2018

Table 2018 1. New Informants

##    informant.code gender age     community elevation    district
## 1             256      F  80        Verona      1260    Sagarejo
## 2             257      M  68        Verona      1260    Sagarejo
## 3             258      F  73        Verona      1260    Sagarejo
## 4             259      F  80     Sig'nag'i       790   Sig'nag'i
## 5             260      M  80      Nukriani       970   Sig'nag'i
## 6             261      F  80      Nukriani       970   Sig'nag'i
## 7             262      F  60  Kvemo Magaro       550   Sig'nag'i
## 8             263      M  60  Kvemo Magaro       550   Sig'nag'i
## 9             264      F  49        Kedeli       720   Sig'nag'i
## 10            265      M  60        Kedeli       720   Sig'nag'i
## 11            266      F  45        Kedeli       720   Sig'nag'i
## 12            267      F  50        Kedeli       720   Sig'nag'i
## 13            268      F  55        Kedeli       720   Sig'nag'i
## 14            269      F  45        Kedeli       720   Sig'nag'i
## 15            270      F  50        Kedeli       720   Sig'nag'i
## 16            271      F  55        Kedeli       720   Sig'nag'i
## 17            272      M  72     Zinobiani       600     Kvareli
## 18            273      M  70     Lagodekhi       450   Lagodekhi
## 19            274      F  40   Akhalsopeli       460     Kvareli
## 20            275      F  50   Akhalsopeli       460     Kvareli
## 21            276      F  55   Akhalsopeli       460     Kvareli
## 22            277      F  55   Akhalsopeli       460     Kvareli
## 23            278      F  66     Satskhene       775     Kvareli
## 24            279      M  62   Chantlikure       400     Kvareli
## 25            280      F  60   Chantlikure       400     Kvareli
## 26            281      F  42          Pona       400     Kvareli
## 27            282      M  63    Sagrasheni      1180 Tetritskaro
## 28            283      M  60    Sagrasheni      1180 Tetritskaro
## 29            284      M  60       Asureti       720 Tetritskaro
## 30            285      M  78    Sagrasheni       350 Tetritskaro
## 31            286      F  74    Sagrasheni       350 Tetritskaro
## 32            287      F  40     Chkhikvta       893 Tetritskaro
## 33            288      M  37     Chkhikvta       893 Tetritskaro
## 34            289      M  79   Tetritskaro      1120 Tetritskaro
## 35            290      F  65    Sagrasheni       350 Tetritskaro
## 36            291      F  65    Sagrasheni       350 Tetritskaro
## 37            292      F  70    Sagrasheni       350 Tetritskaro
## 38            293      F  70    Sagrasheni       350 Tetritskaro
## 39            294      F  70    Sagrasheni       350 Tetritskaro
## 40            295      F  70    Sagrasheni       350 Tetritskaro
## 41            296      F  70    Sagrasheni       350 Tetritskaro
## 42            297      F  55    Sagrasheni       350 Tetritskaro
## 43            298      M  82 Didi magareti      1098 Tetritskaro
## 44            299      F  85 Didi magareti      1098 Tetritskaro
## 45            300      F  55  Kvemo Magaro       500   Sig'nag'i

Figure 2018 1. Informants from 2018 ordered by their distance in plants reported (A,B,C) and in uses reported (D,E,F).

Tables 2018 2 and 2018 3. Full fit reports.

plants

## 
## ***VECTORS
## 
##              NMDS1    NMDS2     r2 Pr(>r)    
## age       -0.39954 -0.91671 0.0475  0.347    
## elevation  0.06271 -0.99803 0.2843  0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999
## 
## ***FACTORS:
## 
## Centroids:
##                          NMDS1   NMDS2
## genderF                 0.0401  0.1993
## genderM                -0.0888 -0.4412
## communityAkhalsopeli   -0.1111  0.2595
## communityAsureti        0.0516 -0.7234
## communityChantlikure    0.4639 -0.1017
## communityChkhikvta     -0.2601 -0.5133
## communityDidi magareti -0.6497 -0.0877
## communityKedeli         0.2818  0.1177
## communityKvemo Magaro   1.0492  0.6398
## communityLagodekhi     -0.8937  0.1566
## communityNukriani       2.0520 -0.3185
## communityPona          -0.2708  0.1772
## communitySagrasheni    -0.2294  0.0772
## communitySatskhene      0.1025  0.3224
## communitySig'nag'i      0.0359 -0.1155
## communityTetritskaro   -0.8908 -1.1992
## communityVerona        -0.4407 -0.1453
## communityZinobiani     -2.2298 -0.9652
## districtKvareli        -0.2127  0.0410
## districtLagodekhi      -0.8937  0.1566
## districtSagarejo       -0.4407 -0.1453
## districtSig'nag'i       0.6815  0.1506
## districtTetritskaro    -0.3006 -0.1221
## 
## Goodness of fit:
##               r2 Pr(>r)    
## gender    0.1021  0.009 ** 
## community 0.6763  0.001 ***
## district  0.2632  0.004 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999

uses

## 
## ***VECTORS
## 
##              NMDS1    NMDS2     r2 Pr(>r)    
## age       -0.96498 -0.26233 0.2897  0.001 ***
## elevation -0.83861 -0.54473 0.0880  0.146    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999
## 
## ***FACTORS:
## 
## Centroids:
##                          NMDS1   NMDS2
## genderF                 0.1666  0.0121
## genderM                -0.3690 -0.0267
## communityAkhalsopeli    0.5926 -0.2580
## communityAsureti       -0.9054 -0.2803
## communityChantlikure   -0.0053 -0.6155
## communityChkhikvta      0.0058 -0.0290
## communityDidi magareti -0.9495 -0.0130
## communityKedeli         0.4908  0.2463
## communityKvemo Magaro  -0.0204  0.1647
## communityLagodekhi     -0.0727 -0.1659
## communityNukriani      -0.0528 -0.0474
## communityPona           0.1022 -0.0626
## communitySagrasheni    -0.2401  0.1351
## communitySatskhene      0.6185 -0.5039
## communitySig'nag'i     -0.1256  0.4240
## communityTetritskaro   -0.1042 -0.0871
## communityVerona        -0.2202 -0.4233
## communityZinobiani     -0.2029  0.3013
## districtKvareli         0.3197 -0.2809
## districtLagodekhi      -0.0727 -0.1659
## districtSagarejo       -0.2202 -0.4233
## districtSig'nag'i       0.2596  0.1996
## districtTetritskaro    -0.3210  0.0650
## 
## Goodness of fit:
##               r2 Pr(>r)    
## gender    0.1797  0.001 ***
## community 0.6628  0.001 ***
## district  0.3732  0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999

ICF

Table 2018 4. Mean informant consensus across use categories among informant districts, with total number of use reports and taxa.

District N.Use.Categories Total.Use.Reports Total.Taxa ICF.mean ICF.sd
Kvareli 5 463 127 0.61 0.19
Lagodekhi 3 68 58 0.10 0.14
Sagarejo 4 123 42 0.76 0.16
Sig’nag’i 4 534 145 0.64 0.15
Tetritskaro 8 887 145 0.79 0.14

Important plants

Table 2018 5: Top plants by UV

## # A tibble: 6 x 5
##   Scientific.name            CIinf CIcom    Du    UV
##   <chr>                      <dbl> <dbl> <dbl> <dbl>
## 1 Anethum graveolens L.       1.11   1.1 0.249 0.978
## 2 Cucumis sativus L.          1      1   0     0.956
## 3 Brassica oleracea L.        1      1   0     0.933
## 4 Lycopersicum esculentum L.  1      1   0     0.933
## 5 Chenopodium album L.        1      1   0     0.844
## 6 Malus orientalis Uglizk.    1      1   0     0.8

Table 2018 6: Top plants by Du

## # A tibble: 6 x 5
##   Scientific.name            CIinf CIcom    Du    UV
##   <chr>                      <dbl> <dbl> <dbl> <dbl>
## 1 Quercus iberica M. Bieb     1.32  1.36 1.54  0.556
## 2 Fagus orientalis Lipsky     1.33  1.3  1.44  0.533
## 3 Sorbus aucuparia K. Koch    1     1    0.974 0.178
## 4 Cydonia oblonga L.          1.11  1.2  0.898 0.222
## 5 Morus alba L.               1.11  1.2  0.898 0.222
## 6 Stellaria media (L.) Vill.  1     1.5  0.721 0.267

Table 2018 7: Top plants by CiInf

## # A tibble: 6 x 5
##   Scientific.name                      CIinf CIcom    Du     UV
##   <chr>                                <dbl> <dbl> <dbl>  <dbl>
## 1 Hyppomarathum(crispum (Pers.) Boiss.  2     2    0.693 0.133 
## 2 Sambucus nigra L.                     2     2    0.693 0.0889
## 3 Rumex sp.                             1.44  1.67 0.613 0.444 
## 4 Sambucus ebulus L.                    1.39  1.25 0.627 0.556 
## 5 Fagus orientalis Lipsky               1.33  1.3  1.44  0.533 
## 6 Quercus iberica M. Bieb               1.32  1.36 1.54  0.556

Regional comparion

Table 2018 8 and 2018 9: Distinctive Plants

Plants not found in Kakheti and mentioned by >25% of Kartli informants

## # A tibble: 7 x 3
##   Scientific.name                        Kartli_informants Kartli_percent
##   <chr>                                              <int>          <dbl>
## 1 Thymus sp.                                            14          0.778
## 2 Polygonatum glaberrimum C. Koch.                       9          0.5  
## 3 Satureja hortensis L.                                  8          0.444
## 4 Serratula quinquefolia Bieb. ex Willd.                 8          0.444
## 5 Heracleum sosnowskyi Manden                            7          0.389
## 6 Chaerophyllum bulbosum L.                              6          0.333
## 7 Lycium barbarum L.                                     5          0.278

Plants not found in Kartli and mentioned by >25% of Kakheti informants

## # A tibble: 12 x 3
##    Scientific.name                   Kakheti_informants Kakheti_percent
##    <chr>                                          <int>           <dbl>
##  1 Smilax excelsa L.                                 17           0.630
##  2 Tilia caucasica Rupr.                             14           0.519
##  3 Taraxacum officinale Wigg.                        10           0.370
##  4 Castanea sativa Mill.                              9           0.333
##  5 Lamium album L.                                    9           0.333
##  6 Rumex sp.                                          9           0.333
##  7 Solanum melogena L.                                8           0.296
##  8 Sorbus aucuparia K. Koch                           8           0.296
##  9 Dryopteris filix-mas (L.) Schott.                  7           0.259
## 10 Humulus lupulus L.                                 7           0.259
## 11 Rumex acetosa L.                                   7           0.259
## 12 Spinaca oleracea L.                                7           0.259

Table 2018 10 and 2018 11: Common plants used for different purposes

Plant-use combinations in which species exists in both places, but species-use is not found in Kakheti, but mentioned by >25% of Kartli informants

## # A tibble: 6 x 4
## # Groups:   Scientific.name [6]
##   Scientific.name           Use.Category    Kartli_informan… Kartli_percent
##   <chr>                     <chr>                      <int>          <dbl>
## 1 Ailanthus altissima (Mil… utensils and t…                8          0.444
## 2 Picea orientalis (L.) Pe… food                           8          0.444
## 3 Pinus sosnowskyi Nakai    food                           8          0.444
## 4 Stellaria media (L.) Vil… food                           8          0.444
## 5 Carpinus caucasica Gross… fuel                           7          0.389
## 6 Carpinus orientalis Mill. fuel                           5          0.278

Plant-use combinations in which species exists in both places, but species-use is not found in Kartli, but mentioned by >25% of Kakheti informants

## # A tibble: 2 x 4
## # Groups:   Scientific.name [2]
##   Scientific.name    Use.Category Kakheti_informants Kakheti_percent
##   <chr>              <chr>                     <int>           <dbl>
## 1 Sambucus ebulus L. food                          8           0.296
## 2 Rosa sp.           food                          7           0.259

Do areas surveyed in 2018 have less plant use then areas surveyed before 2018?

Yes:

## # A tibble: 2 x 3
##   period    `Plants/Informant (mean)` `Plant-uses/Informant (mean)`
##   <chr>                         <dbl>                         <dbl>
## 1 2013-2017                      58.1                          62.7
## 2 2018                           41.1                          42.4

Figure 2018 2 and 2018 3: Number of plant-uses reported by each informant in 2018 vs. 2013-2017 studies

(scatterplot)

(boxplot)

2019

Table 2019 1. 2019 Informants

##    informant.code gender age         community elevation      district
## 1             301      M  70            Merisi       736          Keda
## 2             302      M  50            Merisi       736          Keda
## 3             303      F  50            Merisi       736          Keda
## 4             304      M  36          Uchkhiti       400          Keda
## 5             305      F  40          Uchkhiti       400          Keda
## 6             306      F  50          Uchkhiti       400          Keda
## 7             307      F  40          Uchkhiti       400          Keda
## 8             308      M  55          Dologani       160          Keda
## 9             309      F  50          Dologani       160          Keda
## 10            310      F  53          Dologani       160          Keda
## 11            311      M  57            Chvana       549     Shuakhevi
## 12            312      M  70        Gogadzeebi      1335     Shuakhevi
## 13            313      M  46        Gogadzeebi      1335     Shuakhevi
## 14            314      F  63        Gogadzeebi      1335     Shuakhevi
## 15            315      F  60        Gogadzeebi      1335     Shuakhevi
## 16            316      F  35        Gogadzeebi      1335     Shuakhevi
## 17            317      F  76            Center       420     Shuakhevi
## 18            318      F  52            Chvana       549     Shuakhevi
## 19            319      M  55            Chvana       549     Shuakhevi
## 20            320      F  45            Chvana       549     Shuakhevi
## 21            321      M  35            Chvana       549     Shuakhevi
## 22            322      M  42       Tsivadzeebi       475     Shuakhevi
## 23            323      F  95       Tsivadzeebi       475     Shuakhevi
## 24            324      M  64       Tsivadzeebi       475     Shuakhevi
## 25            325      F  59       Tsivadzeebi       475     Shuakhevi
## 26            326      F  49         Gomarduli     11230     Shuakhevi
## 27            327      F  78         Gomarduli     11230     Shuakhevi
## 28            328      M  72         Gomarduli     11230     Shuakhevi
## 29            329      M  82         Gomarduli     11230     Shuakhevi
## 30            330      F  69       Fushrukauli     11230         Khulo
## 31            331      M  76       Fushrukauli     11230         Khulo
## 32            332      F  44           Skhalta       800         Khulo
## 33            333      M  83           Fachkha      1172         Khulo
## 34            334      M  48           Fachkha      1172         Khulo
## 35            335      M  40           Fachkha      1172         Khulo
## 36            336      F  59           Samikao       320   Tsalenjikha
## 37            337      F  73           Samikao       320   Tsalenjikha
## 38            338      M  63           Samikao       320   Tsalenjikha
## 39            339      F  53       Napichkhovo       244 Chkhorots'q'u
## 40            340      F  50       Napichkhovo       244 Chkhorots'q'u
## 41            341      M  72       Napichkhovo       244 Chkhorots'q'u
## 42            342      F  66       Napichkhovo       244 Chkhorots'q'u
## 43            343      M  80       Napichkhovo       244 Chkhorots'q'u
## 44            344      M  55       Napichkhovo       244 Chkhorots'q'u
## 45            345      M  91           Mukhuri       260 Chkhorots'q'u
## 46            346      M  55           Mukhuri       260 Chkhorots'q'u
## 47            347      F  65            Etseri       320   Tsalenjikha
## 48            348      M  35            Etseri       320   Tsalenjikha
## 49            349      M  42 Muzhava, Sashonio       320 Chkhorots'q'u
## 50            350      F  40 Muzhava, Sashonio       320 Chkhorots'q'u
## 51            351      F  40 Muzhava, Sashonio       320 Chkhorots'q'u
## 52            352      M  67           Samikao       300   Tsalenjikha
## 53            353      M  84             Skuri       375   Tsalenjikha
## 54            354      M  57             Skuri       375   Tsalenjikha
## 55            355      M  55             Skuri       375   Tsalenjikha
## 56            356      M  65           Mukhuri       375   Tsalenjikha
## 57            357      M  55           Mukhuri       375   Tsalenjikha
## 58            358      F  70           Gakhara       400   Tsalenjikha
## 59            359      M  80          Salkhino       400      Martvili
## 60            360      M  75          Salkhino       400      Martvili
## 61            361      F  75          Salkhino       400      Martvili
## 62            362      F  45       Jikhashkari       300   Chkhorotsku
## 63            363      F  70       Jikhashkari       300   Chkhorotsku
## 64            364      M  70       Jikhashkari       300   Chkhorotsku
## 65            365      M  45       Jikhashkari       300   Chkhorotsku
## 66            366      F  66          Lentekhi       755      Lentekhi
## 67            367      M  83            Shkedi      1300      Lentekhi
## 68            368      F  40            Shkedi      1300      Lentekhi
## 69            369      F  70            Shkedi      1300      Lentekhi
## 70            370      M  53            Shkedi      1300      Lentekhi
## 71            371      F  77            Shkedi      1300      Lentekhi
## 72            372      M  53             Tsana      1800      Lentekhi
## 73            373      M  55             Tsana      1800      Lentekhi
## 74            374      F  80          Leusheri      1300      Lentekhi
## 75            375      F  77          Leusheri      1300      Lentekhi
## 76            376      M  25          Leusheri      1300      Lentekhi

Figure 2019 1. Informants from 2019 ordered by their 2019distance in plants reported (A,B,C) and in uses reported (D,E,F).

Tables 2019 2 and 2019 3. Full fit reports.

plants

## 
## ***VECTORS
## 
##              NMDS1    NMDS2     r2 Pr(>r)   
## age       -0.99798 -0.06361 0.0163  0.566   
## elevation  0.19499 -0.98081 0.1534  0.004 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999
## 
## ***FACTORS:
## 
## Centroids:
##                              NMDS1   NMDS2
## genderF                     0.1477  0.0736
## genderM                    -0.1330 -0.0663
## communityCenter             0.3893  0.2807
## communityChvana             0.6000  0.0864
## communityDologani          -0.4326  0.8706
## communityEtseri            -1.7369  0.8876
## communityFachkha            0.2455 -0.2357
## communityFushrukauli        0.6554 -0.7345
## communityGakhara           -2.7578 -1.0325
## communityGogadzeebi         0.4575 -0.3347
## communityGomarduli         -0.1383 -0.8706
## communityJikhashkari        0.6759  0.8785
## communityLentekhi           0.4835  0.1008
## communityLeusheri           1.1069 -0.6238
## communityMerisi            -0.4122 -0.0160
## communityMukhuri           -0.3109  0.8434
## communityMuzhava, Sashonio  1.4972  0.2368
## communityNapichkhovo       -1.6830  0.1966
## communitySalkhino           0.2028  0.3162
## communitySamikao           -0.7684  0.2334
## communityShkedi             0.3724 -1.0485
## communitySkhalta            0.1454 -0.5886
## communitySkuri              0.0887  0.6116
## communityTsana             -0.3054 -1.7343
## communityTsivadzeebi        0.5580  0.5323
## communityUchkhiti           0.1271 -0.0603
## districtChkhorots'q'u      -0.6566  0.3400
## districtChkhorotsku         0.6759  0.8785
## districtKeda               -0.2026  0.2323
## districtKhulo               0.3654 -0.4608
## districtLentekhi            0.4596 -0.9529
## districtMartvili            0.2028  0.3162
## districtShuakhevi           0.3871 -0.1218
## districtTsalenjikha        -0.7222  0.4195
## 
## Goodness of fit:
##               r2 Pr(>r)    
## gender    0.0162  0.316    
## community 0.7425  0.001 ***
## district  0.3320  0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999

uses

## 
## ***VECTORS
## 
##              NMDS1    NMDS2     r2 Pr(>r)
## age       -0.69850 -0.71561 0.0545  0.144
## elevation -0.92595  0.37764 0.0073  0.751
## Permutation: free
## Number of permutations: 999
## 
## ***FACTORS:
## 
## Centroids:
##                              NMDS1   NMDS2
## genderF                     0.0020  0.0827
## genderM                    -0.0018 -0.0744
## communityCenter            -0.4509  0.0206
## communityChvana            -0.0781  0.1560
## communityDologani           0.6692  0.8557
## communityEtseri             0.1552  0.0922
## communityFachkha           -0.4727  0.0504
## communityFushrukauli        0.0657  0.4590
## communityGakhara           -1.2476 -1.2144
## communityGogadzeebi        -0.1631  0.1879
## communityGomarduli         -0.1262 -0.1691
## communityJikhashkari       -0.3403 -0.0590
## communityLentekhi          -0.2042  0.7079
## communityLeusheri           0.5855 -0.4200
## communityMerisi            -0.4627  0.0654
## communityMukhuri            0.0272 -0.3244
## communityMuzhava, Sashonio  0.8569  0.1551
## communityNapichkhovo        0.6203 -0.4469
## communitySalkhino          -0.0160 -0.1886
## communitySamikao            0.4896  0.2815
## communityShkedi            -0.2277 -0.1289
## communitySkhalta           -0.3869 -0.0034
## communitySkuri              0.2130 -0.2954
## communityTsana             -0.3524 -0.0558
## communityTsivadzeebi       -0.6332  0.1418
## communityUchkhiti          -0.1533  0.2385
## districtChkhorots'q'u       0.5379 -0.2527
## districtChkhorotsku        -0.3403 -0.0590
## districtKeda                0.0006  0.3717
## districtKhulo              -0.2789  0.1776
## districtLentekhi           -0.0265 -0.1189
## districtMartvili           -0.0160 -0.1886
## districtShuakhevi          -0.2471  0.0858
## districtTsalenjikha         0.1787 -0.1270
## 
## Goodness of fit:
##               r2 Pr(>r)    
## gender    0.0171  0.279    
## community 0.8239  0.001 ***
## district  0.3122  0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Permutation: free
## Number of permutations: 999

ICF

Table 2019 4. Mean informant consensus across use categories among informant districts, with total number 2019of use reports and taxa.

District N.Use.Categories Total.Use.Reports Total.Taxa ICF.mean ICF.sd
Chkhorots’q’u 10 499 129 0.79 0.17
Chkhorotsku 4 184 44 0.78 0.01
Keda 8 538 94 0.89 0.10
Khulo 6 413 96 0.83 0.17
Lentekhi 8 584 126 0.78 0.16
Martvili 5 158 54 0.72 0.06
Shuakhevi 7 1375 167 0.77 0.16
Tsalenjikha 9 420 135 0.71 0.21

Important plants

Table 2019 5: Top plants by UV

## # A tibble: 6 x 5
##   Scientific.name          CIinf CIcom     Du    UV
##   <chr>                    <dbl> <dbl>  <dbl> <dbl>
## 1 Pyrus communis L.         1     1    0      2.78 
## 2 Malus orientalis Uglizk.  1     1    0      1.97 
## 3 Vitis vinifera L.         1     1.06 0.0510 1.47 
## 4 Phaseolus vulgaris L.     1     1    0      1.04 
## 5 Capsicum annuum L.        1     1    0      0.974
## 6 Prunus divaricata Ledeb.  1.12  1.28 0.439  0.908

Table 2019 6: Top plants by Du

## # A tibble: 6 x 5
##   Scientific.name                                  CIinf CIcom    Du     UV
##   <chr>                                            <dbl> <dbl> <dbl>  <dbl>
## 1 Rhododendron ponticum L.                          1.2    1.2 1.24  0.237 
## 2 Rhododendron luteum Sweet                         1      1   1.06  0.118 
## 3 Quercus petrea ssp iberica (Steven ex M. Bieb.)…  1      1.5 1.00  0.0921
## 4 Tilia caucasica Rupr.                             1.34   1.4 0.872 0.592 
## 5 Sambucus ebulus L.                                1.59   1.7 0.773 0.671 
## 6 Chenopodium album L.                              1      1   0.693 0.158

Table 2019 7: Top plants by CiInf

## # A tibble: 6 x 5
##   Scientific.name                               CIinf CIcom    Du     UV
##   <chr>                                         <dbl> <dbl> <dbl>  <dbl>
## 1 Eucalyptus saligna Sm.                         2      2   0.693 0.0789
## 2 Phyllitis scolopendrium (L.) Newman            2      2   0.693 0.0789
## 3 Trifolium sp.                                  2      2   0.693 0.0789
## 4 Cryptomeria japonica (Thunb. ex L. f.) D. Don  2      2   0.693 0.0526
## 5 Cannabis sativa L.                             1.86   2   0.662 0.211 
## 6 Sambucus ebulus L.                             1.59   1.7 0.773 0.671

Regional comparion

Table 2019 8 and 2019 9: Distinctive Plants

Plants not found in Samegrelo & Kvemo Svaneti and mentioned by >20% of Adjara informants

## # A tibble: 12 x 3
##    Scientific.name                        Adjara_informants Adjara_percent
##    <chr>                                              <int>          <dbl>
##  1 Rubus caesius L.                                      23          0.657
##  2 Polygonum carneum C. Koch                             20          0.571
##  3 Quercus dschorochensis C. Koch                        16          0.457
##  4 Nicotiana tabacum L.                                  14          0.4  
##  5 Campanula lactiflora M. Bieb.                         13          0.371
##  6 Helichrysum graveolens (M.Bieb.) Sweet                13          0.371
##  7 Prunus cerasus L.                                     13          0.371
##  8 Prunus x domestica L.                                 11          0.314
##  9 Aruncus vulgaris Raf.                                 10          0.286
## 10 Begonia rex Putz.                                     10          0.286
## 11 Satureja laxiflora K. Koch                            10          0.286
## 12 Crocus sativus L.                                      9          0.257

Plants not found in Adjara and mentioned by >20% of Samegrelo & Kvemo Svaneti informants

## # A tibble: 9 x 3
##   Scientific.name                SamKvem_informants SamKvem_percent
##   <chr>                                       <int>           <dbl>
## 1 Rhododendron caucasicum Pall.                  13           0.317
## 2 Euphorbia sp.                                  10           0.244
## 3 Helleborus caucasicus R. Br.                   10           0.244
## 4 Hypericum sp.                                  10           0.244
## 5 Phytolacca americana L.                        10           0.244
## 6 Taraxacum officinale Wigg.                     10           0.244
## 7 Cyclamen vernum Sweet                           9           0.220
## 8 Setaria italica (L.) P. Beauv.                  9           0.220
## 9 Solidago canadensis L.                          9           0.220

Table 2019 10 and 2019 11: Common plants used for different purposes

Plant-use combinations in which species exists in both places, but species-use is not found in Samegrelo & Kvemo Svaneti, but mentioned by >10% of Adjara informants.

## # A tibble: 7 x 4
## # Groups:   Scientific.name [7]
##   Scientific.name          Use.Category Adjara_informants Adjara_percent
##   <chr>                    <chr>                    <int>          <dbl>
## 1 Sambucus ebulus L.       food                        22          0.629
## 2 Prunus divaricata Ledeb. medicinal                   10          0.286
## 3 Chelidonium majus L.     medicinal                    6          0.171
## 4 Rubus idaeus L.          medicinal                    5          0.143
## 5 Sambucus nigra L.        medicinal                    5          0.143
## 6 Juniperus sp.            cultural                     4          0.114
## 7 Urtica dioica L.         medicinal                    4          0.114

Plant-use combinations in which species exists in both places, but species-use is not found in Adjara, but mentioned by >10% of Samegrelo & Kvemo Svaneti informants.

## # A tibble: 7 x 4
## # Groups:   Scientific.name [7]
##   Scientific.name       Use.Category      SamKvem_informan… SamKvem_percent
##   <chr>                 <chr>                         <int>           <dbl>
## 1 Zea mays L.           animal food                       8           0.195
## 2 Ruscus colchicus Yeo  animal food                       7           0.171
## 3 Chenopodium album L.  animal food                       6           0.146
## 4 Corylus avellana L.   utensils and too…                 6           0.146
## 5 Apium graveolens L.   medicinal                         5           0.122
## 6 Berberis vulgaris L.  medicinal                         5           0.122
## 7 Tilia caucasica Rupr. medicinal                         5           0.122

Do areas surveyed in 2019 have less plant use then areas surveyed before 2018?

Yes:

## # A tibble: 2 x 3
##   period    `Plants/Informant (mean… `Plant-use Combinations/Informant (me…
##   <chr>                        <dbl>                                  <dbl>
## 1 2013-2017                     58.1                                   62.7
## 2 2019                          44.0                                   45.8

Figure 2019 2 and 2019 3: Number of plant-uses reported by each informant in 2019 vs. 2013-2017 studies

(scatterplot)

(boxplot)