Included here are the methods and results for the regression of 228 metabolites on a prostate cancer predisposition score (PCa_Poly) of 63 SNPs in a subset of subjects (940 cases and 654 controls) within ProtecT. Weights for the score were obtained from seven prostate cancer GWAS in Europeans. MR-Base was used to import the selected GWAS files into R, where the files were merged and SNPs in LD removed. SNPs without effect estimates were also removed, and the remaining SNPs available for weights were harmonized with the SNPs from the genotype data, such that the effect alleles were the same. Genotype data and generated principal components were extracted from the Haplotype Reference Consortium imputation files using Plink and merged in R with metabolomic data. Linear regression models adusting for age and principal components were clustered by study centre and estimated with robust standard errors. Three models were ran: 1) the effects of the PCa_Poly on metabolites for all 1594 subjects, 2) the effects of PCa_Poly on metabolites among cases, and 3) the effects of PCa_Poly on metabolites among controls. A multiple-testing corrected p-value of 0.0014 was derived by dividing 0.05 by the number of principal components explaining 99% of the variance in the metabolite data. Whilst none of the results for the three models had p-values less than 0.0014, a handful of results had p-values <0.05.

Preparing the ProtecT genetic files

#!/bin/bash
#PBS -l walltime=00:05:00,nodes=1:ppn=1
#PBS -o top_snps.txt
#PBS -j oe
# Set the name of the job
#PBS -N ProtecT_Principal_Components_and_Polygenic_PCa_SNP_Extraction_
echo Running on host `hostname`
echo Time is `date`
echo Directory is `pwd`
echo PBS job ID is $PBS_JOBID
echo This jobs runs on the following machines:
echo `cat $PBS_NODEFILE | uniq`

# Script to extract the instruments for 1) metabolites associated with case-control status in ProtecT 
# and 2) for the prostate cancer predisposition risk score

# use WinSCP to copy the hrc imputed files to a folder in my home directory:
# /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr

# qsub hrc_vcf_to_plink.sh -I -l walltime=05:00:00

# set working directory 
cd /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr

# Open Plink and read-in the vcf files 

module add apps/plink-1.90

plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr01.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr1
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr02.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr2
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr03.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr3
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr04.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr4
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr05.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr5
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr06.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr6
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr07.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr7
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr08.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr8
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr09.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr9
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr10.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr10
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr11.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr11
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr12.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr12
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr13.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr13
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr14.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr14
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr15.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr15
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr16.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr16
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr17.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr17
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr18.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr18
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr19.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr19
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr20.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr20
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr21.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr21
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr22.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr22

# Make binary files for Plink 

plink --bfile chr1 --exclude mymerged-merge.missnp --make-bed --out chr1
plink --bfile chr2 --exclude mymerged-merge.missnp --make-bed --out chr2
plink --bfile chr3 --exclude mymerged-merge.missnp --make-bed --out chr3
plink --bfile chr4 --exclude mymerged-merge.missnp --make-bed --out chr4
plink --bfile chr5 --exclude mymerged-merge.missnp --make-bed --out chr5
plink --bfile chr6 --exclude mymerged-merge.missnp --make-bed --out chr6
plink --bfile chr7 --exclude mymerged-merge.missnp --make-bed --out chr7
plink --bfile chr8 --exclude mymerged-merge.missnp --make-bed --out chr8
plink --bfile chr9 --exclude mymerged-merge.missnp --make-bed --out chr9
plink --bfile chr10 --exclude mymerged-merge.missnp --make-bed --out chr10
plink --bfile chr11 --exclude mymerged-merge.missnp --make-bed --out chr11
plink --bfile chr12 --exclude mymerged-merge.missnp --make-bed --out chr12
plink --bfile chr13 --exclude mymerged-merge.missnp --make-bed --out chr13
plink --bfile chr14 --exclude mymerged-merge.missnp --make-bed --out chr14
plink --bfile chr15 --exclude mymerged-merge.missnp --make-bed --out chr15
plink --bfile chr16 --exclude mymerged-merge.missnp --make-bed --out chr16
plink --bfile chr17 --exclude mymerged-merge.missnp --make-bed --out chr17
plink --bfile chr18 --exclude mymerged-merge.missnp --make-bed --out chr18
plink --bfile chr19 --exclude mymerged-merge.missnp --make-bed --out chr19
plink --bfile chr20 --exclude mymerged-merge.missnp --make-bed --out chr20
plink --bfile chr21 --exclude mymerged-merge.missnp --make-bed --out chr21
plink --bfile chr22 --exclude mymerged-merge.missnp --make-bed --out chr22

# Merge all the files 
# First create a snp list .txt file and then merge files with the .bim .bed and .fam chr01 files

plink --bfile /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr1 --merge-list filelist --make-bed --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/mymerged


# LD prune mymerged to obtain a merged dataset usable for the principal components
# create a file called "ld.awk" that has this: 

($1 == 1) && ($4 >= 48227413) && ($4 <= 52227412) {print $2}
($1 == 2) && ($4 >= 86000000) && ($4 <= 100500000) {print $2}
($1 == 2) && ($4 >= 183291755) && ($4 <= 190291755) {print $2}
($1 == 3) && ($4 >= 47524996) && ($4 <= 50024996) {print $2}
($1 == 3) && ($4 >= 83417310) && ($4 <= 86917310) {print $2}
($1 == 5) && ($4 >= 128972101) && ($4 <= 131972101) {print $2}
($1 == 5) && ($4 >= 44500000) && ($4 <= 50500000) {print $2}
($1 == 6) && ($4 >= 57000000) && ($4 <= 64000000) {print $2}
($1 == 6) && ($4 >= 25392021) && ($4 <= 33392022) {print $2}
($1 == 6) && ($4 >= 139958307) && ($4 <= 142458307) {print $2}
($1 == 7) && ($4 >= 55000000) && ($4 <= 66000000) {print $2}
($1 == 8) && ($4 >= 7962590) && ($4 <= 11962591) {print $2}
($1 == 8) && ($4 >= 111930824) && ($4 <= 114930824) {print $2}
($1 == 8) && ($4 >= 43000000) && ($4 <= 50000000) {print $2}
($1 == 10) && ($4 >= 37000000) && ($4 <= 43000000) {print $2}
($1 == 11) && ($4 >= 87860352) && ($4 <= 90860352) {print $2}
($1 == 12) && ($4 >= 33000000) && ($4 <= 40000000) {print $2}
($1 == 20) && ($4 >= 32536339) && ($4 <= 35066586) {print $2}
($1 == 1) && ($4 >= 48287981) && ($4 <= 52287979) {print $2}
($1 == 2) && ($4 >= 86088343) && ($4 <= 101041482) {print $2}
($1 == 2) && ($4 >= 134666269) && ($4 <= 138166268) {print $2}
($1 == 2) && ($4 >= 183174495) && ($4 <= 190174494) {print $2}
($1 == 3) && ($4 >= 47524997) && ($4 <= 50024996) {print $2}
($1 == 3) && ($4 >= 83417311) && ($4 <= 86917310) {print $2}
($1 == 3) && ($4 >= 88917311) && ($4 <= 96017310) {print $2}
($1 == 5) && ($4 >= 44464244) && ($4 <= 50464243) {print $2}
($1 == 5) && ($4 >= 97972101) && ($4 <= 100472101) {print $2}
($1 == 5) && ($4 >= 128972102) && ($4 <= 131972101) {print $2}
($1 == 5) && ($4 >= 135472102) && ($4 <= 138472101) {print $2}
($1 == 6) && ($4 >= 25392022) && ($4 <= 33392022) {print $2}
($1 == 6) && ($4 >= 56892042) && ($4 <= 63942041) {print $2}
($1 == 6) && ($4 >= 139958308) && ($4 <= 142458307) {print $2}
($1 == 7) && ($4 >= 55225792) && ($4 <= 66555850) {print $2}
($1 == 8) && ($4 >= 7962591) && ($4 <= 11962591) {print $2}
($1 == 8) && ($4 >= 42880844) && ($4 <= 49837447) {print $2}
($1 == 8) && ($4 >= 111930825) && ($4 <= 114930824) {print $2}
($1 == 10) && ($4 >= 36959995) && ($4 <= 43679994) {print $2}    
($1 == 11) && ($4 >= 46043425) && ($4 <= 57243424) {print $2}
($1 == 11) && ($4 >= 87860353) && ($4 <= 90860352) {print $2}
($1 == 12) && ($4 >= 33108734) && ($4 <= 41713733) {print $2}
($1 == 12) && ($4 >= 111037281) && ($4 <= 113537280) {print $2}
($1 == 20) && ($4 >= 32536340) && ($4 <= 35066586) {print $2}


# data=<YOUR PLINK ROOT FILE NAME>
# Get snp list with no long range LD regions
awk -f ld.awk mymerged.bim > nold.txt

# Get independent SNPs excluding any long range LD regions
plink --bfile mymerged --exclude nold.txt --indep 100 5 1.01 --out indep

# Calculate PCs for unrelateds
plink --bfile mymerged --extract indep.prune.in --pca 20 --out mymerged

# Extract the snps for the polygenic score

module add apps/plink-1.90
#rs10009409,rs1016343,rs10187424,rs1041449,rs10486567,rs10774740,rs10875943,rs10896449,rs10934853,rs10936632,rs10993994,rs11135910,rs11214775,rs11228565,rs11568818,rs11650494,rs11902236,rs12051443,rs12155172,rs1218582,rs12198220,rs12480328,rs12597458,rs12621278,rs1270884,rs130067,rs1447295,rs1465618,rs1512268,rs16901979,rs16902094,rs17021918,rs17023900,rs17599629,rs17694493,rs17765344,rs1894292,rs1933488,rs2121875,rs2238776,rs2242652,rs2273669,rs2292884,rs2427345,rs2430386,rs2660753,rs2735839,rs3096702,rs3771570,rs3850699,rs4242382,rs4245739,rs4430796,rs445114,rs4713266,rs4962416,rs56232506,rs6062509,rs6763931,rs684232,rs6869841,rs6983267,rs71277158,rs7127900,rs7141529,rs721048,rs7241993,rs7584330,rs7611694,rs7679673,rs76934034,rs7725218,rs7758229,rs7929962,rs8008270,rs80130819,rs8014671,rs8064454,rs8102476,rs902774,rs9287719,rs9364554,rs9443189

plink --bfile /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/mymerged --snps rs10009409,rs1016343,rs10187424,rs1041449,rs10486567,rs10774740,rs10875943,rs10896449,rs10934853,rs10936632,rs10993994,rs11135910,rs11214775,rs11228565,rs11568818,rs11650494,rs11902236,rs12051443,rs12155172,rs1218582,rs12198220,rs12480328,rs12597458,rs12621278,rs1270884,rs130067,rs1447295,rs1465618,rs1512268,rs16901979,rs16902094,rs17021918,rs17023900,rs17599629,rs17694493,rs17765344,rs1894292,rs1933488,rs2121875,rs2238776,rs2242652,rs2273669,rs2292884,rs2427345,rs2430386,rs2660753,rs2735839,rs3096702,rs3771570,rs3850699,rs4242382,rs4245739,rs4430796,rs445114,rs4713266,rs4962416,rs56232506,rs6062509,rs6763931,rs684232,rs6869841,rs6983267,rs71277158,rs7127900,rs7141529,rs721048,rs7241993,rs7584330,rs7611694,rs7679673,rs76934034,rs7725218,rs7758229,rs7929962,rs8008270,rs80130819,rs8014671,rs8064454,rs8102476,rs902774,rs9287719,rs9364554,rs9443189 --recode A --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/poly8

# Command to count the number of columns in allSNPs.raw
head -1 allSNPs.raw | tr '|' ' ' | wc -w

# Command to test which allele is reported by Plink 

grep -n  "rs10009409" data_chr04.info | awk -F  ":" '{print $1}'
cat -n data_chr15.info | grep '^ *1116092'

less -S data_chr04.info

Preparing the score

install.packages("devtools")
library('devtools')
devtools::install_github("MRCIEU/MRInstruments")
library(MRInstruments) 
install_github("MRCIEU/TwoSampleMR")
library('TwoSampleMR')
library('plyr')
library(lattice)
library(readr)
library(readxl)
library(stringr)
library('lmtest')
library('sandwich')

setwd("C:/Users/charl/Dropbox/Bristol")

# Read in the exposure data

data(gwas_catalog) 

# Read-in the prostate cancer hits from various GWASes of prostate cancer in Europeans

# Study=="Al Olama AA"

pca_gwas <- subset(gwas_catalog, grepl("Al Olama AA", Author) & Phenotype == "Prostate cancer")
pca_exp_dat <- format_data(pca_gwas)

# LD clumping (will do all at the end)
#pca_exp_dat <- clump_data(pca_exp_dat)
#head(pca_exp_dat)
#pca_exp_dat$SNP

# Study=="Kote-Jarai Z"

Kote_gwas <- subset(gwas_catalog, grepl("Kote-Jarai Z", Author) & Phenotype == "Prostate cancer")
Kote_exp_dat <- format_data(Kote_gwas)

total <- rbind(pca_exp_dat,Kote_exp_dat,by="SNP")

# Study=="Eeles RA"

Eeles_gwas <- subset(gwas_catalog, grepl("Eeles RA", Author) & Phenotype == "Prostate cancer")
Eeles_exp_dat <- format_data(Eeles_gwas)

total <- rbind(total,Eeles_exp_dat,by="SNP")

# Study==Thomas G

Thomas_gwas <- subset(gwas_catalog, grepl("Thomas G", Author) & Phenotype == "Prostate cancer")
Thomas_exp_dat <- format_data(Thomas_gwas)

total <- rbind(total,Thomas_exp_dat,by="SNP")

# Study==Berndt SI

Berndt_gwas <- subset(gwas_catalog, grepl("Berndt SI", Author) & Phenotype == "Prostate cancer")
Berndt_exp_dat <- format_data(Berndt_gwas)

total <- rbind(total,Berndt_exp_dat,by="SNP")

# Study==Schumacher FR
Schumacher_gwas <- subset(gwas_catalog, grepl("Schumacher FR", Author) & Phenotype == "Prostate cancer")
Schumacher_exp_dat <- format_data(Schumacher_gwas)

total <- rbind(total,Schumacher_exp_dat,by="SNP")

# Study==Gudmundsson J
Gudmundsson_gwas <- subset(gwas_catalog, grepl("Gudmundsson J", Author) & Phenotype == "Prostate cancer")
Gudmundsson_exp_dat <- format_data(Gudmundsson_gwas)

total <- rbind(total,Gudmundsson_exp_dat,by="SNP")

## LD clump all the snps

total <- clump_data(total)

# Order the SNPs

total_removed=total[order(total$'SNP'),]

# Multiple SNP entries. Just keep the first instance

total_removed2 <- do.call(rbind, lapply(split(total_removed, total_removed$SNP), `[`, 1, ))
dim(total_removed2)
rownames(total_removed2) <- NULL
total_removed2=total_removed2[order(total_removed2$'SNP'),]
total_removed2$SNP

# Remove SNPs with missing betas

which(total_removed2$SNP=="rs4242384")
total_removed2<- total_removed2[-c(54), ]
which(total_removed2$SNP=="rs1775148")
total_removed2<- total_removed2[-c(36), ]
which(total_removed2$SNP=="rs7153648")
total_removed2<- total_removed2[-c(70), ]
which(total_removed2$SNP=="rs1859962")
total_removed2<- total_removed2[-c(37), ]
which(total_removed2$SNP=="rs6465657")
total_removed2<- total_removed2[-c(59), ]
which(total_removed2$SNP=="rs7130881")
total_removed2<- total_removed2[-c(66), ]
which(total_removed2$SNP=="rs7501939")
total_removed2<- total_removed2[-c(69), ]
which(total_removed2$SNP=="rs6545977")
total_removed2<- total_removed2[-c(59), ]

write.csv(total_removed2$SNP,"C:/Users/ca16591/Dropbox/Bristol/snplist_poly7.csv")

#module add apps/plink-1.90
#plink --bfile /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/mymerged --snps rs10009409,
#rs1016343,rs10187424,rs1041449,rs10486567,rs10774740,rs10875943,rs10896449,rs10934853,rs10936632,
#rs10993994,rs11135910,rs11214775,rs11228565,rs11568818,rs11650494,rs11902236,rs12051443,rs12155172,
#rs1218582,rs12198220,rs12480328,rs12597458,rs12621278,rs1270884,rs130067,rs1447295,rs1465618,rs1512268,
#rs16901979,rs16902094,rs17021918,rs17023900,rs17599629,rs17694493,rs17765344,rs1894292,rs1933488,rs2121875,
#rs2238776,rs2242652,rs2273669,rs2292884,rs2427345,rs2430386,rs2660753,rs2735839,rs3096702,rs3771570,rs3850699,
#rs4242382,rs4245739,rs4430796,rs445114,rs4713266,rs4962416,rs56232506,rs6062509,rs6763931,rs684232,rs6869841,
#rs6983267,rs71277158,rs7127900,rs7141529,rs721048,rs7241993,rs7584330,rs7611694,rs7679673,rs76934034,rs7725218,
#rs7758229,rs7929962,rs8008270,rs80130819,rs8014671,rs8064454,rs8102476,rs902774,rs9287719,rs9364554,rs9443189 
#--recode A --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/poly8

# Read in the metabolite data

setwd("C:/Users/ca16591/Dropbox/Bristol")
#library(lattice)
#library(readr)
#library(readxl)

cleaned_met3 <- read.csv("C:/Users/ca16591/Dropbox/Bristol/metabol.data.clean.demo3.20.02.17.csv")
data <- cleaned_met3

completedHistoryData <- read.csv("C:/Users/ca16591/Dropbox/Bristol/completedHistoryData.csv")
data$Glol_imputed <- completedHistoryData$Glol
mname=colnames(data)[-c(1:93)]  

smname=mname[-c(229:231)]
smname[[length(smname)+1]] <- "Glol_imputed"
data$casecontrol_n=ifelse(data$casecontrol=="Control", 0,1)
data$pounds = (data$p1dhl_wght_stones)*14
data$weight = data$pounds + data$p1dhl_wght_pounds
data$feet_to_inches = (data$p1dhl_tall_ft)*12
data$height_inches = data$p1dhl_tall_in + data$feet_to_inches
data$inches = (data$height_inches^2)
data$inches_squared = (data$inches)
data$bmi=(data$weight*703)/data$inches_squared 

data$fac_centre <- as.factor(data$centre)
data$fhhistpca <- ifelse(data$fhhistpca=="yes", 1, 0)
data$fhhistpca2 <- completedHistoryData$family_history
data$fhhistpca2 <- as.factor(data$fhhistpca2)
data[, 94:321][data[, 94:321] == 0] <- NA
head(data$XXL.VLDL.P)
which(data$sampleid==5511753)
data <- data[-c(569), ]
dim(data)
head(data$Glol)
smname=mname[-c(229:231)]
head(data)

# Log transforming function 

logtransform<-function(dataset,smname)  
{   
  tx=dataset[,smname]   
  tx=apply(tx,2,function(x){if (min(x,na.rm=T)==0) x=x+1 else x })  
  tx=log(tx)    
  dataset[,smname]=tx   
  dataset   
}   

data=data
logtransform(data[smname])
head(data$subjectid)

# Read in the ProtecT snps and merge with the metabolite dataset

setwd("M:/data/protect/_devs/PROTECT_Clinical/data/hrc_protect_1sampleMR")

polySNPs <- read_excel("M:/data/protect/_devs/PROTECT_Clinical/data/hrc_protect_1sampleMR/poly8.xlsx")

snps_data <- merge(data, polySNPs, id=subjectid, quote="")

# Merge in the principal components obtained in Plink

eigenvec <- read_excel("M:/data/protect/_devs/PROTECT_Clinical/data/hrc_protect_1sampleMR/eigenvec.xlsx")
eigen_snps_data <- merge(eigenvec, snps_data, id=subjectid, quote="")

# Change working directory back to my home drive 

setwd("C:/Users/ca16591/Dropbox/Bristol")

# Order the snps and check that there is the same number pulled in from ProtecT as we have with weights

colnames(eigen_snps_data) 
eigen_snps_data=eigen_snps_data[ , order(names(eigen_snps_data))]

difftest=setdiff(colnames(eigen_snps_data[c(229:311)]), total_removed2$SNP)

# Save the prostate instrument weight data as "weights"

weights=total_removed2
dim(weights)
rownames(weights)=NULL

write.csv(weights, "C:/Users/ca16591/Dropbox/Bristol/total_removed2.csv")

# Save the master dataset as "eigen_snps_data"

write.csv(eigen_snps_data, "C:/Users/ca16591/Dropbox/Bristol/polydataset.csv")

snpname=colnames(eigen_snps_data[c(229:311)])

# Script to harmonize the alleles 

protect_snps=read.csv("C:/Users/ca16591/Dropbox/Bristol/t2_snps_with_alleles.csv")
weights2 <- merge(protect_snps, weights, id=SNP, quote="")
head(weights2)
dim(weights2)

#Merge into weights the columns from poly8 with the effect allele in a separate column

which(weights2$Protect_eaf!=weights2$effect_allele.exposure)
myvars=c("SNP", "Protect_eaf", "gene.exposure", "effect_allele.exposure", "other_allele.exposure","beta.exposure","se.exposure", "pval.exposure")
weights2=weights2[myvars]
weights2$beta.exposure=as.numeric(weights2$beta.exposure)

# To harmonize the alleles, multiple the beta estimate by -1 for those snps that don't match

ifelse(weights2$Protect_eaf==weights2$effect_allele.exposure,weights2$beta.exposure, (weights2$beta.exposure*(-1)))

# check rs10486567 to see if beta is reversed (was 0.113328685307003)

# To identify which snps of these not include in the score
newdata <-  subset(weights2, Protect_eaf==effect_allele.exposure | Protect_eaf==other_allele.exposure)
dim(newdata)
newdata$columns=rownames(newdata)
newdata$snp="snp"

# check newdata to see if rs10187424 is dropped

# Get the list of the truncated snps 

pastename=paste("snp", newdata$columns, "+")
pastename=str_replace_all(string=pastename, pattern=" ", repl="")
pastename=noquote(pastename)
pastename

# Create the score by multiplying the weights2 by the genotype data for each snp and summing 

colnames(eigen_snps_data)

#rs10009409 
for (i in eigen_snps_data[c(229)]){
  eigen_snps_data$snp1=i*weights2$beta.exposure[1]
}

#rs1016343
for (i in eigen_snps_data[c(230)]){
  eigen_snps_data$snp2=i*weights2$beta.exposure[2]
}

#rs10187424
#for (i in eigen_snps_data[c(231)]){
#  eigen_snps_data$snp3=i*weights2$beta.exposure[3]
#}

#rs1041449
for (i in eigen_snps_data[c(232)]){
  eigen_snps_data$snp4=i*weights2$beta.exposure[4]
}

#rs10486567 
#recoded
for (i in eigen_snps_data[c(233)]){
  eigen_snps_data$snp5=i*weights2$beta.exposure[5]
}

#rs10774740
#recoded
for (i in eigen_snps_data[c(234)]){
  eigen_snps_data$snp6=i*weights2$beta.exposure[6]
}

#rs10875943
for (i in eigen_snps_data[c(235)]){
  eigen_snps_data$snp7=i*weights2$beta.exposure[7]
}

#rs10896449
#recoded
for (i in eigen_snps_data[c(236)]){
  eigen_snps_data$snp8=i*weights2$beta.exposure[8]
}

#rs10934853
for (i in eigen_snps_data[c(237)]){
  eigen_snps_data$snp9=i*weights2$beta.exposure[9]
}

#rs10936632
#recoded
for (i in eigen_snps_data[c(238)]){
  eigen_snps_data$snp10=i*weights2$beta.exposure[10]
}

#rs10993994
for (i in eigen_snps_data[c(239)]){
eigen_snps_data$snp11=i*weights2$beta.exposure[11]
}

#for (i in eigen_snps_data[c(240)]){
#  eigen_snps_data$snp12=i*weights2$beta.exposure[12]
#}

#rs11214775
#recoded
for (i in eigen_snps_data[c(241)]){
  eigen_snps_data$snp13=i*weights2$beta.exposure[13]
}

#rs11228565
for (i in eigen_snps_data[c(242)]){
  eigen_snps_data$snp14=i*weights2$beta.exposure[14]
}

#rs11568818
#for (i in eigen_snps_data[c(243)]){
#  eigen_snps_data$snp15=i*weights2$beta.exposure[15]
#}

#rs11650494
for (i in eigen_snps_data[c(244)]){
  eigen_snps_data$snp16=i*weights2$beta.exposure[16]
}

#rs11902236
#for (i in eigen_snps_data[c(245)]){
#  eigen_snps_data$snp17=i*weights2$beta.exposure[17]
#}

#rs12051443
for (i in eigen_snps_data[c(246)]){
  eigen_snps_data$snp18=i*weights2$beta.exposure[18]
}

#rs12155172
for (i in eigen_snps_data[c(247)]){
  eigen_snps_data$snp19=i*weights2$beta.exposure[19]
}

#rs1218582
for (i in eigen_snps_data[c(248)]){
  eigen_snps_data$snp20=i*weights2$beta.exposure[20]
}

#rs12198220
#recoded
for (i in eigen_snps_data[c(249)]){
  eigen_snps_data$snp21=i*weights2$beta.exposure[21]
}

#rs12480328
#recoded
for (i in eigen_snps_data[c(250)]){
  eigen_snps_data$snp22=i*weights2$beta.exposure[22]
}

#rs12597458
#recoded

for (i in eigen_snps_data[c(251)]){
  eigen_snps_data$snp23=i*weights2$beta.exposure[23]
}

for (i in eigen_snps_data[c(252)]){
  eigen_snps_data$snp24=i*weights2$beta.exposure[24]
}

for (i in eigen_snps_data[c(253)]){
  eigen_snps_data$snp25=i*weights2$beta.exposure[25]
}

for (i in eigen_snps_data[c(254)]){
  eigen_snps_data$snp26=i*weights2$beta.exposure[26]
}

for (i in eigen_snps_data[c(255)]){
  eigen_snps_data$snp27=i*weights2$beta.exposure[27]
}

for (i in eigen_snps_data[c(256)]){
  eigen_snps_data$snp28=i*weights2$beta.exposure[28]
}

#for (i in eigen_snps_data[c(257)]){
#  eigen_snps_data$snp29=i*weights2$beta.exposure[29]
#}

for (i in eigen_snps_data[c(258)]){
  eigen_snps_data$snp30=i*weights2$beta.exposure[30]
}

for (i in eigen_snps_data[c(259)]){
  eigen_snps_data$snp31=i*weights2$beta.exposure[31]
}

for (i in eigen_snps_data[c(260)]){
  eigen_snps_data$snp32=i*weights2$beta.exposure[32]
}

for (i in eigen_snps_data[c(261)]){
  eigen_snps_data$snp33=i*weights2$beta.exposure[33]
}

for (i in eigen_snps_data[c(262)]){
  eigen_snps_data$snp34=i*weights2$beta.exposure[34]
}

for (i in eigen_snps_data[c(263)]){
  eigen_snps_data$snp35=i*weights2$beta.exposure[35]
}

for (i in eigen_snps_data[c(264)]){
  eigen_snps_data$snp36=i*weights2$beta.exposure[36]
}

for (i in eigen_snps_data[c(265)]){
  eigen_snps_data$snp37=i*weights2$beta.exposure[37]
}

for (i in eigen_snps_data[c(266)]){
  eigen_snps_data$snp38=i*weights2$beta.exposure[38]
}

#for (i in eigen_snps_data[c(267)]){
#  eigen_snps_data$snp39=i*weights2$beta.exposure[39]
#}

#for (i in eigen_snps_data[c(268)]){
#  eigen_snps_data$snp40=i*weights2$beta.exposure[40]
#}

for (i in eigen_snps_data[c(269)]){
  eigen_snps_data$snp41=i*weights2$beta.exposure[41]
}

for (i in eigen_snps_data[c(270)]){
  eigen_snps_data$snp42=i*weights2$beta.exposure[42]
}

for (i in eigen_snps_data[c(271)]){
  eigen_snps_data$snp43=i*weights2$beta.exposure[43]
}

for (i in eigen_snps_data[c(272)]){
  eigen_snps_data$snp44=i*weights2$beta.exposure[44]
}

for (i in eigen_snps_data[c(273)]){
  eigen_snps_data$snp45=i*weights2$beta.exposure[45]
}

for (i in eigen_snps_data[c(274)]){
  eigen_snps_data$snp46=i*weights2$beta.exposure[46]
}

for (i in eigen_snps_data[c(275)]){
  eigen_snps_data$snp47=i*weights2$beta.exposure[47]
}

for (i in eigen_snps_data[c(276)]){
  eigen_snps_data$snp48=i*weights2$beta.exposure[48]
}

#for (i in eigen_snps_data[c(277)]){
#  eigen_snps_data$snp49=i*weights2$beta.exposure[49]
#}

for (i in eigen_snps_data[c(278)]){
  eigen_snps_data$snp50=i*weights2$beta.exposure[50]
}

for (i in eigen_snps_data[c(279)]){
  eigen_snps_data$snp51=i*weights2$beta.exposure[51]
}

for (i in eigen_snps_data[c(280)]){
  eigen_snps_data$snp52=i*weights2$beta.exposure[52]
}

for (i in eigen_snps_data[c(281)]){
  eigen_snps_data$snp53=i*weights2$beta.exposure[53]
}

for (i in eigen_snps_data[c(282)]){
  eigen_snps_data$snp54=i*weights2$beta.exposure[54]
}

for (i in eigen_snps_data[c(283)]){
  eigen_snps_data$snp55=i*weights2$beta.exposure[55]
}

for (i in eigen_snps_data[c(284)]){
  eigen_snps_data$snp56=i*weights2$beta.exposure[56]
}

for (i in eigen_snps_data[c(285)]){
  eigen_snps_data$snp57=i*weights2$beta.exposure[57]
}

#for (i in eigen_snps_data[c(286)]){
#  eigen_snps_data$snp58=i*weights2$beta.exposure[58]
#}

#for (i in eigen_snps_data[c(287)]){
#  eigen_snps_data$snp59=i*weights2$beta.exposure[59]
#}

#for (i in eigen_snps_data[c(288)]){
#  eigen_snps_data$snp60=i*weights2$beta.exposure[60]
#}

#for (i in eigen_snps_data[c(289)]){
#  eigen_snps_data$snp61=i*weights2$beta.exposure[61]
#}

for (i in eigen_snps_data[c(290)]){
  eigen_snps_data$snp62=i*weights2$beta.exposure[62]
}

for (i in eigen_snps_data[c(291)]){
  eigen_snps_data$snp63=i*weights2$beta.exposure[63]
}

#for (i in eigen_snps_data[c(292)]){
#  eigen_snps_data$snp64=i*weights2$beta.exposure[64]
#}

#for (i in eigen_snps_data[c(293)]){
#  eigen_snps_data$snp65=i*weights2$beta.exposure[65]
#}

for (i in eigen_snps_data[c(294)]){
  eigen_snps_data$snp66=i*weights2$beta.exposure[66]
}

#for (i in eigen_snps_data[c(295)]){
#  eigen_snps_data$snp67=i*weights2$beta.exposure[67]
#}

#for (i in eigen_snps_data[c(296)]){
#  eigen_snps_data$snp68=i*weights2$beta.exposure[68]
#}

#for (i in eigen_snps_data[c(297)]){  eigen_snps_data$snp69=i*weights2$beta.exposure[69]
#}

#for (i in eigen_snps_data[c(298)]){
#  eigen_snps_data$snp70=i*weights2$beta.exposure[70]
#}

for (i in eigen_snps_data[c(299)]){
  eigen_snps_data$snp71=i*weights2$beta.exposure[71]
}

for (i in eigen_snps_data[c(300)]){
  eigen_snps_data$snp72=i*weights2$beta.exposure[72]
}

for (i in eigen_snps_data[c(301)]){
  eigen_snps_data$snp73=i*weights2$beta.exposure[73]
}

for (i in eigen_snps_data[c(302)]){
  eigen_snps_data$snp74=i*weights2$beta.exposure[74]
}

#for (i in eigen_snps_data[c(303)]){
#  eigen_snps_data$snp75=i*weights2$beta.exposure[75]
#}

for (i in eigen_snps_data[c(304)]){
  eigen_snps_data$snp76=i*weights2$beta.exposure[76]
}

for (i in eigen_snps_data[c(305)]){
  eigen_snps_data$snp77=i*weights2$beta.exposure[77]
}

for (i in eigen_snps_data[c(306)]){
  eigen_snps_data$snp78=i*weights2$beta.exposure[78]
}

for (i in eigen_snps_data[c(307)]){
  eigen_snps_data$snp79=i*weights2$beta.exposure[79]
}

for (i in eigen_snps_data[c(308)]){
  eigen_snps_data$snp80=i*weights2$beta.exposure[80]
}

for (i in eigen_snps_data[c(309)]){
  eigen_snps_data$snp81=i*weights2$beta.exposure[81]
}

for (i in eigen_snps_data[c(310)]){
  eigen_snps_data$snp82=i*weights2$beta.exposure[82]
}

for (i in eigen_snps_data[c(311)]){
  eigen_snps_data$snp83=i*weights2$beta.exposure[83]
}

# Create the score 

attach(eigen_snps_data)
colnames(eigen_snps_data)
eigen_snps_data$poly_score2 <- apply(eigen_snps_data[,437:500],1,sum)
summary(eigen_snps_data$poly_score2)

# Principal components for multiple-testing correction

ncomp<-function(data,metabolite.name)   
{   
  tx=data;      
  ptx=scale(tx[,metabolite.name])   
  pca=princomp(~.,data=data.frame(ptx),na.action=na.exclude)    
  var=pca$sdev^2 / sum(pca$sdev^2)  
  cumvar=cumsum(var)    
  n=which(cumvar>=0.99)[1]  
  n 
}   
ncomp(data,smname)
0.05/37 

# Regress metabolites on the poly_score

confint.robust <- function(object, parm, level = 0.95, ...)
{
  cf <- coef(object)
  pnames <- names(cf)
  if (missing(parm))
    parm <- pnames
  else if (is.numeric(parm))
    parm <- pnames[parm]
  a <- (1 - level)/2
  a <- c(a, 1 - a)
  pct <- stats:::format.perc(a, 3)
  fac <- qnorm(a)
  ci <- array(NA, dim = c(length(parm), 2L), dimnames = list(parm,
                                                             pct))
  ses <- sqrt(diag(sandwich::vcovHC(object)))[parm]
  ci[] <- cf[parm] + ses %o% fac
  ci
}

linearRegress_t<-function(metabolite.name,exposure.name,dataset,covariate.name='T',metabolite.log='T',robustSE='T', subset=NULL)    
{   
  ##subseting   
  tx=dataset    
  if(!is.null(subset)) {ind=with(tx,eval(parse(text=subset))); tx=tx[ind,]} 
  
  ##log-transform and scaling the metabolites   
  logname=metabolite.name
  scalename=metabolite.name
  if (metabolite.log=='T') {tx=logtransform(tx,logname)}
  tx[,scalename]=scale(tx[,scalename])
  
  ##linear regression of exposure with metabolites      
  add=numeric() 
  fom=formula(paste('met~',paste(c('poly_score2', covariate.name=c('age', 'one', 'two', 'three', 'four', 'five', 'six',cluster = "centre", adjust =T)),collapse='+')))
  for (j in 1:length(metabolite.name))  
  { 
    met=tx[,metabolite.name[j]];    
    fit=lm(fom,data=tx) 
    if(robustSE=='T'){
      temp=c(nobs(fit),coeftest(fit, vcov =vcovHC(fit,"HC1"))[exposure.name,], confint.robust(fit,exposure.name,level=0.95))
      names(temp)=c('N',names(coeftest(fit, vcov = vcovHC(fit, "HC1"))[exposure.name,]),colnames(confint.robust(fit,exposure.name,level=0.95)))
      
      
    }else{
      temp=c(summary(fit)$coef['poly_score2',],confint(fit)['poly_score2',]);   
    }
    
    add=rbind(add,temp);    
  }     
  rownames(add)=metabolite.name 
  add=data.frame(add,check.names = F)   
  add   
}   
poly_result=linearRegress_t(smname,'poly_score2', eigen_snps_data, covariate.name=c('age','one', 'two', 'three', 'four', 'five', 'six',cluster = "centre", adjust =T),robustSE='T') 

head(poly_result)
poly_result$Metabolite=rownames(poly_result)


myvars=c("Metabolite", "Estimate","Std. Error",  "2.5 %",  "97.5 %", "Pr(>|t|)", "N" )
poly_result=poly_result[myvars]

poly_result <- poly_result[order(poly_result$'Pr(>|t|)'),]

head(poly_result)

write.csv(poly_result, "C:/Users/ca16591/Dropbox/Bristol/polygenic_prostate_predis_total.csv")

# Among just cases
as.factor(eigen_snps_data$casecontrol)

eigen_snps_data_cases <- eigen_snps_data[ which(casecontrol=='Case'),]
dim(eigen_snps_data_cases)

eigen_snps_data_cases

linearRegress_c<-function(metabolite.name,exposure.name,dataset,covariate.name='T',metabolite.log='T',robustSE='T', subset=NULL)    
{   
  ##subseting   
  tx=dataset    
  if(!is.null(subset)) {ind=with(tx,eval(parse(text=subset))); tx=tx[ind,]} 
  
  ##log-transform and scaling the metabolites   
  logname=metabolite.name
  scalename=metabolite.name
  if (metabolite.log=='T') {tx=logtransform(tx,logname)}
  tx[,scalename]=scale(tx[,scalename])
  
  ##linear regression of exposure with metabolites      
  add=numeric() 
  fom=formula(paste('met~',paste(c('poly_score2', covariate.name=c('age', 'one', 'two', 'three', 'four', 'five', 'six',cluster = "centre", adjust =T)),collapse='+')))
  for (j in 1:length(metabolite.name))  
  { 
    met=tx[,metabolite.name[j]];    
    fit=lm(fom,data=tx) 
    if(robustSE=='T'){
      temp=c(nobs(fit),coeftest(fit, vcov =vcovHC(fit,"HC1"))[exposure.name,], confint.robust(fit,exposure.name,level=0.95))
      names(temp)=c('N',names(coeftest(fit, vcov = vcovHC(fit, "HC1"))[exposure.name,]),colnames(confint.robust(fit,exposure.name,level=0.95)))
      
      
    }else{
      temp=c(summary(fit)$coef['poly_score2',],confint(fit)['poly_score2',]);   
    }
    
    add=rbind(add,temp);    
  }     
  rownames(add)=metabolite.name 
  add=data.frame(add,check.names = F)   
  add   
}   
poly_result_cases=linearRegress_c(smname,'poly_score2', eigen_snps_data_cases, covariate.name=c('age','one', 'two', 'three', 'four', 'five', 'six',cluster = "centre", adjust =T),robustSE='T') 

head(poly_result_cases)
poly_result_cases$Metabolite=rownames(poly_result_cases)


myvars=c("Metabolite", "Estimate","Std. Error",  "2.5 %",  "97.5 %", "Pr(>|t|)", "N" )
poly_result_cases=poly_result_cases[myvars]

poly_result_cases <- poly_result_cases[order(poly_result_cases$'Pr(>|t|)'),]

head(poly_result_cases)

write.csv(poly_result_cases, "C:/Users/charl/Dropbox/Bristol/polygenic_prostate_predis_cases.csv")

# Among controls 

as.factor(eigen_snps_data$casecontrol)

eigen_snps_data_controls <- eigen_snps_data[ which(casecontrol=='Control'),]
dim(eigen_snps_data_controls)

poly_result_controls=linearRegress_c(smname,'poly_score2', eigen_snps_data_controls, covariate.name=c('age','one', 'two', 'three', 'four', 'five', 'six',cluster = "centre", adjust =T),robustSE='T')   

head(poly_result_controls)
poly_result_controls$Metabolite=rownames(poly_result_controls)


myvars=c("Metabolite", "Estimate","Std. Error",  "2.5 %",  "97.5 %", "Pr(>|t|)", "N" )
poly_result_controls=poly_result_controls[myvars]

poly_result_controls <- poly_result_controls[order(poly_result_controls$'Pr(>|t|)'),]

head(poly_result_controls)

write.csv(poly_result_controls, "C:/Users/charl/Dropbox/Bristol/polygenic_prostate_predis_controls.csv")

Characteristics of the 63 SNPs

SNP effect_allele.exposure beta.exposure se.exposure
rs10009409 T 0.0769610 0.0127551
rs1016343 T 0.2700271 0.0561224
rs1041449 G 0.0582689 0.0102041
rs10486567 G 0.1133287 0.0586735
rs10774740 G 0.1310283 0.0229592
rs10875943 C 0.0676586 0.0153061
rs10896449 G 0.0953102 0.0637755
rs10934853 A 0.1133287 0.0204082
rs10936632 A 0.1043600 0.0153061
rs10993994 T 0.1484200 0.0637755
rs11214775 G 0.0676586 0.0127551
rs11228565 A 0.2070142 0.0382653
rs11650494 A 0.1397619 0.0331633
rs12051443 A 0.0582689 0.0102041
rs12155172 A 0.0487902 0.0255102
rs1218582 G 0.0582689 0.0153061
rs12198220 T 0.1133287 0.0255102
rs12480328 T 0.1222176 0.0178571
rs12597458 G 0.1043600 0.0229592
rs12621278 A 0.2851789 0.0459184
rs1270884 A 0.0676586 0.0153061
rs130067 G 0.0487902 0.0178571
rs1447295 A 0.4700036 0.0867347
rs1465618 T 0.0769610 0.0229592
rs16901979 A 0.5007753 0.1428571
rs16902094 G 0.1906204 0.0280612
rs17021918 C 0.1043600 0.0178571
rs17023900 G 0.2311117 0.0408163
rs17599629 G 0.0769610 0.0127551
rs17694493 G 0.0769610 0.0153061
rs17765344 A 0.1739533 0.0204082
rs1894292 G 0.0953102 0.0153061
rs1933488 A 0.1133287 0.0153061
rs2242652 G 0.1397619 0.0204082
rs2273669 G 0.0676586 0.0204082
rs2292884 G 0.1310283 0.0255102
rs2430386 T 0.1310283 0.0204082
rs2660753 T 0.1655144 0.0637755
rs2735839 G 0.1823216 0.0586735
rs3096702 A 0.0676586 0.0153061
rs3850699 A 0.0953102 0.0153061
rs4242382 A 0.5068176 0.1020408
rs4245739 A 0.0953102 0.0229592
rs4430796 A 0.1655144 0.0714286
rs445114 T 0.1988509 0.0510204
rs4713266 C 0.0582689 0.0102041
rs4962416 C 0.1570037 0.0637755
rs56232506 A 0.0582689 0.0102041
rs6983267 G 0.2468601 0.0765306
rs71277158 T 0.1988509 0.0331633
rs721048 A 0.1397619 0.0280612
rs7679673 C 0.1133287 0.0204082
rs76934034 T 0.1222176 0.0204082
rs7725218 G 0.1397619 0.0229592
rs7758229 T 0.1397619 0.0255102
rs7929962 T 0.1397619 0.0204082
rs80130819 A 0.1310283 0.0229592
rs8014671 G 0.0582689 0.0102041
rs8064454 C 0.2151114 0.0255102
rs8102476 C 0.1133287 0.0178571
rs902774 A 0.1570037 0.0331633
rs9287719 C 0.0582689 0.0102041
rs9364554 T 0.1570037 0.0459184
rs9443189 G 0.0769610 0.0153061

Results for the effects of PCa predisposition score on metabolites

Metabolite Estimate 2.5% 97.5% Pval N
M.LDL.TG.. 0.0703696 0.0148762 0.1258631 0.0127910 1592
His -0.0669785 -0.1237354 -0.0102216 0.0206961 1590
L.LDL.TG.. 0.0626723 0.0068230 0.1185216 0.0275231 1594
S.LDL.TG.. 0.0581847 0.0023200 0.1140495 0.0408485 1591
Tyr -0.0554159 -0.1135386 0.0027067 0.0610521 1590
IDL.TG.. 0.0540765 -0.0034563 0.1116093 0.0648820 1593
M.LDL.C.. -0.0462568 -0.0969226 0.0044090 0.0732789 1592
M.HDL.CE.. -0.0482979 -0.1025503 0.0059545 0.0803174 1594
M.HDL.PL.. 0.0480024 -0.0063793 0.1023842 0.0830342 1594
M.HDL.C.. -0.0476557 -0.1029753 0.0076639 0.0908610 1594
S.LDL.C.. -0.0447814 -0.0973260 0.0077632 0.0945571 1591
M.LDL.CE.. -0.0384309 -0.0838484 0.0069865 0.0969699 1592
L.VLDL.FC.. 0.0476500 -0.0094028 0.1047029 0.1011201 1580
L.LDL.C.. -0.0432441 -0.0955871 0.0090990 0.1050519 1594
S.LDL.CE.. -0.0406603 -0.0898802 0.0085595 0.1051861 1591
IDL.C.. -0.0465245 -0.1031170 0.0100681 0.1067829 1593
Alb -0.0459912 -0.1022035 0.0102211 0.1083249 1594
Val -0.0474486 -0.1058698 0.0109726 0.1100528 1593
L.HDL.TG.. 0.0459410 -0.0106457 0.1025277 0.1112367 1590
Glol 0.1229248 -0.0315016 0.2773513 0.1121471 281
L.HDL.TG 0.0447662 -0.0108790 0.1004113 0.1141614 1590
L.LDL.CE.. -0.0428962 -0.0968840 0.0110917 0.1191215 1594
S.LDL.CE -0.0419889 -0.0966318 0.0126540 0.1316549 1591
M.LDL.PL.. 0.0412435 -0.0135741 0.0960610 0.1398797 1592
M.LDL.CE -0.0396135 -0.0934895 0.0142624 0.1490906 1592
S.LDL.C -0.0416610 -0.0984207 0.0150987 0.1497966 1591
S.LDL.PL.. 0.0409241 -0.0150584 0.0969067 0.1514028 1591
HDL.TG 0.0409651 -0.0154171 0.0973472 0.1535326 1594
L.VLDL.FC 0.0416349 -0.0169814 0.1002512 0.1628795 1580
M.LDL.C -0.0401600 -0.0967804 0.0164604 0.1639552 1592
S.HDL.TG.. 0.0405310 -0.0169807 0.0980427 0.1663645 1594
S.LDL.FC -0.0405157 -0.0985588 0.0175274 0.1707241 1591
XS.VLDL.TG.. 0.0390836 -0.0182145 0.0963816 0.1805149 1594
S.VLDL.C.. -0.0376308 -0.0944723 0.0192107 0.1938413 1594
L.VLDL.C 0.0384687 -0.0204472 0.0973847 0.1994149 1580
M.HDL.TG.. 0.0380451 -0.0203150 0.0964052 0.2007183 1594
L.VLDL.PL 0.0376704 -0.0209862 0.0963270 0.2069550 1580
S.VLDL.CE.. -0.0358790 -0.0917980 0.0200400 0.2079792 1594
L.VLDL.L 0.0375085 -0.0212633 0.0962804 0.2098337 1580
S.LDL.L -0.0369697 -0.0949329 0.0209936 0.2106567 1591
L.VLDL.P 0.0372951 -0.0214855 0.0960756 0.2125098 1580
IDL.CE.. -0.0356672 -0.0918976 0.0205632 0.2134255 1593
L.VLDL.CE 0.0369370 -0.0219659 0.0958399 0.2177294 1580
S.VLDL.TG.. 0.0362985 -0.0215291 0.0941261 0.2178635 1594
L.VLDL.TG 0.0367375 -0.0219936 0.0954685 0.2190760 1580
M.LDL.FC -0.0361573 -0.0942855 0.0219709 0.2221486 1592
M.LDL.L -0.0359521 -0.0937653 0.0218612 0.2222784 1592
XXL.VLDL.FC.. 0.0367765 -0.0228861 0.0964390 0.2253122 1532
M.VLDL.PL.. -0.0373996 -0.0980130 0.0232138 0.2258811 1594
S.LDL.P -0.0355414 -0.0936254 0.0225426 0.2297721 1591
S.HDL.C -0.0325232 -0.0864547 0.0214084 0.2366505 1594
M.LDL.P -0.0347410 -0.0926385 0.0231565 0.2389230 1592
TotCho -0.0464416 -0.1245495 0.0316662 0.2426456 1591
LDL.C -0.0336773 -0.0903134 0.0229587 0.2432448 1594
FAw3.FA -0.0342072 -0.0921855 0.0237710 0.2449264 1590
L.HDL.PL.. -0.0321253 -0.0877125 0.0234619 0.2566463 1590
L.LDL.CE -0.0327512 -0.0899905 0.0244880 0.2615010 1594
S.HDL.TG 0.0332406 -0.0251283 0.0916094 0.2630529 1594
M.LDL.FC.. 0.0323394 -0.0246342 0.0893129 0.2652554 1592
L.LDL.C -0.0323646 -0.0895749 0.0248457 0.2669188 1594
MUFA.FA 0.0332420 -0.0255855 0.0920695 0.2671005 1590
PUFA.FA -0.0319827 -0.0887054 0.0247400 0.2677234 1590
Gly 0.0322751 -0.0250010 0.0895512 0.2688483 1591
LDL.D 0.0294551 -0.0240995 0.0830097 0.2804495 1594
L.LDL.FC -0.0311883 -0.0879708 0.0255941 0.2810879 1594
M.HDL.FC.. -0.0304749 -0.0871008 0.0261509 0.2909168 1594
XL.HDL.C.. -0.0310099 -0.0887805 0.0267608 0.2915462 1594
EstC -0.0309219 -0.0891432 0.0272995 0.2972286 1591
M.HDL.TG 0.0310636 -0.0276707 0.0897978 0.2988275 1594
L.LDL.L -0.0301333 -0.0878973 0.0276308 0.3059320 1594
FAw3 -0.0309143 -0.0904818 0.0286533 0.3061027 1590
L.LDL.PL.. 0.0291932 -0.0268260 0.0852124 0.3065456 1594
M.HDL.CE -0.0297266 -0.0872579 0.0278047 0.3105941 1594
XS.VLDL.C.. -0.0293287 -0.0862804 0.0276231 0.3121246 1594
S.HDL.CE -0.0264462 -0.0781344 0.0252421 0.3153689 1594
L.LDL.PL -0.0292444 -0.0874144 0.0289255 0.3237603 1594
PC -0.0309646 -0.0932433 0.0313142 0.3287136 1591
L.LDL.P -0.0288082 -0.0867117 0.0290953 0.3288428 1594
M.HDL.C -0.0286092 -0.0863488 0.0291304 0.3308323 1594
UnSat -0.0280872 -0.0850954 0.0289209 0.3332025 1590
S.LDL.PL -0.0281983 -0.0868144 0.0304178 0.3449380 1591
XL.HDL.TG 0.0271160 -0.0297550 0.0839870 0.3493629 1594
Leu -0.0270310 -0.0843784 0.0303164 0.3534876 1594
TotPG -0.0282099 -0.0880501 0.0316302 0.3541618 1591
IDL.C -0.0268786 -0.0846638 0.0309066 0.3613156 1593
M.LDL.PL -0.0272598 -0.0860506 0.0315310 0.3627082 1592
IDL.CE -0.0266807 -0.0846767 0.0313152 0.3666162 1593
XL.HDL.CE.. -0.0260917 -0.0833104 0.0311269 0.3701611 1594
Serum.TG 0.0262884 -0.0316941 0.0842709 0.3730715 1594
XXL.VLDL.C 0.0248388 -0.0302109 0.0798884 0.3754027 1532
Serum.C -0.0262063 -0.0843422 0.0319297 0.3762592 1594
VLDL.D 0.0253812 -0.0322415 0.0830038 0.3871156 1594
XXL.VLDL.FC 0.0249475 -0.0317614 0.0816565 0.3874355 1532
XS.VLDL.PL.. -0.0228220 -0.0748187 0.0291748 0.3889056 1594
XL.VLDL.P 0.0262018 -0.0336315 0.0860351 0.3895841 1555
M.VLDL.CE.. -0.0251352 -0.0824886 0.0322182 0.3896857 1594
DHA -0.0260493 -0.0859623 0.0338637 0.3906524 1590
IDL.PL -0.0252808 -0.0831036 0.0325419 0.3907884 1593
XL.VLDL.TG 0.0260992 -0.0336551 0.0858535 0.3907907 1555
XL.HDL.FC.. -0.0233402 -0.0769964 0.0303160 0.3935225 1594
IDL.TG 0.0256294 -0.0334699 0.0847287 0.3940500 1593
XS.VLDL.CE.. -0.0245886 -0.0814462 0.0322690 0.3960363 1594
XL.VLDL.L 0.0258346 -0.0340031 0.0856724 0.3963063 1555
M.HDL.FC -0.0249227 -0.0828791 0.0330337 0.3985131 1594
IDL.L -0.0248943 -0.0828483 0.0330597 0.3992048 1594
PUFA -0.0253358 -0.0844393 0.0337678 0.3998496 1590
S.HDL.C.. -0.0224152 -0.0747149 0.0298845 0.4000557 1594
FAw6.FA -0.0241067 -0.0813386 0.0331252 0.4057813 1590
L.VLDL.PL.. 0.0239058 -0.0328803 0.0806919 0.4083744 1580
XXL.VLDL.C.. 0.0234249 -0.0327648 0.0796147 0.4124055 1532
bOHBut 0.0240081 -0.0347927 0.0828089 0.4224754 1577
IDL.FC -0.0225542 -0.0784582 0.0333498 0.4284457 1593
S.HDL.L -0.0237860 -0.0835350 0.0359631 0.4342943 1594
LA.FA -0.0235991 -0.0836875 0.0364893 0.4359183 1590
XS.VLDL.TG 0.0233090 -0.0357404 0.0823585 0.4377408 1594
VLDL.TG 0.0229421 -0.0352091 0.0810934 0.4383276 1594
M.VLDL.FC.. 0.0229837 -0.0352784 0.0812457 0.4383898 1594
IDL.P -0.0228717 -0.0809536 0.0352101 0.4395921 1594
XXL.VLDL.CE 0.0209040 -0.0323381 0.0741461 0.4405942 1532
L.VLDL.TG.. -0.0219164 -0.0790067 0.0351738 0.4504391 1580
DHA.FA -0.0217418 -0.0793973 0.0359136 0.4574811 1590
S.HDL.P -0.0224880 -0.0824377 0.0374617 0.4612362 1594
SFA.FA 0.0221511 -0.0374842 0.0817865 0.4648249 1590
FAw6 -0.0217346 -0.0805662 0.0370970 0.4681617 1590
L.VLDL.C.. 0.0211976 -0.0363224 0.0787177 0.4690186 1580
S.VLDL.TG 0.0215614 -0.0370572 0.0801800 0.4698176 1594
XL.VLDL.CE 0.0225872 -0.0390591 0.0842335 0.4716543 1555
M.VLDL.TG.. 0.0207443 -0.0359120 0.0774006 0.4722868 1594
XL.VLDL.PL 0.0216329 -0.0378066 0.0810725 0.4746159 1555
AcAce 0.0212497 -0.0373106 0.0798099 0.4758175 1594
S.HDL.PL.. 0.0197010 -0.0348522 0.0742541 0.4781895 1594
S.HDL.FC -0.0211447 -0.0798298 0.0375404 0.4788761 1594
S.HDL.CE.. -0.0181769 -0.0689369 0.0325830 0.4820556 1594
LA -0.0212019 -0.0805678 0.0381640 0.4826474 1590
M.VLDL.TG 0.0207182 -0.0373802 0.0788166 0.4836326 1594
S.LDL.FC.. 0.0202247 -0.0371823 0.0776318 0.4889799 1591
ApoA1 -0.0199688 -0.0775573 0.0376196 0.4958991 1594
XL.VLDL.C.. -0.0254682 -0.0990438 0.0481074 0.4960244 1555
M.VLDL.C.. -0.0198268 -0.0771578 0.0375041 0.4972311 1594
L.LDL.TG 0.0201781 -0.0384064 0.0787625 0.4985534 1594
LDL.TG 0.0200655 -0.0384538 0.0785848 0.5004762 1594
XL.HDL.PL.. 0.0197415 -0.0380135 0.0774964 0.5021209 1594
M.VLDL.FC 0.0198337 -0.0383640 0.0780313 0.5031830 1594
XL.VLDL.C 0.0207218 -0.0409963 0.0824400 0.5095383 1555
M.HDL.L -0.0195458 -0.0777768 0.0386853 0.5098331 1594
M.VLDL.P 0.0192940 -0.0388635 0.0774515 0.5145994 1594
M.VLDL.L 0.0191473 -0.0390415 0.0773360 0.5180202 1594
Cit -0.0190495 -0.0773645 0.0392655 0.5211553 1593
XS.VLDL.FC.. -0.0169552 -0.0689179 0.0350075 0.5221903 1594
S.LDL.TG 0.0187690 -0.0394086 0.0769467 0.5261324 1591
FreeC -0.0184689 -0.0766467 0.0397089 0.5331860 1591
SM -0.0187193 -0.0783598 0.0409212 0.5376182 1590
M.LDL.TG 0.0183592 -0.0401994 0.0769178 0.5379596 1592
XL.VLDL.CE.. -0.0198086 -0.0833329 0.0437157 0.5394757 1555
XXL.VLDL.L 0.0174466 -0.0387951 0.0736883 0.5422042 1532
L.HDL.FC.. -0.0171265 -0.0728232 0.0385702 0.5462285 1590
M.VLDL.PL 0.0177987 -0.0402952 0.0758926 0.5472489 1594
M.HDL.P -0.0177575 -0.0760351 0.0405201 0.5495895 1594
Ile -0.0173991 -0.0750018 0.0402036 0.5524687 1594
TG.PG 0.0174196 -0.0404273 0.0752666 0.5542676 1591
HDL2.C -0.0173114 -0.0749378 0.0403150 0.5553599 1594
HDL.C -0.0172429 -0.0747694 0.0402835 0.5561728 1594
XL.HDL.TG.. 0.0170114 -0.0398471 0.0738700 0.5569562 1594
XXL.VLDL.P 0.0167385 -0.0395239 0.0730008 0.5588563 1532
XXL.VLDL.TG.. -0.0155933 -0.0691403 0.0379537 0.5670774 1532
Gp 0.0162658 -0.0398789 0.0724104 0.5695404 1594
XL.VLDL.FC 0.0174663 -0.0434369 0.0783696 0.5732011 1555
XL.HDL.PL 0.0159513 -0.0404352 0.0723378 0.5785602 1594
XS.VLDL.CE -0.0160175 -0.0739194 0.0418844 0.5870088 1594
XS.VLDL.C -0.0159576 -0.0739284 0.0420132 0.5888117 1594
XXL.VLDL.PL.. -0.0111525 -0.0529977 0.0306927 0.6003911 1532
XXL.VLDL.TG 0.0147563 -0.0414555 0.0709681 0.6060002 1532
M.VLDL.C 0.0152000 -0.0430640 0.0734640 0.6082898 1594
Pyr 0.0148866 -0.0423649 0.0721380 0.6094556 1593
S.VLDL.FC.. -0.0144791 -0.0715189 0.0425607 0.6180987 1594
Phe -0.0137205 -0.0683143 0.0408734 0.6220226 1594
IDL.FC.. -0.0125022 -0.0630601 0.0380557 0.6272322 1593
XS.VLDL.PL -0.0141040 -0.0713243 0.0431163 0.6284895 1594
XS.VLDL.FC -0.0140191 -0.0712885 0.0432503 0.6307116 1594
M.HDL.PL -0.0140711 -0.0722949 0.0441526 0.6349668 1594
L.VLDL.CE.. -0.0136343 -0.0702075 0.0429389 0.6360970 1580
IDL.PL.. -0.0129261 -0.0675166 0.0416644 0.6409260 1593
S.VLDL.PL 0.0138262 -0.0453811 0.0730336 0.6461044 1594
Crea -0.0133863 -0.0711478 0.0443751 0.6489129 1589
S.VLDL.CE -0.0132937 -0.0717914 0.0452041 0.6553425 1594
S.VLDL.P 0.0132686 -0.0456796 0.0722167 0.6581819 1594
XXL.VLDL.PL 0.0118792 -0.0420191 0.0657775 0.6649373 1532
XL.HDL.P 0.0120611 -0.0437373 0.0678594 0.6712730 1594
HDL3.C -0.0115099 -0.0684726 0.0454528 0.6911880 1594
S.VLDL.L 0.0117089 -0.0472772 0.0706949 0.6964004 1594
XL.HDL.L 0.0108024 -0.0449102 0.0665149 0.7034318 1594
Remnant.C -0.0108727 -0.0692336 0.0474882 0.7144786 1594
XL.VLDL.FC.. -0.0114490 -0.0773063 0.0544082 0.7328458 1555
M.VLDL.CE 0.0101086 -0.0481732 0.0683904 0.7333188 1594
S.VLDL.FC 0.0102070 -0.0490219 0.0694360 0.7347145 1594
Ace 0.0108311 -0.0530686 0.0747308 0.7368344 1594
Gln 0.0095288 -0.0479938 0.0670514 0.7437143 1594
ApoB -0.0097365 -0.0683314 0.0488585 0.7442134 1594
L.LDL.FC.. -0.0087436 -0.0632917 0.0458044 0.7529391 1594
Ala -0.0084842 -0.0656308 0.0486624 0.7707999 1594
TotFA -0.0081167 -0.0662898 0.0500564 0.7839437 1590
XS.VLDL.L -0.0080520 -0.0667303 0.0506263 0.7875014 1594
XXL.VLDL.CE.. 0.0068574 -0.0484381 0.0621529 0.8075052 1532
S.HDL.PL -0.0063844 -0.0646174 0.0518486 0.8294603 1594
L.HDL.FC -0.0058406 -0.0629396 0.0512584 0.8408406 1590
S.VLDL.C -0.0058729 -0.0650374 0.0532917 0.8453350 1594
VLDL.C 0.0055813 -0.0526980 0.0638605 0.8507190 1594
HDL.D 0.0052755 -0.0518163 0.0623672 0.8560351 1594
L.HDL.C.. -0.0051930 -0.0626093 0.0522233 0.8591059 1590
XS.VLDL.P -0.0053062 -0.0641343 0.0535220 0.8593505 1594
XL.HDL.FC 0.0045171 -0.0501520 0.0591861 0.8711460 1594
L.HDL.PL -0.0046451 -0.0623431 0.0530529 0.8743853 1590
MUFA 0.0045969 -0.0534832 0.0626770 0.8763847 1590
SFA -0.0044571 -0.0621068 0.0531925 0.8791944 1590
S.VLDL.PL.. 0.0040566 -0.0532658 0.0613789 0.8894822 1594
Lac -0.0032654 -0.0572988 0.0507681 0.9055688 1594
XL.VLDL.PL.. -0.0030554 -0.0583716 0.0522608 0.9136519 1555
XL.HDL.C 0.0029256 -0.0522969 0.0581481 0.9171687 1594
XL.HDL.CE 0.0025053 -0.0528153 0.0578259 0.9291581 1594
L.HDL.CE.. 0.0023915 -0.0539404 0.0587234 0.9336055 1590
Glc 0.0020966 -0.0547812 0.0589745 0.9423423 1589
S.HDL.FC.. 0.0015774 -0.0539256 0.0570804 0.9554563 1594
XL.VLDL.TG.. 0.0016203 -0.0571629 0.0604034 0.9568501 1555
L.HDL.C -0.0009837 -0.0584154 0.0564480 0.9731711 1590
ApoB.ApoA1 -0.0007674 -0.0589024 0.0573676 0.9793219 1594
L.HDL.P 0.0007222 -0.0568225 0.0582668 0.9803383 1590
L.HDL.CE 0.0002180 -0.0572031 0.0576391 0.9940520 1590
L.HDL.L -0.0002067 -0.0577351 0.0573217 0.9943704 1590

Among cases, results for the effects of PCa predisposition score on metabolites

Metabolite Estimate 2.5% 97.5% Pval N
His -0.0798869 -0.1571298 -0.0026439 0.0423154 938
Alb -0.0656477 -0.1368580 0.0055627 0.0704714 940
FAw3.FA -0.0542994 -0.1271083 0.0185094 0.1394054 938
Val -0.0547475 -0.1308975 0.0214025 0.1567463 939
Pyr 0.0528507 -0.0218764 0.1275778 0.1639532 940
Leu -0.0514415 -0.1254367 0.0225537 0.1714033 940
L.VLDL.FC.. 0.0527775 -0.0260472 0.1316022 0.1879452 929
M.HDL.PL.. 0.0424164 -0.0289728 0.1138056 0.2427621 940
S.HDL.FC -0.0446311 -0.1205042 0.0312419 0.2467184 940
Ile -0.0429705 -0.1169666 0.0310256 0.2530036 940
FAw3 -0.0423282 -0.1185668 0.0339105 0.2708006 938
Tyr -0.0412977 -0.1151160 0.0325205 0.2711492 938
S.HDL.P -0.0402187 -0.1187783 0.0383410 0.3133887 940
S.HDL.L -0.0401044 -0.1184700 0.0382611 0.3136356 940
DHA.FA -0.0369329 -0.1095948 0.0357289 0.3136775 938
L.VLDL.FC 0.0384147 -0.0385659 0.1153952 0.3258290 929
LDL.D 0.0334094 -0.0341169 0.1009356 0.3310632 940
Cit -0.0351116 -0.1071766 0.0369533 0.3369745 939
Glol 0.0919520 -0.1066941 0.2905980 0.3463224 176
DHA -0.0355600 -0.1107662 0.0396462 0.3469911 938
L.HDL.TG 0.0316754 -0.0381294 0.1014803 0.3720829 939
L.VLDL.C 0.0338254 -0.0427458 0.1103965 0.3842731 929
M.HDL.FC.. -0.0321991 -0.1070782 0.0426800 0.3975188 940
XL.HDL.TG 0.0313631 -0.0417924 0.1045186 0.3993787 940
L.VLDL.PL 0.0322971 -0.0438789 0.1084732 0.4037024 929
L.VLDL.CE 0.0323216 -0.0441405 0.1087838 0.4050582 929
M.LDL.TG.. 0.0284732 -0.0388852 0.0958316 0.4051325 938
L.VLDL.L 0.0320747 -0.0442232 0.1083726 0.4077692 929
XL.HDL.P 0.0283847 -0.0394445 0.0962139 0.4105244 940
L.VLDL.P 0.0317441 -0.0445458 0.1080339 0.4125779 929
M.HDL.C.. -0.0296504 -0.1015576 0.0422568 0.4173002 940
XL.HDL.L 0.0276524 -0.0400058 0.0953105 0.4215457 940
XL.VLDL.CE.. -0.0347197 -0.1201753 0.0507358 0.4230712 912
L.VLDL.TG 0.0309566 -0.0452570 0.1071702 0.4238575 929
M.HDL.CE -0.0298459 -0.1034855 0.0437938 0.4257297 940
M.HDL.C -0.0298611 -0.1037582 0.0440361 0.4269778 940
S.HDL.C -0.0280467 -0.0975800 0.0414865 0.4275983 940
M.HDL.FC -0.0300067 -0.1045634 0.0445500 0.4283469 940
UnSat -0.0282307 -0.0990855 0.0426241 0.4325091 938
M.LDL.CE.. -0.0243310 -0.0862856 0.0376236 0.4405648 938
L.HDL.TG.. 0.0275301 -0.0443544 0.0994146 0.4516246 939
Phe -0.0264729 -0.0956265 0.0426808 0.4522564 940
XL.HDL.CE 0.0253018 -0.0415595 0.0921632 0.4569591 940
M.HDL.CE.. -0.0265063 -0.0971995 0.0441869 0.4601547 940
S.HDL.PL -0.0277287 -0.1019323 0.0464750 0.4621510 940
XL.HDL.C 0.0248334 -0.0419185 0.0915854 0.4645955 940
L.VLDL.TG.. -0.0270267 -0.1008760 0.0468225 0.4712156 929
XL.HDL.PL 0.0254204 -0.0442102 0.0950511 0.4724944 940
M.HDL.L -0.0265771 -0.1004372 0.0472830 0.4789234 940
XS.VLDL.CE.. 0.0250898 -0.0447520 0.0949316 0.4796217 940
L.VLDL.C.. 0.0265014 -0.0484107 0.1014134 0.4865458 929
XL.HDL.FC 0.0232016 -0.0430716 0.0894748 0.4913641 940
HDL.TG 0.0246883 -0.0465023 0.0958788 0.4943081 940
M.HDL.P -0.0255748 -0.0994273 0.0482777 0.4955415 940
XL.VLDL.TG 0.0266312 -0.0509714 0.1042339 0.4985506 912
L.HDL.PL.. -0.0243748 -0.0952184 0.0464689 0.4991901 939
XL.VLDL.P 0.0262140 -0.0513578 0.1037858 0.5051733 912
M.HDL.TG.. 0.0250736 -0.0494787 0.0996260 0.5081591 940
XL.VLDL.L 0.0259579 -0.0515973 0.1035131 0.5092688 912
XS.VLDL.FC.. -0.0218304 -0.0879204 0.0442596 0.5164659 940
S.LDL.TG.. 0.0222156 -0.0454665 0.0898977 0.5176707 938
bOHBut 0.0243008 -0.0499246 0.0985263 0.5196779 936
S.HDL.TG.. 0.0237310 -0.0491801 0.0966421 0.5213439 940
XL.VLDL.C.. -0.0335425 -0.1371231 0.0700382 0.5238450 912
XL.VLDL.PL 0.0247395 -0.0533536 0.1028326 0.5322890 912
L.VLDL.PL.. 0.0225472 -0.0495282 0.0946227 0.5379187 929
M.HDL.PL -0.0226484 -0.0961461 0.0508492 0.5439361 940
S.LDL.CE.. -0.0178271 -0.0783242 0.0426700 0.5626571 938
S.HDL.CE -0.0194307 -0.0859348 0.0470733 0.5655861 940
Crea 0.0208613 -0.0516705 0.0933930 0.5714970 937
M.LDL.C.. -0.0177021 -0.0798877 0.0444834 0.5757675 938
M.VLDL.PL.. -0.0213847 -0.0969443 0.0541749 0.5780839 940
XL.VLDL.FC 0.0220276 -0.0572715 0.1013266 0.5842242 912
XXL.VLDL.CE 0.0182999 -0.0486631 0.0852630 0.5901120 899
S.HDL.FC.. -0.0192814 -0.0897412 0.0511783 0.5905116 940
XXL.VLDL.C 0.0185977 -0.0496134 0.0868088 0.5907546 899
XL.HDL.C.. -0.0197437 -0.0937422 0.0542548 0.5993990 940
MUFA.FA 0.0197233 -0.0549415 0.0943881 0.6028175 938
XXL.VLDL.FC 0.0181719 -0.0519443 0.0882882 0.6091869 899
XXL.VLDL.TG 0.0180459 -0.0524532 0.0885450 0.6140443 899
XXL.VLDL.L 0.0177940 -0.0527812 0.0883693 0.6192294 899
XL.HDL.CE.. -0.0184936 -0.0918002 0.0548131 0.6194244 940
XXL.VLDL.P 0.0177517 -0.0528863 0.0883898 0.6203924 899
XL.VLDL.C 0.0189999 -0.0617732 0.0997730 0.6429935 912
PUFA.FA -0.0161836 -0.0858681 0.0535010 0.6471710 938
XL.VLDL.CE 0.0178815 -0.0625297 0.0982927 0.6612405 912
S.LDL.C.. -0.0138270 -0.0760558 0.0484018 0.6623017 938
HDL.D 0.0150888 -0.0566769 0.0868545 0.6791163 940
M.LDL.CE -0.0143197 -0.0824335 0.0537941 0.6796647 938
S.LDL.CE -0.0134954 -0.0804234 0.0534327 0.6920753 938
XXL.VLDL.PL 0.0127105 -0.0537822 0.0792031 0.7062717 899
XXL.VLDL.PL.. -0.0086770 -0.0552094 0.0378555 0.7133417 899
L.LDL.TG.. 0.0124027 -0.0545156 0.0793210 0.7149788 940
L.LDL.FC.. 0.0128063 -0.0564314 0.0820439 0.7152231 940
M.LDL.PL.. 0.0121373 -0.0535306 0.0778052 0.7165044 938
ApoA1 -0.0129730 -0.0838075 0.0578616 0.7184051 940
AcAce 0.0136687 -0.0612093 0.0885468 0.7194201 940
M.LDL.TG 0.0132125 -0.0595254 0.0859505 0.7205566 938
XS.VLDL.C.. 0.0125002 -0.0582295 0.0832299 0.7277539 940
LDL.TG 0.0127254 -0.0603745 0.0858254 0.7315812 940
L.LDL.TG 0.0125981 -0.0602056 0.0854018 0.7331459 940
M.LDL.FC.. 0.0120662 -0.0584854 0.0826177 0.7368956 938
S.LDL.FC -0.0120911 -0.0834409 0.0592587 0.7390928 938
M.HDL.TG 0.0121385 -0.0627330 0.0870100 0.7493216 940
PUFA -0.0122203 -0.0877430 0.0633024 0.7500960 938
XS.VLDL.CE 0.0114365 -0.0595808 0.0824538 0.7513262 940
S.LDL.C -0.0108468 -0.0795944 0.0579007 0.7566143 938
L.HDL.FC.. 0.0107209 -0.0579299 0.0793716 0.7585768 939
Gly -0.0114872 -0.0852342 0.0622598 0.7592184 938
M.LDL.C -0.0106597 -0.0800139 0.0586946 0.7627124 938
HDL.C -0.0109418 -0.0823486 0.0604649 0.7628912 940
S.HDL.TG 0.0113444 -0.0629958 0.0856846 0.7633913 940
XL.HDL.PL.. 0.0112613 -0.0631937 0.0857162 0.7658338 940
SFA.FA 0.0105485 -0.0618089 0.0829059 0.7742803 938
S.LDL.TG 0.0107872 -0.0637315 0.0853060 0.7754035 938
S.VLDL.FC.. -0.0102282 -0.0824091 0.0619527 0.7803827 940
Ala -0.0098104 -0.0807740 0.0611532 0.7859961 940
HDL3.C -0.0097031 -0.0803174 0.0609111 0.7860674 940
Serum.TG 0.0102985 -0.0645599 0.0851568 0.7862945 940
S.LDL.PL.. 0.0091303 -0.0576174 0.0758780 0.7881259 938
XL.VLDL.PL.. 0.0107587 -0.0680992 0.0896166 0.7883962 912
Lac -0.0096582 -0.0806170 0.0613005 0.7885844 940
XXL.VLDL.FC.. 0.0095485 -0.0619854 0.0810824 0.7915782 899
HDL2.C -0.0095160 -0.0811883 0.0621564 0.7938702 940
S.LDL.L -0.0091507 -0.0802389 0.0619375 0.8003299 938
XXL.VLDL.TG.. 0.0084747 -0.0583022 0.0752516 0.8028138 899
IDL.TG 0.0092104 -0.0644049 0.0828258 0.8051445 940
XL.HDL.TG.. 0.0089403 -0.0631022 0.0809828 0.8070900 940
S.LDL.P -0.0086693 -0.0800638 0.0627251 0.8114156 938
L.HDL.C.. 0.0085625 -0.0624962 0.0796212 0.8127755 939
L.HDL.CE.. 0.0083223 -0.0614083 0.0780530 0.8146699 939
ApoB.ApoA1 0.0087139 -0.0650397 0.0824676 0.8162505 940
M.LDL.L -0.0083158 -0.0792927 0.0626611 0.8179487 938
M.LDL.P -0.0082210 -0.0793464 0.0629045 0.8203546 938
M.VLDL.CE 0.0085682 -0.0667876 0.0839239 0.8228378 940
L.VLDL.CE.. -0.0079252 -0.0802738 0.0644234 0.8296421 929
S.LDL.PL -0.0080395 -0.0818481 0.0657690 0.8303630 938
VLDL.D 0.0077415 -0.0652597 0.0807427 0.8347199 940
IDL.C.. 0.0067848 -0.0585244 0.0720940 0.8383113 940
VLDL.TG 0.0071246 -0.0679451 0.0821944 0.8516934 940
TotPG -0.0067765 -0.0789193 0.0653663 0.8531068 938
S.VLDL.TG.. 0.0067871 -0.0660296 0.0796039 0.8544436 940
L.HDL.FC 0.0066316 -0.0645613 0.0778244 0.8545785 939
M.VLDL.CE.. 0.0065820 -0.0643406 0.0775046 0.8552568 940
M.LDL.FC -0.0065955 -0.0778995 0.0647086 0.8557786 938
IDL.FC 0.0058761 -0.0601855 0.0719377 0.8612898 940
XS.VLDL.PL.. -0.0054745 -0.0689653 0.0580164 0.8652125 940
M.VLDL.C 0.0064095 -0.0690741 0.0818930 0.8671770 940
EstC -0.0059836 -0.0774327 0.0654655 0.8692504 938
IDL.C 0.0058270 -0.0641497 0.0758037 0.8700786 940
XS.VLDL.C 0.0059065 -0.0653318 0.0771449 0.8703794 940
IDL.PL 0.0057402 -0.0642854 0.0757658 0.8720776 940
S.HDL.C.. -0.0052954 -0.0706629 0.0600721 0.8733842 940
Ace -0.0052221 -0.0717803 0.0613362 0.8740702 940
IDL.CE 0.0056951 -0.0651295 0.0765196 0.8744944 940
IDL.P 0.0056810 -0.0654540 0.0768159 0.8753108 940
L.HDL.C 0.0057082 -0.0659567 0.0773731 0.8754785 939
IDL.L 0.0055656 -0.0651891 0.0763203 0.8771902 940
L.LDL.C.. 0.0047773 -0.0560733 0.0656278 0.8775026 940
L.HDL.CE 0.0055953 -0.0660298 0.0772204 0.8778582 939
VLDL.C 0.0057838 -0.0693584 0.0809259 0.8794276 940
S.HDL.PL.. 0.0052128 -0.0625619 0.0729875 0.8798451 940
XS.VLDL.FC -0.0053281 -0.0762118 0.0655556 0.8824095 940
L.HDL.P 0.0052307 -0.0666650 0.0771265 0.8861452 939
Remnant.C 0.0053224 -0.0685854 0.0792303 0.8873198 940
M.VLDL.C.. 0.0050170 -0.0663709 0.0764049 0.8900979 940
M.LDL.PL -0.0051401 -0.0787366 0.0684563 0.8907989 938
M.VLDL.FC.. -0.0050382 -0.0783420 0.0682655 0.8922998 940
L.HDL.L 0.0048538 -0.0670277 0.0767354 0.8942829 939
L.LDL.FC 0.0046172 -0.0636339 0.0728684 0.8942872 940
XL.HDL.FC.. -0.0043905 -0.0692802 0.0604992 0.8943094 940
FreeC 0.0047743 -0.0665654 0.0761140 0.8953525 938
M.VLDL.L 0.0050041 -0.0702424 0.0802505 0.8957918 940
M.VLDL.TG 0.0049312 -0.0700118 0.0798741 0.8968994 940
M.VLDL.P 0.0049449 -0.0702429 0.0801328 0.8969388 940
LA -0.0050225 -0.0816557 0.0716107 0.8973914 938
IDL.CE.. 0.0044163 -0.0653047 0.0741372 0.9010518 940
SM 0.0047479 -0.0708508 0.0803466 0.9015405 938
XL.VLDL.TG.. 0.0050618 -0.0775806 0.0877042 0.9041608 912
L.LDL.PL.. -0.0039244 -0.0707173 0.0628684 0.9081851 940
IDL.TG.. 0.0040163 -0.0648673 0.0728998 0.9085493 940
M.VLDL.PL 0.0040652 -0.0711448 0.0792751 0.9152077 940
M.VLDL.FC 0.0038877 -0.0712762 0.0790517 0.9188487 940
ApoB 0.0038529 -0.0708861 0.0785918 0.9192296 940
PC -0.0037205 -0.0762711 0.0688301 0.9195796 938
Glc 0.0036059 -0.0674932 0.0747050 0.9206899 938
MUFA 0.0037155 -0.0714491 0.0788801 0.9223494 938
XL.VLDL.FC.. 0.0042619 -0.0820039 0.0905278 0.9225977 912
Gln 0.0034677 -0.0679117 0.0748471 0.9234774 940
S.VLDL.C.. -0.0033997 -0.0736808 0.0668814 0.9241936 940
LA.FA -0.0035016 -0.0786547 0.0716515 0.9260639 938
TotFA -0.0032321 -0.0786229 0.0721588 0.9326569 938
XS.VLDL.P 0.0027774 -0.0707542 0.0763091 0.9407055 940
XS.VLDL.L 0.0027403 -0.0703185 0.0757992 0.9411315 940
IDL.FC.. 0.0021425 -0.0555984 0.0598835 0.9417212 940
S.VLDL.FC -0.0028179 -0.0791849 0.0735491 0.9419504 940
S.HDL.CE.. -0.0023584 -0.0664279 0.0617111 0.9422760 940
S.VLDL.C -0.0026974 -0.0778615 0.0724667 0.9436224 940
FAw6 -0.0026668 -0.0776019 0.0722683 0.9442172 938
XS.VLDL.TG 0.0023887 -0.0730102 0.0777877 0.9501486 940
L.LDL.C 0.0021809 -0.0671192 0.0714811 0.9507171 940
FAw6.FA 0.0021907 -0.0681194 0.0725008 0.9508374 938
TotCho -0.0021425 -0.0743178 0.0700327 0.9533855 938
L.HDL.PL 0.0018936 -0.0702705 0.0740576 0.9588108 939
SFA -0.0018825 -0.0764412 0.0726762 0.9602894 938
S.VLDL.CE.. 0.0016601 -0.0669655 0.0702857 0.9620647 940
XXL.VLDL.C.. 0.0015749 -0.0672773 0.0704271 0.9640140 899
S.VLDL.TG 0.0015925 -0.0742362 0.0774211 0.9669795 940
Serum.C -0.0013670 -0.0727267 0.0699927 0.9699564 940
L.LDL.CE 0.0012901 -0.0683030 0.0708831 0.9709602 940
L.LDL.P 0.0012609 -0.0695283 0.0720501 0.9720884 940
XS.VLDL.PL 0.0012532 -0.0694240 0.0719304 0.9721923 940
L.LDL.PL 0.0011977 -0.0701743 0.0725697 0.9736995 940
L.LDL.L 0.0011014 -0.0693305 0.0715332 0.9754960 940
TG.PG 0.0009772 -0.0734311 0.0753855 0.9793729 938
S.VLDL.PL.. 0.0009485 -0.0724216 0.0743185 0.9797199 940
S.VLDL.L -0.0009818 -0.0772446 0.0752809 0.9797447 940
M.VLDL.TG.. 0.0008658 -0.0697226 0.0714543 0.9807528 940
S.VLDL.PL -0.0008566 -0.0774552 0.0757421 0.9823915 940
S.LDL.FC.. -0.0007891 -0.0719715 0.0703934 0.9826146 938
S.VLDL.P -0.0007526 -0.0770305 0.0755253 0.9844770 940
Gp 0.0006997 -0.0708737 0.0722730 0.9846507 940
S.VLDL.CE 0.0006845 -0.0725437 0.0739126 0.9853236 940
L.LDL.CE.. -0.0005477 -0.0658111 0.0647156 0.9868642 940
XXL.VLDL.CE.. 0.0004061 -0.0699509 0.0707630 0.9909362 899
IDL.PL.. -0.0002511 -0.0683544 0.0678522 0.9941794 940
XS.VLDL.TG.. 0.0000709 -0.0711729 0.0713147 0.9984346 940
LDL.C 0.0000436 -0.0685050 0.0685922 0.9990041 940

Among controls, results for the effects of PCa predisposition score on metabolites

Metabolite Estimate 2.5% 97.5% Pval N
L.LDL.TG.. 0.1380187 0.0347338 0.2413035 0.0085039 654
M.LDL.TG.. 0.1308995 0.0298373 0.2319617 0.0107821 654
L.LDL.C.. -0.1252209 -0.2256451 -0.0247966 0.0140205 654
IDL.TG.. 0.1289438 0.0233134 0.2345743 0.0161349 653
L.LDL.CE.. -0.1204028 -0.2202131 -0.0205926 0.0172809 654
IDL.C.. -0.1266099 -0.2351094 -0.0181105 0.0213851 653
S.LDL.TG.. 0.1169412 0.0163803 0.2175022 0.0220211 653
Gly 0.0965295 0.0026854 0.1903736 0.0424750 653
S.VLDL.CE.. -0.1004165 -0.1983957 -0.0024372 0.0429485 654
XS.VLDL.CE.. -0.1019247 -0.2016975 -0.0021519 0.0436251 654
XS.VLDL.TG.. 0.1007169 0.0018673 0.1995664 0.0445061 654
M.LDL.C.. -0.0910522 -0.1811476 -0.0009568 0.0466409 654
S.LDL.C.. -0.0955258 -0.1910705 0.0000190 0.0489229 653
S.VLDL.C.. -0.0976470 -0.1959831 0.0006890 0.0498567 654
S.VLDL.TG.. 0.0926438 -0.0038369 0.1891245 0.0581336 654
S.LDL.C -0.0969793 -0.1982867 0.0043280 0.0587275 653
S.LDL.CE -0.0921662 -0.1886914 0.0043589 0.0596205 653
S.LDL.PL.. 0.0971260 -0.0048885 0.1991405 0.0601402 653
XS.VLDL.C.. -0.0933794 -0.1918800 0.0051212 0.0611328 654
M.LDL.PL.. 0.0918936 -0.0072333 0.1910205 0.0673699 654
M.LDL.C -0.0922035 -0.1920864 0.0076793 0.0682434 654
LDL.C -0.0934624 -0.1949735 0.0080488 0.0688633 654
S.LDL.FC -0.0927506 -0.1940076 0.0085064 0.0703423 653
L.LDL.CE -0.0930074 -0.1951457 0.0091309 0.0718114 654
S.LDL.CE.. -0.0799484 -0.1674375 0.0075408 0.0721213 653
L.LDL.C -0.0930123 -0.1954194 0.0093948 0.0725859 654
L.LDL.FC -0.0922891 -0.1943643 0.0097862 0.0740946 654
M.LDL.CE -0.0829522 -0.1755434 0.0096390 0.0770373 654
M.VLDL.FC.. 0.0837251 -0.0097730 0.1772232 0.0776538 654
M.VLDL.CE.. -0.0876955 -0.1860216 0.0106306 0.0777341 654
IDL.CE.. -0.0878481 -0.1864176 0.0107215 0.0786198 653
M.LDL.FC -0.0899817 -0.1919573 0.0119939 0.0811646 654
S.LDL.L -0.0884806 -0.1900786 0.0131174 0.0851712 653
M.HDL.CE.. -0.0790776 -0.1701596 0.0120044 0.0871020 654
L.LDL.PL.. 0.0889748 -0.0140027 0.1919524 0.0873656 654
M.LDL.L -0.0863702 -0.1878178 0.0150774 0.0923270 654
S.LDL.P -0.0855809 -0.1870226 0.0158608 0.0953118 653
L.LDL.L -0.0857292 -0.1880200 0.0165617 0.0974343 654
M.LDL.CE.. -0.0651109 -0.1424468 0.0122249 0.0975746 654
M.LDL.P -0.0835189 -0.1850221 0.0179844 0.1037114 654
M.HDL.C.. -0.0761104 -0.1687955 0.0165747 0.1053134 654
L.LDL.PL -0.0833470 -0.1852914 0.0185973 0.1059442 654
M.VLDL.PL.. -0.0821646 -0.1826412 0.0183120 0.1061871 654
L.LDL.P -0.0828027 -0.1849482 0.0193428 0.1088339 654
IDL.C -0.0833239 -0.1866740 0.0200262 0.1108443 653
IDL.CE -0.0821179 -0.1848399 0.0206041 0.1138180 653
FAw6.FA -0.0793879 -0.1794496 0.0206738 0.1177194 652
IDL.PL -0.0803588 -0.1834637 0.0227462 0.1232416 653
IDL.L -0.0786542 -0.1809377 0.0236292 0.1282033 654
L.HDL.TG.. 0.0727343 -0.0216228 0.1670913 0.1282819 651
EstC -0.0764926 -0.1779431 0.0249578 0.1360403 653
M.VLDL.C.. -0.0719324 -0.1694557 0.0255908 0.1447656 654
S.HDL.TG.. 0.0702752 -0.0264620 0.1670124 0.1518690 654
IDL.P -0.0739236 -0.1760033 0.0281561 0.1518796 654
LA.FA -0.0727971 -0.1732262 0.0276320 0.1527163 652
S.HDL.TG 0.0701301 -0.0266874 0.1669476 0.1528923 654
IDL.FC -0.0724007 -0.1745676 0.0297661 0.1615417 653
Serum.C -0.0715830 -0.1728462 0.0296802 0.1621599 654
M.LDL.FC.. 0.0699957 -0.0293768 0.1693682 0.1634870 654
Tyr -0.0683681 -0.1652958 0.0285596 0.1644051 652
Crea -0.0679312 -0.1645413 0.0286790 0.1650547 652
HDL.TG 0.0667313 -0.0281749 0.1616375 0.1655253 654
M.VLDL.TG.. 0.0656617 -0.0307878 0.1621112 0.1788249 654
PUFA.FA -0.0671556 -0.1662775 0.0319663 0.1814701 652
M.LDL.PL -0.0673542 -0.1671021 0.0323937 0.1814893 654
PC -0.0785296 -0.1952940 0.0382349 0.1828192 653
TotCho -0.1131342 -0.2816590 0.0553905 0.1829652 653
VLDL.D 0.0641573 -0.0310731 0.1593876 0.1832461 654
S.LDL.PL -0.0649870 -0.1630024 0.0330283 0.1897599 653
XXL.VLDL.FC.. 0.0714167 -0.0363518 0.1791852 0.1910107 633
SFA.FA 0.0669077 -0.0354970 0.1693125 0.1958195 652
FAw6 -0.0616331 -0.1569478 0.0336816 0.2009142 652
M.HDL.PL.. 0.0585936 -0.0325822 0.1497693 0.2052335 654
L.HDL.FC.. -0.0621807 -0.1606180 0.0362567 0.2124580 651
LA -0.0578837 -0.1504740 0.0347067 0.2165332 652
S.VLDL.TG 0.0583135 -0.0348550 0.1514821 0.2166023 654
Serum.TG 0.0579966 -0.0349926 0.1509858 0.2182241 654
Pyr -0.0552855 -0.1444079 0.0338369 0.2206375 653
S.HDL.C.. -0.0562171 -0.1467040 0.0342699 0.2210098 654
M.HDL.TG 0.0605485 -0.0371642 0.1582612 0.2212461 654
M.HDL.TG.. 0.0597507 -0.0371715 0.1566729 0.2236362 654
TotPG -0.0658660 -0.1730526 0.0413206 0.2237703 653
XS.VLDL.CE -0.0623076 -0.1638378 0.0392225 0.2243119 654
XXL.VLDL.TG.. -0.0541287 -0.1430794 0.0348221 0.2268946 633
VLDL.TG 0.0562121 -0.0364522 0.1488764 0.2310629 654
L.HDL.TG 0.0563151 -0.0371344 0.1497646 0.2337476 651
S.LDL.FC.. 0.0599288 -0.0397218 0.1595794 0.2341518 653
FreeC -0.0603595 -0.1620359 0.0413169 0.2401456 653
M.VLDL.TG 0.0547107 -0.0378624 0.1472838 0.2432394 654
XS.VLDL.TG 0.0569043 -0.0402147 0.1540232 0.2470247 654
M.VLDL.FC 0.0535527 -0.0384536 0.1455589 0.2505380 654
AcAce 0.0543256 -0.0400388 0.1486901 0.2562161 654
XS.VLDL.PL.. -0.0525060 -0.1447636 0.0397517 0.2624884 654
L.VLDL.FC 0.0519312 -0.0399253 0.1437876 0.2645720 651
L.VLDL.TG 0.0525823 -0.0409786 0.1461432 0.2670447 651
L.VLDL.P 0.0523483 -0.0412592 0.1459559 0.2694769 651
L.VLDL.L 0.0522617 -0.0413024 0.1458257 0.2700722 651
L.VLDL.PL 0.0521662 -0.0412536 0.1455859 0.2702366 651
MUFA.FA 0.0549010 -0.0435419 0.1533439 0.2709702 652
XXL.VLDL.C.. 0.0548562 -0.0439792 0.1536916 0.2712247 633
S.HDL.CE.. -0.0485400 -0.1356164 0.0385364 0.2722814 654
S.HDL.C -0.0502249 -0.1405067 0.0400569 0.2733661 654
S.HDL.PL.. 0.0521121 -0.0427657 0.1469900 0.2785622 654
PUFA -0.0521809 -0.1477557 0.0433939 0.2798551 652
L.VLDL.C 0.0508859 -0.0426136 0.1443855 0.2827958 651
M.VLDL.P 0.0501680 -0.0421411 0.1424770 0.2832089 654
XS.VLDL.C -0.0547275 -0.1559451 0.0464900 0.2843066 654
M.VLDL.L 0.0495788 -0.0427129 0.1418705 0.2888123 654
S.HDL.CE -0.0467970 -0.1338571 0.0402631 0.2900505 654
TG.PG 0.0489377 -0.0449156 0.1427910 0.3032827 653
XL.HDL.FC.. -0.0506434 -0.1477331 0.0464463 0.3034220 654
L.VLDL.CE 0.0480620 -0.0455605 0.1416846 0.3110569 651
M.VLDL.PL 0.0469266 -0.0451469 0.1390001 0.3142160 654
SM -0.0505537 -0.1503060 0.0491985 0.3163656 652
Glol 0.1528850 -0.1681832 0.4739533 0.3213397 105
L.VLDL.FC.. 0.0419295 -0.0427095 0.1265686 0.3293328 651
His -0.0405381 -0.1245118 0.0434355 0.3412392 652
Ile 0.0455656 -0.0492255 0.1403567 0.3425931 654
L.LDL.FC.. -0.0442263 -0.1375441 0.0490915 0.3498443 654
IDL.TG 0.0471226 -0.0552281 0.1494732 0.3622781 653
XS.VLDL.PL -0.0442674 -0.1433525 0.0548178 0.3767345 654
IDL.FC.. -0.0408431 -0.1353202 0.0536340 0.3946815 653
XXL.VLDL.C 0.0404896 -0.0539057 0.1348849 0.3971389 633
IDL.PL.. -0.0402383 -0.1343648 0.0538881 0.3989608 653
XL.VLDL.FC.. -0.0407207 -0.1365069 0.0550655 0.4015983 643
L.HDL.PL.. -0.0394894 -0.1326960 0.0537171 0.4025762 651
S.VLDL.CE -0.0415483 -0.1410103 0.0579136 0.4078760 654
XXL.VLDL.FC 0.0406769 -0.0568182 0.1381720 0.4100910 633
XL.HDL.TG.. 0.0388028 -0.0556432 0.1332487 0.4174415 654
S.VLDL.P 0.0382490 -0.0554668 0.1319647 0.4199659 654
M.HDL.FC.. -0.0377106 -0.1302123 0.0547910 0.4209654 654
S.HDL.FC.. 0.0376973 -0.0566162 0.1320107 0.4302201 654
S.VLDL.PL 0.0374575 -0.0568473 0.1317623 0.4325257 654
Remnant.C -0.0382919 -0.1356215 0.0590377 0.4361776 654
Gp 0.0359218 -0.0564464 0.1282899 0.4412911 654
S.VLDL.FC.. -0.0367518 -0.1312938 0.0577902 0.4425001 654
M.VLDL.C 0.0347930 -0.0571269 0.1267130 0.4547674 654
XL.HDL.C.. -0.0362376 -0.1322119 0.0597366 0.4559527 654
XL.HDL.CE -0.0373465 -0.1371166 0.0624235 0.4588572 654
HDL2.C -0.0372271 -0.1382727 0.0638186 0.4664192 654
L.VLDL.CE.. -0.0337030 -0.1259263 0.0585202 0.4693099 651
Leu 0.0343431 -0.0594424 0.1281287 0.4696443 654
XL.HDL.C -0.0361202 -0.1357783 0.0635378 0.4731558 654
ApoA1 -0.0368416 -0.1386037 0.0649205 0.4737910 654
S.VLDL.L 0.0340284 -0.0599135 0.1279702 0.4740504 654
XL.VLDL.PL.. -0.0259883 -0.1005062 0.0485296 0.4894238 643
HDL.C -0.0351751 -0.1361934 0.0658432 0.4912248 654
XS.VLDL.FC -0.0342078 -0.1327067 0.0642912 0.4919396 654
XL.VLDL.CE 0.0330728 -0.0627148 0.1288605 0.4957127 643
S.LDL.TG 0.0313191 -0.0631565 0.1257947 0.5121452 653
L.HDL.FC -0.0328662 -0.1325340 0.0668016 0.5143203 651
UnSat -0.0320216 -0.1291552 0.0651119 0.5149137 652
L.HDL.C.. -0.0332523 -0.1345473 0.0680427 0.5165734 651
ApoB -0.0315229 -0.1277779 0.0647322 0.5168091 654
S.VLDL.FC 0.0310342 -0.0636297 0.1256981 0.5169459 654
M.HDL.CE -0.0322080 -0.1306297 0.0662137 0.5173033 654
XL.VLDL.P 0.0310740 -0.0647720 0.1269200 0.5218753 643
XXL.VLDL.CE 0.0289721 -0.0607429 0.1186871 0.5240531 633
Ace 0.0425838 -0.0928763 0.1780438 0.5288027 654
XL.VLDL.TG 0.0304307 -0.0653003 0.1261617 0.5300418 643
XL.VLDL.L 0.0304377 -0.0654140 0.1262894 0.5304679 643
XL.HDL.FC -0.0308872 -0.1294369 0.0676624 0.5348502 654
bOHBut 0.0302718 -0.0681058 0.1286495 0.5435056 641
M.HDL.C -0.0299073 -0.1285571 0.0687424 0.5485926 654
XXL.VLDL.PL.. -0.0256620 -0.1110780 0.0597540 0.5505579 633
XS.VLDL.L -0.0302437 -0.1307888 0.0703015 0.5512769 654
S.HDL.PL 0.0288764 -0.0706302 0.1283829 0.5660209 654
Alb -0.0269141 -0.1218568 0.0680286 0.5756807 654
XL.VLDL.C 0.0268660 -0.0688297 0.1225616 0.5794685 643
LDL.D 0.0253302 -0.0658402 0.1165006 0.5839009 654
XL.HDL.CE.. -0.0259931 -0.1210799 0.0690936 0.5890359 654
HDL3.C -0.0266632 -0.1248601 0.0715338 0.5917689 654
LDL.TG 0.0259948 -0.0740274 0.1260171 0.6069128 654
XL.HDL.TG 0.0236251 -0.0683844 0.1156345 0.6123204 654
L.VLDL.PL.. 0.0244028 -0.0709994 0.1198051 0.6141812 651
L.LDL.TG 0.0253934 -0.0758598 0.1266465 0.6195047 654
XXL.VLDL.L 0.0233852 -0.0704980 0.1172683 0.6220213 633
XXL.VLDL.P 0.0217544 -0.0720403 0.1155491 0.6461142 633
M.HDL.FC -0.0227597 -0.1208199 0.0753005 0.6461892 654
XL.HDL.L -0.0228785 -0.1227942 0.0770373 0.6501615 654
XS.VLDL.P -0.0227877 -0.1229847 0.0774093 0.6523258 654
L.HDL.PL -0.0226217 -0.1228360 0.0775926 0.6552018 651
XL.VLDL.PL 0.0204235 -0.0729702 0.1138173 0.6656209 643
XL.HDL.PL.. 0.0202451 -0.0756377 0.1161279 0.6769896 654
XL.VLDL.C.. -0.0192103 -0.1104093 0.0719888 0.6775371 643
XL.HDL.P -0.0209073 -0.1208238 0.0790092 0.6785307 654
L.HDL.C -0.0192407 -0.1191491 0.0806678 0.7031840 651
XS.VLDL.FC.. -0.0165933 -0.1033333 0.0701467 0.7061718 654
M.LDL.TG 0.0185301 -0.0823235 0.1193836 0.7159920 654
XXL.VLDL.TG 0.0167807 -0.0768509 0.1104123 0.7225527 633
TotFA -0.0159588 -0.1085036 0.0765859 0.7329330 652
M.VLDL.CE 0.0148921 -0.0776928 0.1074771 0.7506270 654
L.HDL.L -0.0159817 -0.1158527 0.0838892 0.7515358 651
L.HDL.CE -0.0158529 -0.1157771 0.0840712 0.7535948 651
HDL.D -0.0144886 -0.1121076 0.0831303 0.7691193 654
XL.VLDL.FC 0.0142254 -0.0815132 0.1099641 0.7691641 643
Val -0.0139502 -0.1080246 0.0801241 0.7697108 654
S.VLDL.C -0.0142257 -0.1117631 0.0833117 0.7727317 654
XXL.VLDL.PL 0.0132733 -0.0794733 0.1060200 0.7767243 633
L.HDL.P -0.0141983 -0.1140693 0.0856726 0.7784850 651
Lac 0.0121246 -0.0762225 0.1004717 0.7863086 654
ApoB.ApoA1 -0.0133887 -0.1113586 0.0845813 0.7867854 654
Gln 0.0130766 -0.0862606 0.1124139 0.7948998 654
S.HDL.FC 0.0127592 -0.0855699 0.1110883 0.7975216 654
DHA.FA 0.0124298 -0.0865326 0.1113922 0.8040431 652
XXL.VLDL.CE.. 0.0113605 -0.0810244 0.1037454 0.8076221 633
M.HDL.L -0.0112749 -0.1117984 0.0892485 0.8242861 654
Phe 0.0100445 -0.0831636 0.1032525 0.8314991 654
L.HDL.CE.. -0.0103027 -0.1099897 0.0893844 0.8383149 651
FAw3.FA 0.0098450 -0.0906192 0.1103093 0.8463607 652
XL.HDL.PL -0.0081754 -0.1070867 0.0907359 0.8700360 654
M.HDL.P -0.0081237 -0.1088275 0.0925800 0.8731212 654
VLDL.C 0.0074560 -0.0864159 0.1013280 0.8752313 654
Ala -0.0075712 -0.1076549 0.0925124 0.8808518 654
L.VLDL.TG.. -0.0062301 -0.0979590 0.0854988 0.8934846 651
MUFA 0.0060528 -0.0870479 0.0991535 0.8976926 652
L.VLDL.C.. 0.0059033 -0.0847303 0.0965369 0.8978320 651
XL.VLDL.CE.. -0.0047392 -0.0982153 0.0887369 0.9200641 643
FAw3 -0.0047938 -0.1038393 0.0942517 0.9235979 652
SFA -0.0044354 -0.0968308 0.0879600 0.9243599 652
Glc -0.0032043 -0.0962822 0.0898735 0.9456252 651
S.HDL.L -0.0029933 -0.1005649 0.0945783 0.9516517 654
M.HDL.PL -0.0029191 -0.1039322 0.0980941 0.9543857 654
DHA -0.0018880 -0.1051473 0.1013712 0.9711173 652
S.VLDL.PL.. -0.0012708 -0.0941114 0.0915698 0.9784044 654
S.HDL.P 0.0011985 -0.0967767 0.0991736 0.9807067 654
Cit 0.0012075 -0.0988033 0.1012183 0.9809441 654
XL.VLDL.TG.. 0.0008852 -0.0910010 0.0927715 0.9848889 643