147   0
## 148   0
## 149   1
## 150   0
## 151   0
## 152   1
## 153   0
## 154   0
## 155   0
## 156   0
## 157   1
## 158   0
## 159   0
## 160   0
## 161   1
## 162   0
## 163   0
## 164   0
## 165   0
## 166   0
## 167   0
## 168   0
## 169   0
## 170   1
## 171   0
## 172   0
## 173   0
## 174   0
## 175   0
## 176   0
## 177   0
## 178   0
## 179   0
## 180   1
## 181   0
## 182   0
## 183   0
## 184   0
## 185   0
## 186   0
## 187   1
## 188   0
## 189   0
## 190   1
## 191   0
## 192   0
## 193   1
## 194   0
## 195   0
base=ggplot(data=data, aes(x=EV, y=MOR))
scatter = base + geom_point()
scatter

#Calculando correlación

f1=formula(~MOR + EV)
# camino parametrico
pearsonf1=cor.test(f1,data=data)[c('estimate','p.value')]
pearsonf1
## $estimate
##        cor 
## -0.1586011 
## 
## $p.value
## [1] 0.02679163
# camino no parametrico
spearmanf1=cor.test(f1,data=data,method='spearman')[c('estimate','p.value')]
## Warning in cor.test.default(x = c(16.9, 21.4, 20.4, 28.5, 24.5, 14.3,
## 19.4, : Cannot compute exact p-value with ties
spearmanf1
## $estimate
##        rho 
## -0.1517232 
## 
## $p.value
## [1] 0.03423011
#Añadiendo otra variable

install.packages("scatterplot3d")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/3.6'
## (as 'lib' is unspecified)
library(scatterplot3d)
scatterplot3d(data[,c('IDIO','EV','MOR')])

base=ggplot(data=data, aes(x=EV, y=MOR))
base + geom_point(aes(color = IDIO))

#Correlaciones

f2=formula(~MOR+IDIO)
# camino parametrico
pearsonf2=cor.test(f2,data=data)[c('estimate','p.value')]
pearsonf2
## $estimate
##       cor 
## 0.5019944 
## 
## $p.value
## [1] 7.640369e-14
# camino no parametrico
spearmanf2=cor.test(f2,data=data, method='spearman')[c('estimate','p.value')]
## Warning in cor.test.default(x = c(16.9, 21.4, 20.4, 28.5, 24.5, 14.3,
## 19.4, : Cannot compute exact p-value with ties
spearmanf2
## $estimate
##       rho 
## 0.4472877 
## 
## $p.value
## [1] 5.549205e-11
#Correlaciones

f3=formula(~MOR+VIV)
# camino parametrico
pearsonf3=cor.test(f3,data=data)[c('estimate','p.value')]
pearsonf3
## $estimate
##       cor 
## 0.1347842 
## 
## $p.value
## [1] 0.06029368
# camino no parametrico
spearmanf3=cor.test(f3,data=data, method='spearman')[c('estimate','p.value')]
## Warning in cor.test.default(x = c(16.9, 21.4, 20.4, 28.5, 24.5, 14.3,
## 19.4, : Cannot compute exact p-value with ties
spearmanf3
## $estimate
##       rho 
## 0.1940656 
## 
## $p.value
## [1] 0.006558888
#Añadiendo capital
base=ggplot(data=data, aes(x=Cap, y=MOR))
base + geom_boxplot(notch = T)
## Warning: Continuous x aesthetic -- did you forget aes(group=...)?

#Graficando
install.packages("ggpubr")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/3.6'
## (as 'lib' is unspecified)
library(ggpubr)
## Loading required package: magrittr
ggerrorplot(data=data, x = "Cap", y = "MOR")

#verificando normalidad entre CAPITAL O NO

library(ggplot2)
ggplot(data,aes(x=MOR)) + 
  geom_histogram(aes(y = ..density..),bins = 20, fill='green') +
  stat_function(fun = dnorm, colour = "red",
                args = list(mean = mean(data$MOR, na.rm = TRUE),
                            sd = sd(data$MOR, na.rm = TRUE))) + 
  facet_grid(~Cap) + 
  coord_flip()

# se sugiere normalidad si los puntos no se alejan de la diagonal.

library(ggpubr)
ggqqplot(data=data,x="MOR") + facet_grid(. ~ Cap)

#INDICE DE SHAPIRO-WILL

library(knitr)

library(magrittr)

library(kableExtra)

f4=formula(MOR~Cap)

tablag= aggregate(f4, data,
FUN = function(x) {y <- shapiro.test(x); c(y$statistic, y$p.value)})

shapiroTest=as.data.frame(tablag[,2])
shapiroTest
##           W          V2
## 1 0.9749568 0.003614951
## 2 0.9204432 0.052438890
names(shapiroTest)=c("W","Prob")

kable(cbind(tablag[1],shapiroTest))%>%
  kable_styling(bootstrap_options = c("striped", "hover"), 
                full_width = F, position = "left")
Cap W Prob
0 0.9749568 0.0036150
1 0.9204432 0.0524389
#La hipótesis del Shapiro Wills 
# HO = La muestra es normal.
#Si supera el p value de 0.05 se acepta la H0
#La prueba en este caso es inconsistente

#En consecuencia, tenemos que usar la prueba de Mann-Whitney 
#para para testear la relación que poseen ambas variables

tf4=t.test(f4,data=data)[c('estimate','p.value')]
wilcoxf4=wilcox.test(f4,data=data)['p.value']

wilcoxf4
## $p.value
## [1] 0.001322102
###La prueba no paramétrica rechazaría la igualdad de valores medios
#Por tanto, la capital si influencia en la fórmula
#Viendo visualmente

library(ggplot2)
base=ggplot(data=data, aes(x=EV, y=MOR))
base + geom_point(aes(color = Cap))

#Añadiendo los valores de idioma y capital

base + geom_point(aes(color = IDIO)) + facet_grid(~Cap)

#Modelos

modelo1=formula(MOR~EV)
modelo2=formula(MOR ~ EV + IDIO)
modelo3= formula(MOR ~ EV + IDIO + VIV)
modelo4= formula
#comenzamos


library(stargazer)
## 
## Please cite as:
##  Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
##  R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
reg1=lm(modelo1,data=data)
stargazer(reg1,type = "text",intercept.bottom = FALSE)
## 
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                 MOR            
## -----------------------------------------------
## Constant                     24.383***         
##                               (0.640)          
##                                                
## EV                          -0.00003**         
##                              (0.00001)         
##                                                
## -----------------------------------------------
## Observations                    195            
## R2                             0.025           
## Adjusted R2                    0.020           
## Residual Std. Error      8.400 (df = 193)      
## F Statistic            4.980** (df = 1; 193)   
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01
#produciendo Recta a través de la formula
library(ggplot2)
ggplot(data, aes(x=EV, y=MOR)) + 
  geom_point()+
  geom_smooth(method=lm)

#Con IDIO

reg2=lm(modelo2,data=data)
stargazer(reg2,type = "text",intercept.bottom = FALSE)
## 
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                 MOR            
## -----------------------------------------------
## Constant                     20.333***         
##                               (0.759)          
##                                                
## EV                           -0.00002*         
##                              (0.00001)         
##                                                
## IDIO                         12.865***         
##                               (1.636)          
##                                                
## -----------------------------------------------
## Observations                    195            
## R2                             0.263           
## Adjusted R2                    0.255           
## Residual Std. Error      7.325 (df = 192)      
## F Statistic           34.173*** (df = 2; 192)  
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01
#Con VIV

reg3=lm(modelo3,data=data)
stargazer(reg3,type = "text",intercept.bottom = FALSE)
## 
## ===============================================
##                         Dependent variable:    
##                     ---------------------------
##                                 MOR            
## -----------------------------------------------
## Constant                     13.711***         
##                               (4.608)          
##                                                
## EV                           -0.00002*         
##                              (0.00001)         
##                                                
## IDIO                         12.653***         
##                               (1.638)          
##                                                
## VIV                            8.331           
##                               (5.719)          
##                                                
## -----------------------------------------------
## Observations                    195            
## R2                             0.271           
## Adjusted R2                    0.259           
## Residual Std. Error      7.303 (df = 191)      
## F Statistic           23.623*** (df = 3; 191)  
## ===============================================
## Note:               *p<0.1; **p<0.05; ***p<0.01
#Checkeando que el error disminuya significativamente

tanova=anova(reg1,reg2)
stargazer(tanova,type = 'text',summary = F,
          title = "Table de Análisis de Varianza")
## 
## Table de Análisis de Varianza
## ===============================================
##   Res.Df    RSS     Df Sum of Sq   F    Pr(> F)
## -----------------------------------------------
## 1  193   13,616.900                            
## 2  192   10,301.320 1  3,315.571 61.797    0   
## -----------------------------------------------
#El H0 de anova es que los modelos (o medias) no difieren
#PR es 0, por lo que el H0 se rechaza
#Comparando entre modelos

tanova2=anova(reg2,reg3)
stargazer(tanova2,type = 'text',summary = F,
          title = "Table de Análisis de Varianza 2")
## 
## Table de Análisis de Varianza 2
## ==============================================
##   Res.Df    RSS     Df Sum of Sq   F   Pr(> F)
## ----------------------------------------------
## 1  192   10,301.320                           
## 2  191   10,188.120 1   113.209  2.122  0.147 
## ----------------------------------------------
#Entre los modelos
tanova=anova(reg1,reg2,reg3)
stargazer(tanova,type = 'text',summary = F,title = "Table de Análisis de Varianza")
## 
## Table de Análisis de Varianza
## ===============================================
##   Res.Df    RSS     Df Sum of Sq   F    Pr(> F)
## -----------------------------------------------
## 1  193   13,616.900                            
## 2  192   10,301.320 1  3,315.571 62.158    0   
## 3  191   10,188.120 1   113.209  2.122   0.147 
## -----------------------------------------------
#RESUMIENDO LOS RESULTADOS

library(stargazer)
stargazer(reg1,reg2,reg3, type = "text", title = "Modelos planteadas",
          digits = 2, single.row = F,no.space = F,intercept.bottom = FALSE,
          dep.var.caption="Variable dependiente:",
          dep.var.labels="Tasa de Mortalidad Infantil",
          covariate.labels=c("Constante","Empleo Vulnerable","Idioma",
                             "Vivienda propia","Capital"),
          keep.stat = c("n","adj.rsq","ser"),df = F,
          notes.label = "Notas:")
## 
## Modelos planteadas
## =================================================
##                         Variable dependiente:    
##                     -----------------------------
##                      Tasa de Mortalidad Infantil 
##                        (1)        (2)      (3)   
## -------------------------------------------------
## Constante            24.38***  20.33***  13.71***
##                       (0.64)    (0.76)    (4.61) 
##                                                  
## Empleo Vulnerable   -0.0000**  -0.0000*  -0.0000*
##                      (0.0000)  (0.0000)  (0.0000)
##                                                  
## Idioma                         12.86***  12.65***
##                                 (1.64)    (1.64) 
##                                                  
## Vivienda propia                            8.33  
##                                           (5.72) 
##                                                  
## -------------------------------------------------
## Observations           195        195      195   
## Adjusted R2            0.02      0.25      0.26  
## Residual Std. Error    8.40      7.32      7.30  
## =================================================
## Notas:                *p<0.1; **p<0.05; ***p<0.01
#Graficamente
library(ggplot2)
library(sjPlot)
## Install package "strengejacke" from GitHub (`devtools::install_github("strengejacke/strengejacke")`) to load all sj-packages at once!
plot_models(reg1,reg2,reg3,vline.color = "grey",
            m.labels=c("Modelo 1","Modelo 2","Modelo 3"))

#Una vez con tu modelo, necesitas comprobar que el modelo tenga validez
#Esto se logra a través de diversa pruebas

#Escogemos el 2 modelo
#Evaluando la linealidad

plot(reg2, 1)

#La linea debe ser horizontal

#Homocedasticidad

# linea roja debe tender a horizontal
plot(reg2, 3)

#Test de Breusch-Pagan

install.packages("lmtest")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/3.6'
## (as 'lib' is unspecified)
library(lmtest)
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
# null: modelo homocedastico
bptest(reg2)
## 
##  studentized Breusch-Pagan test
## 
## data:  reg2
## BP = 2.1281, df = 2, p-value = 0.3451
#La probabilidad de homocedasticidad es alta (p-value mayor a 0.05), 
#de ahi que se acepte que el modelo muestre homocedasticidad.
#ESTA ES UNA PRIMERA INDICACIÓN QUE LA REGRESIÓN PRESENTA ERRORES

#Normalidad de los residuos
# puntos cerca a la diagonal
plot(reg2, 2)

#Shapiro Test para los residuos

shapiro.test(reg2$residuals)
## 
##  Shapiro-Wilk normality test
## 
## data:  reg2$residuals
## W = 0.969, p-value = 0.0002617
#No existe normalidad.
#No multicolinelidad

install.packages("DescTools")
## Installing package into '/home/rstudio-user/R/x86_64-pc-linux-gnu-library/3.6'
## (as 'lib' is unspecified)
library(DescTools)
VIF(reg2) # > 5 es problematico
##       EV     IDIO 
## 1.012917 1.012917
#Valores influyentes

plot(reg2, 5)

#REcuperando los casos influyentes

checkReg2=as.data.frame(influence.measures(reg2)$is.inf)
head(checkReg2)
##   dfb.1_ dfb.EV dfb.IDIO dffit cov.r cook.d   hat
## 1  FALSE  FALSE    FALSE FALSE FALSE  FALSE FALSE
## 2  FALSE  FALSE    FALSE FALSE FALSE  FALSE FALSE
## 3  FALSE  FALSE    FALSE FALSE FALSE  FALSE FALSE
## 4  FALSE  FALSE    FALSE FALSE FALSE  FALSE FALSE
## 5  FALSE  FALSE    FALSE FALSE FALSE  FALSE FALSE
## 6  FALSE  FALSE    FALSE FALSE FALSE  FALSE FALSE
#Checkeando

checkReg2[checkReg2$cook.d | checkReg2$hat,]
##     dfb.1_ dfb.EV dfb.IDIO dffit cov.r cook.d  hat
## 134  FALSE   TRUE    FALSE  TRUE  TRUE   TRUE TRUE