Let’s load the dataset which includes some statistics about temperature and humidity on certain dates.
MyData <- read.csv(file="temperatures.csv", header=TRUE, sep=",")
Scatterplot can be used to display the relationship between these 2 variables.
plot(MyData$humid ~ MyData$temp, main = "Temp vs Humidity", xlab = "Temperature", ylab = "Humidity")
library(statsr)
## Loading required package: BayesFactor
## Loading required package: coda
## Warning: package 'coda' was built under R version 3.5.2
## Loading required package: Matrix
## ************
## Welcome to BayesFactor 0.9.12-4.2. If you have questions, please contact Richard Morey (richarddmorey@gmail.com).
##
## Type BFManual() to open the manual.
## ************
plot_ss(x = humid, temp, MyData)
## Click two points to make a line.
## Call:
## lm(formula = y ~ x, data = pts)
##
## Coefficients:
## (Intercept) x
## 60.06111 0.04256
##
## Sum of Squares: 2532314
m1 <- lm(humid ~ temp, data = MyData)
summary(m1)
##
## Call:
## lm(formula = humid ~ temp, data = MyData)
##
## Residuals:
## Min 1Q Median 3Q Max
## -50.852 -15.201 -0.842 15.148 40.687
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 52.2463 0.7685 67.98 <2e-16 ***
## temp 0.1640 0.0121 13.55 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19.33 on 26112 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.006978, Adjusted R-squared: 0.00694
## F-statistic: 183.5 on 1 and 26112 DF, p-value: < 2.2e-16