Práctica 4: Series de tiempo

Tendencia

La primer función es la correspondiente a la tendencia, la cuál recide dos parámetros:

serie_tiempo:Objeto de la clase ts.

periodos:Corresponde al orden de las medias móviles.

Tendencia<-function(serie_tiempo,periodos) {
  if(class(serie_tiempo)=="ts"){
    
    mean_number<-ma(serie_tiempo, periodos, centre=TRUE)
    pasos<-na.omit(mean_number)
    mean_number<-as.numeric(mean_number)
    
    serie_t<-as.numeric(serie_tiempo)
    pasos<-c()
    for (i in 1:floor(length(serie_tiempo)/periodos)) {
      
      pasos[i]<-mean(serie_tiempo[(periodos*(i-1)):(periodos*i)] %>% t() %>% as.vector(), 
                     na.rm = T)
    }
    if(pasos[1]<pasos[length(pasos)]){Tendencia <-"La tendencia es creciente"
    } 
    else if(pasos[1]>pasos[length(pasos)]){Tendencia <- "La tendencia es decreciente"
    }
    else{ Tendencia<-"La tendencia es constante"}
    
    
    Contador<-c(1:length(serie_tiempo))
    Contador1<-c(1:length(mean_number))
    
    Grafica<-ggplot()+geom_line(aes(x=Contador, y=mean_number), color="deepskyblue", size=1.5)+labs(x="Tiempo", y="Tendencia")+ ggtitle("Tendencia con Medias Moviles", subtitle = Tendencia)+theme_bw()
    
    return(list(Grafica,mean_number))
    
  }else{
    
   stop(ggplot()+
      annotate(geom = "text", x = 1, y = 1, label = "Error!\n, class(s1) is not ts. ", size = 12,
               colour = "#FF0000")+
      theme(axis.title = element_blank(),
            axis.text = element_blank(), axis.ticks = element_blank(),
            panel.background = element_blank()))
  }
  
}
Tendencia(JohnsonJohnson,7)
## [[1]]

## 
## [[2]]
##  [1]         NA         NA         NA  0.6928571  0.6700000  0.6828571
##  [7]  0.6714286  0.7400000  0.7385714  0.7585714  0.7414286  0.8057143
## [13]  0.8128571  0.8342857  0.8457143  0.9371429  0.9614286  1.0128571
## [19]  1.0557143  1.1528571  1.2000000  1.2371429  1.2571429  1.3800000
## [25]  1.4371429  1.4700000  1.4900000  1.5728571  1.6585714  1.6800000
## [31]  1.7100000  1.8214286  1.9242857  2.0057143  2.0914286  2.2114286
## [37]  2.3142857  2.4171429  2.5714286  2.7771429  2.9828571  3.1500000
## [43]  3.3814286  3.6771429  3.8571429  4.0628571  4.2557143  4.4614286
## [49]  4.5771429  4.7571429  4.9757143  5.3357143  5.4000000  5.5414286
## [55]  5.7342857  6.0942857  6.1328571  6.2871429  6.4542857  6.8142857
## [61]  6.8271429  7.0200000  7.3028571  7.6500000  7.6371429  7.8942857
## [67]  8.2414286  8.7300000  8.8714286  9.2957143  9.8357143 10.5942857
## [73] 10.5042857 11.0442857 11.5328571 12.4071429 12.1371429 12.7285714
## [79] 13.0885714 14.1042857 13.7571429         NA         NA         NA
Tendencia(AirPassengers,10)
## [[1]]

## 
## [[2]]
##   [1]     NA     NA     NA     NA     NA 129.40 129.00 128.15 127.15 128.00
##  [11] 129.00 127.85 126.75 128.50 132.75 138.00 141.45 142.15 142.80 143.70
##  [21] 144.65 148.05 151.40 152.20 152.70 155.15 160.50 167.30 171.90 173.05
##  [31] 173.90 174.35 174.85 176.75 177.95 177.30 177.45 180.70 187.00 194.15
##  [41] 198.55 199.85 200.60 201.45 202.35 205.75 209.25 210.05 210.05 212.85
##  [51] 219.65 226.95 231.05 231.10 230.55 229.20 225.25 223.20 222.70 220.40
##  [61] 218.50 221.35 228.70 236.75 242.10 243.45 245.45 247.85 248.50 250.45
##  [71] 252.35 251.00 250.50 256.85 268.00 279.35 287.05 289.05 291.05 294.15
##  [81] 295.40 298.15 300.40 298.00 297.05 303.45 315.05 327.50 334.80 335.55
##  [91] 336.35 337.70 337.00 338.30 338.90 334.70 332.65 339.00 352.55 367.25
## [101] 375.95 377.50 378.75 379.70 377.40 376.25 372.90 364.10 357.40 360.15
## [111] 372.40 385.25 391.35 391.00 390.45 391.30 390.90 392.75 392.95 387.45
## [121] 382.25 387.80 405.00 422.65 433.80 437.40 440.65 444.35 444.65 444.35
## [131] 443.75 439.40 434.40 441.15 459.05 476.30 486.40 487.85 488.55     NA
## [141]     NA     NA     NA     NA
serie1<-c(as.numeric(fechas[123], "%y"),as.numeric(fechas[123], "%m"))

s1<-ts(series[450,-c(1:7)] %>% t() %>% na.omit(),frequency = 12, start=serie1[1])

Tendencia(s1,4)
## [[1]]

## 
## [[2]]
##   [1]        NA        NA  6003.648  5997.125  5988.085  5766.894  5635.071
##   [8]  5678.440  5787.720  6102.629  6414.677  6499.012  6536.316  6552.108
##  [15]  6458.847  6362.154  6288.346  6058.229  5888.530  5995.523  6149.431
##  [22]  6466.744  6845.390  6926.863  6917.249  6928.119  6858.775  6827.422
##  [29]  6814.379  6569.844  6352.656  6422.114  6553.249  6906.377  7327.935
##  [36]  7409.524  7430.695  7490.656  7406.550  7342.240  7279.531  6941.506
##  [43]  6723.862  6850.651  7029.048  7438.363  7820.557  7838.409  7857.632
##  [50]  7867.130  7732.218  7642.619  7494.204  7140.731  6966.113  7086.835
##  [57]  7288.574  7747.093  8171.967  8251.954  8277.243  8230.669  8110.861
##  [64]  8057.309  7913.243  7575.790  7377.026  7495.002  7769.404  8263.396
##  [71]  8728.094  8824.786  8831.653  8841.836  8758.417  8721.229  8624.994
##  [78]  8301.731  8025.499  8104.225  8392.014  8844.581  9307.561  9370.611
##  [85]  9261.331  9227.003  9141.754  9050.211  8965.534  8669.620  8379.084
##  [92]  8472.229  8619.958  8880.628  9219.911  9152.170  8996.318  8960.388
##  [99]  8763.455  8575.676  8455.639  8038.771  7764.254  7920.449  8116.009
## [106]  8592.951  9120.129  9229.754  9317.750  9368.097  9226.547  9154.571
## [113]  9037.625  8668.362  8479.096  8587.917  8773.292  9304.469  9835.876
## [120]  9957.517 10013.708  9970.004  9671.574  9508.624  9322.671  8856.025
## [127]  8674.655  8747.089  8909.464  9401.739  9877.421 10044.601 10129.618
## [134] 10203.195        NA        NA

Estacionalidad

La función recibe los siguientes parámetros:

s_tiempo:objeto de la clase ts (time series).

modelo: Aquí tendremos dos casos, si se desea aditiva o multiplicativa, en algún otro caso se manda el mensaje de error.

periocidad: Hace referencia a la temporalidad de la serie.

media_movil: Corresponde al orden de las medias móviles.

Estacionalidad <- function(s_tiempo, modelo, periocidad, media_movil){
  if(class(s_tiempo)=="ts"){
    if(modelo=="aditiva"){
      tend_s<-Tendencia(s_tiempo,media_movil)
      s<-as.numeric(s_tiempo)
      detrend<-s-tend_s[[2]]
      matriz<-t(matrix(data = detrend, nrow = 4))
      estac_s<-colMeans(matriz, na.rm=TRUE)
      estac_s<-rep_len(estac_s, length.out = length(s))
      
      Tabla<-data.frame(Tiempo=c(1:length(s)), Serie=s, Tendencia=tend_s[[2]], Estacionalidad=estac_s)
      Grafica2<-ggplot(Tabla)+geom_line(aes(x=Tiempo, y=Estacionalidad),
    color="seagreen1",size=1.5)+geom_point(aes(x=Tiempo, y=Estacionalidad), color="mediumblue")+labs(x="Tiempo", y="Estacionalidad")+ ggtitle("Estacionalidad de Serie de Tiempo")+theme_bw()
      
      return(list(Grafica2, Tabla$Estacionalidad))
    }else if(modelo=="multiplicativa"){
      tend_s<-Tendencia(s_tiempo,media_movil)
      s<-as.numeric(s_tiempo)
      detrend<-s/tend_s[[2]]
      matriz<-t(matrix(data = detrend, nrow = 4))
      estac_s<-colMeans(matriz, na.rm=TRUE)
      estac_s<-rep_len(estac_s, length.out = length(s))
      Tabla<-data.frame(Tiempo=c(1:length(s)), Serie=s, Tendencia=tend_s[[2]], Estacionalidad=estac_s)
      g1<-ggplot(Tabla)+geom_line(aes(x=Tiempo, y=Estacionalidad), color="royalblue", size=1.5)+geom_point(aes(x=Tiempo, y=Estacionalidad), color="purple4")+labs(x="Tiempo", y="Estacionalidad")+ ggtitle( "Estacionalidad de la Serie de Tiempo")+theme_bw()
      
      return(list(g1, Tabla$Estacionalidad))
    }else 
    {stop('El parametro no es correcto')}
    
  }else{
       stop(ggplot()+
      annotate(geom = "text", x = 1, y = 1, label = "Error!\n, class(s1) is not ts. ", size = 12,
               colour = "#FF0000")+
      theme(axis.title = element_blank(),
            axis.text = element_blank(), axis.ticks = element_blank(),
            panel.background = element_blank()))
    }
  
}
Estacionalidad(JohnsonJohnson,"aditiva",4,4)
## [[1]]

## 
## [[2]]
##  [1]  0.2230625  0.2454375  0.3101875 -0.7728750  0.2230625  0.2454375
##  [7]  0.3101875 -0.7728750  0.2230625  0.2454375  0.3101875 -0.7728750
## [13]  0.2230625  0.2454375  0.3101875 -0.7728750  0.2230625  0.2454375
## [19]  0.3101875 -0.7728750  0.2230625  0.2454375  0.3101875 -0.7728750
## [25]  0.2230625  0.2454375  0.3101875 -0.7728750  0.2230625  0.2454375
## [31]  0.3101875 -0.7728750  0.2230625  0.2454375  0.3101875 -0.7728750
## [37]  0.2230625  0.2454375  0.3101875 -0.7728750  0.2230625  0.2454375
## [43]  0.3101875 -0.7728750  0.2230625  0.2454375  0.3101875 -0.7728750
## [49]  0.2230625  0.2454375  0.3101875 -0.7728750  0.2230625  0.2454375
## [55]  0.3101875 -0.7728750  0.2230625  0.2454375  0.3101875 -0.7728750
## [61]  0.2230625  0.2454375  0.3101875 -0.7728750  0.2230625  0.2454375
## [67]  0.3101875 -0.7728750  0.2230625  0.2454375  0.3101875 -0.7728750
## [73]  0.2230625  0.2454375  0.3101875 -0.7728750  0.2230625  0.2454375
## [79]  0.3101875 -0.7728750  0.2230625  0.2454375  0.3101875 -0.7728750
Estacionalidad(AirPassengers,"multiplicativa",12,12)
## [[1]]

## 
## [[2]]
##   [1] 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150
##   [8] 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033
##  [15] 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973
##  [22] 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271
##  [29] 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150
##  [36] 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033
##  [43] 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973
##  [50] 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271
##  [57] 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150
##  [64] 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033
##  [71] 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973
##  [78] 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271
##  [85] 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150
##  [92] 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033
##  [99] 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973
## [106] 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271
## [113] 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150
## [120] 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033
## [127] 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271 0.9822973
## [134] 0.9710033 1.0099150 1.0297271 0.9822973 0.9710033 1.0099150 1.0297271
## [141] 0.9822973 0.9710033 1.0099150 1.0297271
ejemplo3<-c(as.numeric(fechas[123], "%y"),as.numeric(fechas[123], "%m"))

s3<-ts(series[511,-c(1:7)] %>% t() %>% na.omit(),frequency = 12, start=ejemplo3[1])

Estacionalidad(s3,"aditiva",6,6)
## [[1]]

## 
## [[2]]
##   [1]  117.47126   46.77874  -26.97126 -129.69167  117.47126   46.77874
##   [7]  -26.97126 -129.69167  117.47126   46.77874  -26.97126 -129.69167
##  [13]  117.47126   46.77874  -26.97126 -129.69167  117.47126   46.77874
##  [19]  -26.97126 -129.69167  117.47126   46.77874  -26.97126 -129.69167
##  [25]  117.47126   46.77874  -26.97126 -129.69167  117.47126   46.77874
##  [31]  -26.97126 -129.69167  117.47126   46.77874  -26.97126 -129.69167
##  [37]  117.47126   46.77874  -26.97126 -129.69167  117.47126   46.77874
##  [43]  -26.97126 -129.69167  117.47126   46.77874  -26.97126 -129.69167
##  [49]  117.47126   46.77874  -26.97126 -129.69167  117.47126   46.77874
##  [55]  -26.97126 -129.69167  117.47126   46.77874  -26.97126 -129.69167
##  [61]  117.47126   46.77874  -26.97126 -129.69167  117.47126   46.77874
##  [67]  -26.97126 -129.69167  117.47126   46.77874  -26.97126 -129.69167
##  [73]  117.47126   46.77874  -26.97126 -129.69167  117.47126   46.77874
##  [79]  -26.97126 -129.69167  117.47126   46.77874  -26.97126 -129.69167
##  [85]  117.47126   46.77874  -26.97126 -129.69167  117.47126   46.77874
##  [91]  -26.97126 -129.69167  117.47126   46.77874  -26.97126 -129.69167
##  [97]  117.47126   46.77874  -26.97126 -129.69167  117.47126   46.77874
## [103]  -26.97126 -129.69167  117.47126   46.77874  -26.97126 -129.69167
## [109]  117.47126   46.77874  -26.97126 -129.69167  117.47126   46.77874
## [115]  -26.97126 -129.69167  117.47126   46.77874  -26.97126 -129.69167
## [121]  117.47126   46.77874  -26.97126

Error aleatorio

La función recibe los siguientes parámetros:

s_tiempo:objeto de la clase ts (time series).

modelo: Aquí tendremos dos casos, si se desea aditiva o multiplicativa, en algún otro caso se manda el mensaje de error.

periocidad: Hace referencia a la temporalidad de la serie.

media_movil: Corresponde al orden de las medias móviles.

Error_aleatorio<-function(serie_tiempo, modelo, periocidad, media_movil){
  if(class(serie_tiempo)=="ts"){
    if(modelo=="aditiva"){
      tend_s<-Tendencia(serie_tiempo,media_movil)
      est_s<-Estacionalidad(serie_tiempo, modelo, periocidad, media_movil)
      s<-as.numeric(serie_tiempo)
      error_a<-s-tend_s[[2]]-est_s[[2]]
      Tabla<-data.frame(Tiempo=c(1:length(s)), Error=error_a)
      Grafica3<-ggplot(Tabla)+geom_line(aes(x=Tiempo, y=Error), color="cyan4", size=1.1)+geom_point(aes(x=Tiempo, y=Error), color="darkgreen")+ labs(x="Tiempo", y="Error Aleatorio")+ ggtitle( "Error Aleatorio de la Serie de Tiempo")+theme_bw()
      
      return(list(Grafica3,error_a))
      
    }else if(modelo=="multiplicativa"){
      tend_s<-Tendencia(serie_tiempo,media_movil)
      estac_s <-Estacionalidad(serie_tiempo, modelo, periocidad, media_movil)
      s<-as.numeric(serie_tiempo)
      error_a<-s/(tend_s[[2]]*estac_s[[2]])
      Tabla<-data.frame(Tiempo=c(1:length(s)), Error=as.numeric(error_a))
      Grafica3<-ggplot(Tabla)+geom_line(aes(x=Tiempo, y=Error), color="deeppink1", size=1)+geom_point(aes(x=Tiempo, y=Error), color="darkviolet")+ labs(x="Tiempo", y="Error Aleatorio", title = "Error Aleatorio de la Serie de Tiempo")+theme_bw()
        
      return(list(Grafica3,error_a))
    }else(stop('El parametro no es correcto'))
    
  }else{
    stop(ggplot()+
      annotate(geom = "text", x = 1, y = 1, label = "Error!\n, class(s1) is not ts. ", size = 12,
               colour = "#FF0000")+
      theme(axis.title = element_blank(),
            axis.text = element_blank(), axis.ticks = element_blank(),
            panel.background = element_blank()))
    }
}
Ejercicio1<-c(as.numeric(fechas[123], "%y"),as.numeric(fechas[123], "%m"))

s1<-ts(series[450,-c(1:7)] %>% t() %>% na.omit(),frequency = 12, start=Ejercicio1[1])

Error_aleatorio(s1,"multiplicativa",4,4)
## [[1]]

## 
## [[2]]
##   [1]        NA        NA 1.0187994 1.0479890 0.9682871 1.0503179 0.9890105
##   [8] 0.8802966 1.0293806 1.0222686 0.9744146 1.0668312 1.0119055 0.9533744
##  [15] 1.0119038 1.0625514 0.9606204 1.0001055 1.0432991 0.8732887 0.9958093
##  [22] 1.0540271 0.9634379 1.0731705 1.0205676 0.9415654 0.9932986 1.0679632
##  [29] 0.9752452 1.0182072 1.0300935 0.8583793 1.0058508 1.0553446 0.9518022
##  [36] 1.0845068 1.0177527 0.9293770 1.0083834 1.0911492 0.9509503 1.0220525
##  [43] 1.0176442 0.8504560 1.0305020 1.0445970 0.9677694 1.0852972 0.9872390
##  [50] 0.9403943 1.0465396 1.0499111 0.9533060 1.0231000 1.0074378 0.8734617
##  [57] 1.0258473 1.0225632 0.9773439 1.0937705 0.9886035 0.9533177 1.0185353
##  [64] 1.0346713 0.9959098 1.0199563 0.9825405 0.8768983 1.0243278 1.0378106
##  [71] 0.9802114 1.0588532 1.0233221 0.9341555 1.0191363 1.0355820 1.0054016
##  [78] 1.0036955 1.0088560 0.8871690 0.9784138 1.0638646 0.9970893 1.0398310
##  [85] 1.0235468 0.9364379 1.0054313 1.0551495 1.0026109 0.9701183 1.0449818
##  [92] 0.8870162 0.9970975 1.0736068 0.9535859 1.0577762 1.0282440 0.9318206
##  [99] 0.9988409 1.0983012 0.9393839 1.0173074 1.0279697 0.8488578 1.0215737
## [106] 1.0540399 0.9471513 1.0889406 1.0029328 0.9465939 1.0317796 1.0407952
## [113] 0.9644857 1.0300523 1.0070863 0.8686435 1.0431805 1.0048136 0.9735322
## [120] 1.0883675 1.0178639 0.9295401 1.0442104 1.0416339 0.9343188 1.0687790
## [127] 0.9728718 0.8852549 1.0432258 1.0053099 0.9850120 1.0472363 1.0322935
## [134] 0.9414855        NA        NA
Error_aleatorio(JohnsonJohnson, "aditiva", 12,12)
## [[1]]

## 
## [[2]]
##  [1]           NA           NA           NA           NA           NA
##  [6]           NA  0.001435185  0.504722222 -0.113217593 -0.211250000
## [11] -0.070648148  0.468888889 -0.101967593 -0.292083333 -0.111898148
## [16]  0.503055556 -0.165717593 -0.262916667 -0.050648148  0.552638889
## [21] -0.121967593 -0.178750000 -0.069814815  0.565555556 -0.248217593
## [26] -0.316666667  0.129351852  0.667222222 -0.206550926 -0.353333333
## [31] -0.175231481  0.658888889 -0.524467593 -0.176250000  0.029768519
## [36]  0.696388889 -0.321967593 -0.330000000 -0.201481481  0.053888889
## [41] -0.356967593 -0.012500000  0.087268519  0.661388889 -0.319467593
## [46]  0.085000000 -0.103981481  0.293888889  0.108032407 -0.031250000
## [51] -0.186481481 -0.118611111  0.081782407  0.040000000  0.616018519
## [56]  0.042638889 -0.240717593 -0.196250000  0.199768519 -0.212361111
## [61] -0.105717593  0.441250000  0.338518519 -0.793611111 -0.218217593
## [66]  0.595000000 -0.343981481 -1.284861111  0.280532407  0.576250000
## [71] -0.505231481 -0.861111111  1.071782407  0.718750000  0.417268519
## [76] -2.398611111  1.503032407 -0.095000000           NA           NA
## [81]           NA           NA           NA           NA
Error_aleatorio(AirPassengers, "multiplicativa", 12,12)
## [[1]]

## 
## [[2]]
##   [1]        NA        NA        NA        NA        NA        NA 1.1558093
##   [8] 1.1294884 1.0820003 0.9531069 0.7982866 0.8831866 0.8919810 0.9750484
##  [15] 1.0348292 0.9610460 0.9260356 1.1059426 1.1945429 1.1531475 1.1039001
##  [22] 0.9228865 0.7448828 0.8788043 0.9394632 0.9682699 1.0890986 0.9644744
##  [29] 1.0505985 1.0841728 1.1506353 1.1133274 1.0675811 0.9434746 0.8119820
##  [36] 0.8947702 0.9506169 0.9955262 1.0109157 0.9188833 0.9623658 1.1464344
##  [43] 1.1499698 1.1765393 1.0522145 0.9537152 0.8094005 0.8829499 0.9244738
##  [50] 0.9238127 1.0577882 1.0237718 1.0403584 1.1136954 1.1600953 1.1722529
##  [57] 1.0725149 0.9675741 0.7940575 0.8654602 0.9108616 0.8401266 1.0019068
##  [64] 0.9424158 1.0110009 1.1435699 1.2433891 1.1663525 1.0667605 0.9424118
##  [71] 0.7929271 0.8649062 0.9409087 0.8998425 0.9751173 0.9492236 0.9869511
##  [78] 1.1505485 1.2613347 1.1646860 1.0831127 0.9495761 0.7796452 0.8838339
##  [85] 0.9327647 0.9073055 0.9851324 0.9447211 0.9976300 1.1775856 1.2409518
##  [92] 1.1852579 1.0805463 0.9336269 0.7879782 0.8636457 0.9208237 0.8781549
##  [99] 0.9856831 0.9351881 0.9914890 1.1836642 1.2462428 1.2217350 1.1050984
## [106] 0.9595767 0.8102096 0.8733357 0.9223915 0.8665834 0.9445218 0.8893516
## [113] 0.9706693 1.1759561 1.2732768 1.2782481 1.0641159 0.9471922 0.7776794
## [120] 0.8210001 0.9104345 0.8650341 0.9760584 0.9237019 1.0168113 1.1424094
## [127] 1.2598315 1.2476007 1.0768451 0.9505526 0.8039911 0.8728057 0.9302741
## [134] 0.8727744 0.8918293 0.9538880 1.0164067 1.1598488        NA        NA
## [141]        NA        NA        NA        NA

Descomposición de la serie

La función recibe los siguientes parámetros:

s_tiempo:objeto de la clase ts (time series).

modelo: Aquí tendremos dos casos, si se desea aditiva o multiplicativa, en algún otro caso se manda el mensaje de error.

periocidad: Hace referencia a la temporalidad de la serie.

media_movil: Corresponde al orden de las medias móviles.

Descomponer_serie <- function(serie_tiempo, modelo, periocidad, media_movil){
  if(class(serie_tiempo)=="ts"){
    if(modelo=="aditiva" | modelo=="multiplicativa"){
      tend_s<-Tendencia(serie_tiempo,media_movil)
      estac_s<-Estacionalidad(serie_tiempo, modelo, periocidad, media_movil)
      error <- Error_aleatorio(serie_tiempo, modelo, periocidad, media_movil)
      Tabla<-data.frame(Tiempo=c(1:length(serie_tiempo)), Serie=as.numeric(serie_tiempo), Tendencia=tend_s[[2]], Estacionalidad=estac_s[[2]], Comp_Aleatorio=error[[2]])
      g1<-ggplot(Tabla)+geom_line(aes(x=Tiempo, y=Serie), color="deepskyblue", size=1.2)+geom_point(aes(x=Tiempo, y=Serie), color="darkorange2")+labs(x="Tiempo", y="Observaciones", title = "Serie de Tiempo")+ theme_bw()
      
      plots<-grid.arrange(g1, tend_s[[1]], estac_s[[1]], error[[1]], ncol=2)
      return(list(Tabla,plots))
    } else{
      stop('El parámetro no es correcto')
      }
  }else{
    stop(ggplot()+
      annotate(geom = "text", x = 1, y = 1, label = "Error!\n, class(s1) is not ts. ", size = 12,
               colour = "#FF0000")+
      theme(axis.title = element_blank(),
            axis.text = element_blank(), axis.ticks = element_blank(),
            panel.background = element_blank()))
    }
}
Descomponer_serie(JohnsonJohnson, "aditiva",6 ,6)

## [[1]]
##    Tiempo Serie  Tendencia Estacionalidad Comp_Aleatorio
## 1       1  0.71         NA      0.2267500             NA
## 2       2  0.63         NA      0.3166667             NA
## 3       3  0.85         NA      0.3048684             NA
## 4       4  0.44  0.6725000     -0.8560833    0.623583333
## 5       5  0.61  0.6833333      0.2267500   -0.300083333
## 6       6  0.69  0.6658333      0.3166667   -0.292500000
## 7       7  0.92  0.6825000      0.3048684   -0.067368421
## 8       8  0.55  0.7358333     -0.8560833    0.670250000
## 9       9  0.72  0.7541667      0.2267500   -0.260916667
## 10     10  0.77  0.7391667      0.3166667   -0.285833333
## 11     11  0.92  0.7525000      0.3048684   -0.137368421
## 12     12  0.60  0.7966667     -0.8560833    0.659416667
## 13     13  0.83  0.8200000      0.2267500   -0.216750000
## 14     14  0.80  0.8200000      0.3166667   -0.336666667
## 15     15  1.00  0.8533333      0.3048684   -0.158201754
## 16     16  0.77  0.9208333     -0.8560833    0.705250000
## 17     17  0.92  0.9716667      0.2267500   -0.278416667
## 18     18  1.00  1.0016667      0.3166667   -0.318333333
## 19     19  1.24  1.0591667      0.3048684   -0.124035088
## 20     20  1.00  1.1475000     -0.8560833    0.708583333
## 21     21  1.16  1.2125000      0.2267500   -0.279250000
## 22     22  1.30  1.2350000      0.3166667   -0.251666667
## 23     23  1.45  1.2683333      0.3048684   -0.123201754
## 24     24  1.25  1.3583333     -0.8560833    0.747750000
## 25     25  1.26  1.4383333      0.2267500   -0.405083333
## 26     26  1.38  1.4666667      0.3166667   -0.403333333
## 27     27  1.86  1.5016667      0.3048684    0.053464912
## 28     28  1.56  1.5775000     -0.8560833    0.838583333
## 29     29  1.53  1.6650000      0.2267500   -0.361750000
## 30     30  1.59  1.6775000      0.3166667   -0.404166667
## 31     31  1.83  1.6925000      0.3048684   -0.167368421
## 32     32  1.86  1.8025000     -0.8560833    0.913583333
## 33     33  1.53  1.9250000      0.2267500   -0.621750000
## 34     34  2.07  2.0075000      0.3166667   -0.254166667
## 35     35  2.34  2.0825000      0.3048684   -0.047368421
## 36     36  2.25  2.2275000     -0.8560833    0.878583333
## 37     37  2.16  2.3400000      0.2267500   -0.406750000
## 38     38  2.43  2.3925000      0.3166667   -0.279166667
## 39     39  2.70  2.5275000      0.3048684   -0.132368421
## 40     40  2.25  2.7525000     -0.8560833    0.353583333
## 41     41  2.79  2.9775000      0.2267500   -0.414250000
## 42     42  3.42  3.1500000      0.3166667   -0.046666667
## 43     43  3.69  3.3975000      0.3048684   -0.012368421
## 44     44  3.60  3.6975000     -0.8560833    0.758583333
## 45     45  3.60  3.8775000      0.2267500   -0.504250000
## 46     46  4.32  4.0275000      0.3166667   -0.024166667
## 47     47  4.32  4.2450000      0.3048684   -0.229868421
## 48     48  4.05  4.4850000     -0.8560833    0.421083333
## 49     49  4.86  4.6125000      0.2267500    0.020750000
## 50     50  5.04  4.7250000      0.3166667   -0.001666667
## 51     51  5.04  4.9800000      0.3048684   -0.244868421
## 52     52  4.41  5.2725000     -0.8560833   -0.006416667
## 53     53  5.58  5.4375000      0.2267500   -0.084250000
## 54     54  5.85  5.5425000      0.3166667   -0.009166667
## 55     55  6.57  5.7900000      0.3048684    0.475131579
## 56     56  5.31  6.0675000     -0.8560833    0.098583333
## 57     57  6.03  6.1800000      0.2267500   -0.376750000
## 58     58  6.39  6.2100000      0.3166667   -0.136666667
## 59     59  6.93  6.4425000      0.3048684    0.182631579
## 60     60  5.85  6.7950000     -0.8560833   -0.088916667
## 61     61  6.93  6.9225000      0.2267500   -0.219250000
## 62     62  7.74  6.9675000      0.3166667    0.455833333
## 63     63  7.83  7.2900000      0.3048684    0.235131579
## 64     64  6.12  7.6575000     -0.8560833   -0.681416667
## 65     65  7.74  7.6950000      0.2267500   -0.181750000
## 66     66  8.91  7.7625000      0.3166667    0.830833333
## 67     67  8.28  8.2500000      0.3048684   -0.274868421
## 68     68  6.84  8.7450000     -0.8560833   -1.048916667
## 69     69  9.54  8.8800000      0.2267500    0.433250000
## 70     70 10.26  9.1650000      0.3166667    0.778333333
## 71     71  9.54  9.9000000      0.3048684   -0.664868421
## 72     72  8.73 10.5525000     -0.8560833   -0.966416667
## 73     73 11.88 10.6575000      0.2267500    0.995750000
## 74     74 12.06 10.9200000      0.3166667    0.823333333
## 75     75 12.15 11.6475000      0.3048684    0.197631579
## 76     76  8.91 12.2475000     -0.8560833   -2.481416667
## 77     77 14.04 12.3225000      0.2267500    1.490750000
## 78     78 12.96 12.4875000      0.3166667    0.155833333
## 79     79 14.85 13.3050000      0.3048684    1.240131579
## 80     80  9.99 13.9500000     -0.8560833   -3.103916667
## 81     81 16.20 14.0025000      0.2267500    1.970750000
## 82     82 14.67         NA      0.3166667             NA
## 83     83 16.02         NA      0.3048684             NA
## 84     84 11.61         NA     -0.8560833             NA
## 
## [[2]]
## TableGrob (2 x 2) "arrange": 4 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
## 3 3 (2-2,1-1) arrange gtable[layout]
## 4 4 (2-2,2-2) arrange gtable[layout]
ejercicio2<-c(as.numeric(fechas[123], "%y"),as.numeric(fechas[123], "%m"))

s1<-ts(series[500,-c(1:7)] %>% t() %>% na.omit(),frequency = 12, start=ejercicio2[1])

Descomponer_serie(s1,"multiplicativa",10,10)

## [[1]]
##     Tiempo Serie Tendencia Estacionalidad Comp_Aleatorio
## 1        1    54        NA      1.0216519             NA
## 2        2   151        NA      0.9971538             NA
## 3        3   346        NA      0.9631256             NA
## 4        4   407        NA      1.0343934             NA
## 5        5   540        NA      1.0216519             NA
## 6        6   811    662.85      0.9971538      1.2269968
## 7        7   930    768.80      0.9631256      1.2559914
## 8        8   860    881.25      1.0343934      0.9434385
## 9        9  1088    983.30      1.0216519      1.0830286
## 10      10   944   1084.70      0.9971538      0.8727708
## 11      11  1049   1167.85      0.9631256      0.9326217
## 12      12  1275   1222.35      1.0343934      1.0083908
## 13      13  1471   1278.05      1.0216519      1.1265796
## 14      14  1323   1328.25      0.9971538      0.9988905
## 15      15  1652   1366.65      0.9631256      1.2550754
## 16      16  1362   1398.40      1.0343934      0.9415859
## 17      17  1469   1416.35      1.0216519      1.0151922
## 18      18  1435   1398.95      0.9971538      1.0286972
## 19      19  1517   1381.05      0.9631256      1.1404947
## 20      20  1283   1364.25      1.0343934      0.9091739
## 21      21  1345   1348.15      1.0216519      0.9765200
## 22      22  1338   1330.30      0.9971538      1.0086590
## 23      23  1060   1304.15      0.9631256      0.8439086
## 24      24  1376   1271.10      1.0343934      1.0465331
## 25      25  1263   1230.65      1.0216519      1.0045368
## 26      26  1429   1199.95      0.9971538      1.1942821
## 27      27  1045   1168.40      0.9631256      0.9286281
## 28      28  1336   1149.40      1.0343934      1.1236978
## 29      29   955   1114.35      1.0216519      0.8388394
## 30      30  1036   1065.30      0.9971538      0.9752718
## 31      31   978   1018.15      0.9631256      0.9973422
## 32      32  1074    987.20      1.0343934      1.0517521
## 33      33   944    965.95      1.0216519      0.9565648
## 34      34   791    942.70      0.9971538      0.8414742
## 35      35   867    924.90      0.9631256      0.9732881
## 36      36   882    907.65      1.0343934      0.9394300
## 37      37   973    886.10      1.0216519      1.0747988
## 38      38   983    856.75      0.9971538      1.1506341
## 39      39   843    848.65      0.9631256      1.0313737
## 40      40   792    841.65      1.0343934      0.9097203
## 41      41   877    815.95      1.0216519      1.0520421
## 42      42   744    788.15      0.9971538      0.9466772
## 43      43   687    762.50      0.9631256      0.9354789
## 44      44   886    748.05      1.0343934      1.1450313
## 45      45   632    738.90      1.0216519      0.8371986
## 46      46   603    723.10      0.9971538      0.8362898
## 47      47   696    715.50      0.9631256      1.0099891
## 48      48   747    716.60      1.0343934      1.0077622
## 49      49   790    706.35      1.0216519      1.0947229
## 50      50   662    700.50      0.9971538      0.9477367
## 51      51   691    709.65      0.9631256      1.0109995
## 52      52   778    713.20      1.0343934      1.0545872
## 53      53   675    704.70      1.0216519      0.9375546
## 54      54   693    683.85      0.9971538      1.0162726
## 55      55   708    675.25      0.9631256      1.0886437
## 56      56   710    686.70      1.0343934      0.9995524
## 57      57   660    697.20      1.0216519      0.9265815
## 58      58   613    702.20      0.9971538      0.8754624
## 59      59   507    708.45      0.9631256      0.7430463
## 60      60   773    709.70      1.0343934      1.0529771
## 61      61   809    704.10      1.0216519      1.1246341
## 62      62   870    705.20      0.9971538      1.2372139
## 63      63   683    710.25      0.9631256      0.9984505
## 64      64   810    720.85      1.0343934      1.0863115
## 65      65   616    719.20      1.0216519      0.8383553
## 66      66   690    698.75      0.9971538      0.9902962
## 67      67   702    680.70      0.9631256      1.0707756
## 68      68   672    678.10      1.0343934      0.9580535
## 69      69   660    678.80      1.0216519      0.9516980
## 70      70   587    675.95      0.9971538      0.8708861
## 71      71   586    682.85      0.9631256      0.8910240
## 72      72   732    682.65      1.0343934      1.0366383
## 73      73   769    676.95      1.0216519      1.1119028
## 74      74   738    678.60      0.9971538      1.0906373
## 75      75   631    691.65      0.9631256      0.9472401
## 76      76   813    712.65      1.0343934      1.1028806
## 77      77   575    720.40      1.0216519      0.7812521
## 78      78   685    711.60      0.9971538      0.9653671
## 79      79   680    708.35      0.9631256      0.9967313
## 80      80   828    724.80      1.0343934      1.1044000
## 81      81   765    740.50      1.0216519      1.0111916
## 82      82   708    756.90      0.9971538      0.9380643
## 83      83   617    779.80      0.9631256      0.8215217
## 84      84   825    799.10      1.0343934      0.9980839
## 85      85   873    808.35      1.0216519      1.0570898
## 86      86   885    819.05      0.9971538      1.0836043
## 87      87   831    835.95      0.9631256      1.0321381
## 88      88   887    862.70      1.0343934      0.9939810
## 89      89   864    882.90      1.0216519      0.9578539
## 90      90   829    879.40      0.9971538      0.9453789
## 91      91   978    877.00      0.9631256      1.1578608
## 92      92   833    892.75      1.0343934      0.9020475
## 93      93  1027    917.20      1.0216519      1.0959821
## 94      94   819    935.45      0.9971538      0.8780135
## 95      95   809    953.25      0.9631256      0.8811682
## 96      96   901    968.30      1.0343934      0.8995579
## 97      97  1130    991.80      1.0216519      1.1151965
## 98      98  1077   1017.25      0.9971538      1.0617588
## 99      99  1039   1035.90      0.9631256      1.0413934
## 100    100  1010   1064.80      1.0343934      0.9169963
## 101    101  1098   1094.30      1.0216519      0.9821165
## 102    102  1183   1102.75      0.9971538      1.0758347
## 103    103  1186   1109.95      0.9631256      1.1094261
## 104    104  1033   1137.80      1.0343934      0.8777051
## 105    105  1173   1169.30      1.0216519      0.9819042
## 106    106  1127   1198.75      0.9971538      0.9428295
## 107    107  1073   1230.50      0.9631256      0.9053890
## 108    108  1278   1248.35      1.0343934      0.9897118
## 109    109  1395   1280.10      1.0216519      1.0666633
## 110    110  1284        NA      0.9971538             NA
## 111    111  1413        NA      0.9631256             NA
## 112    112  1503        NA      1.0343934             NA
## 113    113  1223        NA      1.0216519             NA
## 114    114  1631        NA      0.9971538             NA
## 
## [[2]]
## TableGrob (2 x 2) "arrange": 4 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
## 3 3 (2-2,1-1) arrange gtable[layout]
## 4 4 (2-2,2-2) arrange gtable[layout]
Descomponer_serie(AirPassengers, "aditiva",6 ,6)

## [[1]]
##     Tiempo Serie Tendencia Estacionalidad Comp_Aleatorio
## 1        1   112        NA      -5.788095             NA
## 2        2   118        NA      -9.424020             NA
## 3        3   132        NA       6.009804             NA
## 4        4   129  127.5000      11.700000    -10.2000000
## 5        5   121  133.0000      -5.788095     -6.2119048
## 6        6   135  135.8333      -9.424020      8.5906863
## 7        7   148  135.3333       6.009804      6.6568627
## 8        8   148  133.0833      11.700000      3.2166667
## 9        9   136  130.2500      -5.788095     11.5380952
## 10      10   119  126.0833      -9.424020      2.3406863
## 11      11   104  121.5000       6.009804    -23.5098039
## 12      12   118  120.0833      11.700000    -13.7833333
## 13      13   115  121.8333      -5.788095     -1.0452381
## 14      14   126  124.9167      -9.424020     10.5073529
## 15      15   141  129.2500       6.009804      5.7401961
## 16      16   135  136.4167      11.700000    -13.1166667
## 17      17   125  144.6667      -5.788095    -13.8785714
## 18      18   149  149.7500      -9.424020      8.6740196
## 19      19   170  151.0000       6.009804     12.9901961
## 20      20   170  149.9167      11.700000      8.3833333
## 21      21   158  148.2500      -5.788095     15.5380952
## 22      22   133  145.4167      -9.424020     -2.9926471
## 23      23   114  141.6667       6.009804    -33.6764706
## 24      24   140  141.6667      11.700000    -13.3666667
## 25      25   145  145.8333      -5.788095      4.9547619
## 26      26   150  153.1667      -9.424020      6.2573529
## 27      27   178  161.1667       6.009804     10.8235294
## 28      28   163  168.8333      11.700000    -17.5333333
## 29      29   172  177.4167      -5.788095      0.3714286
## 30      30   178  182.0000      -9.424020      5.4240196
## 31      31   199  182.4167       6.009804     10.5735294
## 32      32   199  180.1667      11.700000      7.1333333
## 33      33   184  177.0000      -5.788095     12.7880952
## 34      34   162  173.6667      -9.424020     -2.2426471
## 35      35   146  169.7500       6.009804    -29.7598039
## 36      36   166  168.9167      11.700000    -14.6166667
## 37      37   171  171.2500      -5.788095      5.5380952
## 38      38   180  175.9167      -9.424020     13.5073529
## 39      39   193  183.3333       6.009804      3.6568627
## 40      40   181  192.5833      11.700000    -23.2833333
## 41      41   183  202.6667      -5.788095    -13.8785714
## 42      42   218  209.1667      -9.424020     18.2573529
## 43      43   230  211.3333       6.009804     12.6568627
## 44      44   242  211.2500      11.700000     19.0500000
## 45      45   209  208.3333      -5.788095      6.4547619
## 46      46   191  203.5000      -9.424020     -3.0759804
## 47      47   172  196.8333       6.009804    -30.8431373
## 48      48   194  195.2500      11.700000    -12.9500000
## 49      49   196  201.1667      -5.788095      0.6214286
## 50      50   196  209.5833      -9.424020     -4.1593137
## 51      51   236  218.4167       6.009804     11.5735294
## 52      52   235  228.1667      11.700000     -4.8666667
## 53      53   229  240.1667      -5.788095     -5.3785714
## 54      54   243  246.5833      -9.424020      5.8406863
## 55      55   264  244.6667       6.009804     13.3235294
## 56      56   272  238.5833      11.700000     21.7166667
## 57      57   237  231.0000      -5.788095     11.7880952
## 58      58   211  222.5000      -9.424020     -2.0759804
## 59      59   180  210.5000       6.009804    -36.5098039
## 60      60   201  203.3333      11.700000    -14.0333333
## 61      61   204  204.5000      -5.788095      5.2880952
## 62      62   188  210.3333      -9.424020    -12.9093137
## 63      63   235  220.0833       6.009804      8.9068627
## 64      64   227  233.5000      11.700000    -18.2000000
## 65      65   234  250.4167      -5.788095    -10.6285714
## 66      66   264  261.1667      -9.424020     12.2573529
## 67      67   302  263.3333       6.009804     32.6568627
## 68      68   293  260.9167      11.700000     20.3833333
## 69      69   259  255.4167      -5.788095      9.3714286
## 70      70   229  247.5000      -9.424020     -9.0759804
## 71      71   203  237.5000       6.009804    -40.5098039
## 72      72   229  233.1667      11.700000    -15.8666667
## 73      73   242  237.1667      -5.788095     10.6214286
## 74      74   233  246.0833      -9.424020     -3.6593137
## 75      75   267  258.8333       6.009804      2.1568627
## 76      76   269  276.1667      11.700000    -18.8666667
## 77      77   270  295.8333      -5.788095    -20.0452381
## 78      78   315  309.0833      -9.424020     15.3406863
## 79      79   364  313.2500       6.009804     44.7401961
## 80      80   347  310.9167      11.700000     24.3833333
## 81      81   312  305.0833      -5.788095     12.7047619
## 82      82   274  295.3333      -9.424020    -11.9093137
## 83      83   237  282.8333       6.009804    -51.8431373
## 84      84   278  277.4167      11.700000    -11.1166667
## 85      85   284  281.0833      -5.788095      8.7047619
## 86      86   277  291.0833      -9.424020     -4.6593137
## 87      87   317  305.8333       6.009804      5.1568627
## 88      88   313  324.5833      11.700000    -23.2833333
## 89      89   318  346.0000      -5.788095    -22.2119048
## 90      90   374  359.8333      -9.424020     23.5906863
## 91      91   413  362.4167       6.009804     44.5735294
## 92      92   405  357.9167      11.700000     35.3833333
## 93      93   355  348.3333      -5.788095     12.4547619
## 94      94   306  334.5000      -9.424020    -19.0759804
## 95      95   271  317.6667       6.009804    -52.6764706
## 96      96   306  309.0833      11.700000    -14.7833333
## 97      97   315  312.6667      -5.788095      8.1214286
## 98      98   301  323.1667      -9.424020    -12.7426471
## 99      99   356  339.8333       6.009804     10.1568627
## 100    100   348  362.0000      11.700000    -25.7000000
## 101    101   355  388.3333      -5.788095    -27.5452381
## 102    102   422  406.1667      -9.424020     25.2573529
## 103    103   465  410.0833       6.009804     48.9068627
## 104    104   467  405.8333      11.700000     49.4666667
## 105    105   404  394.5000      -5.788095     15.2880952
## 106    106   347  376.9167      -9.424020    -20.4926471
## 107    107   305  354.0833       6.009804    -55.0931373
## 108    108   336  338.1667      11.700000    -13.8666667
## 109    109   340  334.7500      -5.788095     11.0380952
## 110    110   318  339.6667      -9.424020    -12.2426471
## 111    111   362  352.7500       6.009804      3.2401961
## 112    112   348  373.5833      11.700000    -37.2833333
## 113    113   363  401.7500      -5.788095    -32.9619048
## 114    114   435  420.8333      -9.424020     23.5906863
## 115    115   491  425.2500       6.009804     59.7401961
## 116    116   505  421.7500      11.700000     71.5500000
## 117    117   404  409.1667      -5.788095      0.6214286
## 118    118   359  390.0833      -9.424020    -21.6593137
## 119    119   310  365.5833       6.009804    -61.5931373
## 120    120   337  352.1667      11.700000    -26.8666667
## 121    121   360  355.4167      -5.788095     10.3714286
## 122    122   342  367.6667      -9.424020    -16.2426471
## 123    123   406  388.0833       6.009804     11.9068627
## 124    124   396  415.0000      11.700000    -30.7000000
## 125    125   420  448.7500      -5.788095    -22.9619048
## 126    126   472  471.5833      -9.424020      9.8406863
## 127    127   548  477.2500       6.009804     64.7401961
## 128    128   559  473.3333      11.700000     73.9666667
## 129    129   463  462.9167      -5.788095      5.8714286
## 130    130   407  446.4167      -9.424020    -29.9926471
## 131    131   362  421.5000       6.009804    -65.5098039
## 132    132   405  403.8333      11.700000    -10.5333333
## 133    133   417  404.6667      -5.788095     18.1214286
## 134    134   391  418.3333      -9.424020    -17.9093137
## 135    135   419  438.3333       6.009804    -25.3431373
## 136    136   461  466.2500      11.700000    -16.9500000
## 137    137   472  501.2500      -5.788095    -23.4619048
## 138    138   535  526.5833      -9.424020     17.8406863
## 139    139   622  534.0000       6.009804     81.9901961
## 140    140   606  527.1667      11.700000     67.1333333
## 141    141   508  511.7500      -5.788095      2.0380952
## 142    142   461        NA      -9.424020             NA
## 143    143   390        NA       6.009804             NA
## 144    144   432        NA      11.700000             NA
## 
## [[2]]
## TableGrob (2 x 2) "arrange": 4 grobs
##   z     cells    name           grob
## 1 1 (1-1,1-1) arrange gtable[layout]
## 2 2 (1-1,2-2) arrange gtable[layout]
## 3 3 (2-2,1-1) arrange gtable[layout]
## 4 4 (2-2,2-2) arrange gtable[layout]