library(tidyverse)
library(scales)
options(scipen = 999)
Make sure to include the unit of the values whenever appropriate.
Hint: The variables are available in the CPS85 data set from the mosaicData package.
data(CPS85, package = "mosaicData")
wages_lm <- lm(wage ~ educ + exper + sex,
data = CPS85)
#View summary of model 1
summary(wages_lm)
##
## Call:
## lm(formula = wage ~ educ + exper + sex, data = CPS85)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.571 -2.746 -0.653 1.893 37.724
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.50451 1.20985 -5.376 0.0000001141795 ***
## educ 0.94051 0.07886 11.926 < 0.0000000000000002 ***
## exper 0.11330 0.01671 6.781 0.0000000000319 ***
## sexM 2.33763 0.38806 6.024 0.0000000031877 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.454 on 530 degrees of freedom
## Multiple R-squared: 0.2532, Adjusted R-squared: 0.2489
## F-statistic: 59.88 on 3 and 530 DF, p-value: < 0.00000000000000022
There is statical significance because p is less than 5 percent
Hint: Discuss both its sign and magnitude.
The coefficient of education is every year the wage goes up by 94 cents
Hint: Discuss all three aspects of the relevant predictor: 1) statistical significance, 2) sign, and 3) magnitude.
There appears to be gender discrimination in favor of men because they are over 2.0
A woman that have 15 years of education and 5 years of experience have a predicted wage 8.15.
Hint: Provide a technical interpretation.
The technical interpretation of the intercept when it is at zero, that displays the value of wage which is -6.504 dollars
Hint: Discuss in terms of both residual standard error and reported adjusted R squared.
data(CPS85, package = "mosaicData")
wages_lm <- lm(wage ~ educ + exper + sex + union,
data = CPS85)
#View summary of model 1
summary(wages_lm)
##
## Call:
## lm(formula = wage ~ educ + exper + sex + union, data = CPS85)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.496 -2.708 -0.712 1.909 37.784
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -6.48023 1.20159 -5.393 0.00000010459 ***
## educ 0.93495 0.07835 11.934 < 0.0000000000000002 ***
## exper 0.10692 0.01674 6.387 0.00000000037 ***
## sexM 2.14765 0.39097 5.493 0.00000006145 ***
## unionUnion 1.47111 0.50932 2.888 0.00403 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.423 on 529 degrees of freedom
## Multiple R-squared: 0.2648, Adjusted R-squared: 0.2592
## F-statistic: 47.62 on 4 and 529 DF, p-value: < 0.00000000000000022
The second residual model is a better model because the residual standard error is lower than the first.
Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.