Included here are the methods and results for the regression of 228 metabolites on a prostate cancer predisposition score (PCa_Poly) of 63 SNPs in a subset of subjects (940 cases and 654 controls) within ProtecT. Weights for the score were obtained from seven prostate cancer GWAS in Europeans. MR-Base was used to import the selected GWAS files into R, where the files were merged and SNPs in LD removed. SNPs without effect estimates were also removed, and the remaining SNPs available for weights were harmonized with the SNPs from the genotype data, such that the effect alleles were the same. Genotype data and generated principal components were extracted from the Haplotype Reference Consortium imputation files using Plink and merged in R with metabolomic data. Linear regression models adusting for age and principal components were clustered by study centre and estimated with robust standard errors. Three models were ran: 1) the effects of the PCa_Poly on metabolites for all 1594 subjects, 2) the effects of PCa_Poly on metabolites among cases, and 3) the effects of PCa_Poly on metabolites among controls. A multiple-testing corrected p-value of 0.0014 was derived by dividing 0.05 by the number of principal components explaining 99% of the variance in the metabolite data. Whilst none of the results for the three models had p-values less than 0.0014, a handful of results had p-values <0.05.
#!/bin/bash
#PBS -l walltime=00:05:00,nodes=1:ppn=1
#PBS -o top_snps.txt
#PBS -j oe
# Set the name of the job
#PBS -N ProtecT_Principal_Components_and_Polygenic_PCa_SNP_Extraction_
echo Running on host `hostname`
echo Time is `date`
echo Directory is `pwd`
echo PBS job ID is $PBS_JOBID
echo This jobs runs on the following machines:
echo `cat $PBS_NODEFILE | uniq`
# Script to extract the instruments for 1) metabolites associated with case-control status in ProtecT
# and 2) for the prostate cancer predisposition risk score
# use WinSCP to copy the hrc imputed files to a folder in my home directory:
# /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr
# qsub hrc_vcf_to_plink.sh -I -l walltime=05:00:00
# set working directory
cd /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr
# Open Plink and read-in the vcf files
module add apps/plink-1.90
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr01.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr1
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr02.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr2
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr03.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr3
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr04.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr4
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr05.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr5
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr06.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr6
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr07.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr7
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr08.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr8
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr09.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr9
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr10.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr10
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr11.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr11
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr12.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr12
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr13.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr13
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr14.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr14
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr15.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr15
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr16.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr16
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr17.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr17
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr18.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr18
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr19.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr19
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr20.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr20
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr21.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr21
plink --vcf /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/data_chr22.vcf.gz --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr22
# Make binary files for Plink
plink --bfile chr1 --exclude mymerged-merge.missnp --make-bed --out chr1
plink --bfile chr2 --exclude mymerged-merge.missnp --make-bed --out chr2
plink --bfile chr3 --exclude mymerged-merge.missnp --make-bed --out chr3
plink --bfile chr4 --exclude mymerged-merge.missnp --make-bed --out chr4
plink --bfile chr5 --exclude mymerged-merge.missnp --make-bed --out chr5
plink --bfile chr6 --exclude mymerged-merge.missnp --make-bed --out chr6
plink --bfile chr7 --exclude mymerged-merge.missnp --make-bed --out chr7
plink --bfile chr8 --exclude mymerged-merge.missnp --make-bed --out chr8
plink --bfile chr9 --exclude mymerged-merge.missnp --make-bed --out chr9
plink --bfile chr10 --exclude mymerged-merge.missnp --make-bed --out chr10
plink --bfile chr11 --exclude mymerged-merge.missnp --make-bed --out chr11
plink --bfile chr12 --exclude mymerged-merge.missnp --make-bed --out chr12
plink --bfile chr13 --exclude mymerged-merge.missnp --make-bed --out chr13
plink --bfile chr14 --exclude mymerged-merge.missnp --make-bed --out chr14
plink --bfile chr15 --exclude mymerged-merge.missnp --make-bed --out chr15
plink --bfile chr16 --exclude mymerged-merge.missnp --make-bed --out chr16
plink --bfile chr17 --exclude mymerged-merge.missnp --make-bed --out chr17
plink --bfile chr18 --exclude mymerged-merge.missnp --make-bed --out chr18
plink --bfile chr19 --exclude mymerged-merge.missnp --make-bed --out chr19
plink --bfile chr20 --exclude mymerged-merge.missnp --make-bed --out chr20
plink --bfile chr21 --exclude mymerged-merge.missnp --make-bed --out chr21
plink --bfile chr22 --exclude mymerged-merge.missnp --make-bed --out chr22
# Merge all the files
# First create a snp list .txt file and then merge files with the .bim .bed and .fam chr01 files
plink --bfile /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/chr1 --merge-list filelist --make-bed --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/mymerged
# LD prune mymerged to obtain a merged dataset usable for the principal components
# create a file called "ld.awk" that has this:
($1 == 1) && ($4 >= 48227413) && ($4 <= 52227412) {print $2}
($1 == 2) && ($4 >= 86000000) && ($4 <= 100500000) {print $2}
($1 == 2) && ($4 >= 183291755) && ($4 <= 190291755) {print $2}
($1 == 3) && ($4 >= 47524996) && ($4 <= 50024996) {print $2}
($1 == 3) && ($4 >= 83417310) && ($4 <= 86917310) {print $2}
($1 == 5) && ($4 >= 128972101) && ($4 <= 131972101) {print $2}
($1 == 5) && ($4 >= 44500000) && ($4 <= 50500000) {print $2}
($1 == 6) && ($4 >= 57000000) && ($4 <= 64000000) {print $2}
($1 == 6) && ($4 >= 25392021) && ($4 <= 33392022) {print $2}
($1 == 6) && ($4 >= 139958307) && ($4 <= 142458307) {print $2}
($1 == 7) && ($4 >= 55000000) && ($4 <= 66000000) {print $2}
($1 == 8) && ($4 >= 7962590) && ($4 <= 11962591) {print $2}
($1 == 8) && ($4 >= 111930824) && ($4 <= 114930824) {print $2}
($1 == 8) && ($4 >= 43000000) && ($4 <= 50000000) {print $2}
($1 == 10) && ($4 >= 37000000) && ($4 <= 43000000) {print $2}
($1 == 11) && ($4 >= 87860352) && ($4 <= 90860352) {print $2}
($1 == 12) && ($4 >= 33000000) && ($4 <= 40000000) {print $2}
($1 == 20) && ($4 >= 32536339) && ($4 <= 35066586) {print $2}
($1 == 1) && ($4 >= 48287981) && ($4 <= 52287979) {print $2}
($1 == 2) && ($4 >= 86088343) && ($4 <= 101041482) {print $2}
($1 == 2) && ($4 >= 134666269) && ($4 <= 138166268) {print $2}
($1 == 2) && ($4 >= 183174495) && ($4 <= 190174494) {print $2}
($1 == 3) && ($4 >= 47524997) && ($4 <= 50024996) {print $2}
($1 == 3) && ($4 >= 83417311) && ($4 <= 86917310) {print $2}
($1 == 3) && ($4 >= 88917311) && ($4 <= 96017310) {print $2}
($1 == 5) && ($4 >= 44464244) && ($4 <= 50464243) {print $2}
($1 == 5) && ($4 >= 97972101) && ($4 <= 100472101) {print $2}
($1 == 5) && ($4 >= 128972102) && ($4 <= 131972101) {print $2}
($1 == 5) && ($4 >= 135472102) && ($4 <= 138472101) {print $2}
($1 == 6) && ($4 >= 25392022) && ($4 <= 33392022) {print $2}
($1 == 6) && ($4 >= 56892042) && ($4 <= 63942041) {print $2}
($1 == 6) && ($4 >= 139958308) && ($4 <= 142458307) {print $2}
($1 == 7) && ($4 >= 55225792) && ($4 <= 66555850) {print $2}
($1 == 8) && ($4 >= 7962591) && ($4 <= 11962591) {print $2}
($1 == 8) && ($4 >= 42880844) && ($4 <= 49837447) {print $2}
($1 == 8) && ($4 >= 111930825) && ($4 <= 114930824) {print $2}
($1 == 10) && ($4 >= 36959995) && ($4 <= 43679994) {print $2}
($1 == 11) && ($4 >= 46043425) && ($4 <= 57243424) {print $2}
($1 == 11) && ($4 >= 87860353) && ($4 <= 90860352) {print $2}
($1 == 12) && ($4 >= 33108734) && ($4 <= 41713733) {print $2}
($1 == 12) && ($4 >= 111037281) && ($4 <= 113537280) {print $2}
($1 == 20) && ($4 >= 32536340) && ($4 <= 35066586) {print $2}
# data=<YOUR PLINK ROOT FILE NAME>
# Get snp list with no long range LD regions
awk -f ld.awk mymerged.bim > nold.txt
# Get independent SNPs excluding any long range LD regions
plink --bfile mymerged --exclude nold.txt --indep 100 5 1.01 --out indep
# Calculate PCs for unrelateds
plink --bfile mymerged --extract indep.prune.in --pca 20 --out mymerged
# Extract the snps for the polygenic score
module add apps/plink-1.90
#rs10009409,rs1016343,rs10187424,rs1041449,rs10486567,rs10774740,rs10875943,rs10896449,rs10934853,rs10936632,rs10993994,rs11135910,rs11214775,rs11228565,rs11568818,rs11650494,rs11902236,rs12051443,rs12155172,rs1218582,rs12198220,rs12480328,rs12597458,rs12621278,rs1270884,rs130067,rs1447295,rs1465618,rs1512268,rs16901979,rs16902094,rs17021918,rs17023900,rs17599629,rs17694493,rs17765344,rs1894292,rs1933488,rs2121875,rs2238776,rs2242652,rs2273669,rs2292884,rs2427345,rs2430386,rs2660753,rs2735839,rs3096702,rs3771570,rs3850699,rs4242382,rs4245739,rs4430796,rs445114,rs4713266,rs4962416,rs56232506,rs6062509,rs6763931,rs684232,rs6869841,rs6983267,rs71277158,rs7127900,rs7141529,rs721048,rs7241993,rs7584330,rs7611694,rs7679673,rs76934034,rs7725218,rs7758229,rs7929962,rs8008270,rs80130819,rs8014671,rs8064454,rs8102476,rs902774,rs9287719,rs9364554,rs9443189
plink --bfile /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/mymerged --snps rs10009409,rs1016343,rs10187424,rs1041449,rs10486567,rs10774740,rs10875943,rs10896449,rs10934853,rs10936632,rs10993994,rs11135910,rs11214775,rs11228565,rs11568818,rs11650494,rs11902236,rs12051443,rs12155172,rs1218582,rs12198220,rs12480328,rs12597458,rs12621278,rs1270884,rs130067,rs1447295,rs1465618,rs1512268,rs16901979,rs16902094,rs17021918,rs17023900,rs17599629,rs17694493,rs17765344,rs1894292,rs1933488,rs2121875,rs2238776,rs2242652,rs2273669,rs2292884,rs2427345,rs2430386,rs2660753,rs2735839,rs3096702,rs3771570,rs3850699,rs4242382,rs4245739,rs4430796,rs445114,rs4713266,rs4962416,rs56232506,rs6062509,rs6763931,rs684232,rs6869841,rs6983267,rs71277158,rs7127900,rs7141529,rs721048,rs7241993,rs7584330,rs7611694,rs7679673,rs76934034,rs7725218,rs7758229,rs7929962,rs8008270,rs80130819,rs8014671,rs8064454,rs8102476,rs902774,rs9287719,rs9364554,rs9443189 --recode A --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/poly8
# Command to count the number of columns in allSNPs.raw
head -1 allSNPs.raw | tr '|' ' ' | wc -w
# Command to test which allele is reported by Plink
grep -n "rs10009409" data_chr04.info | awk -F ":" '{print $1}'
cat -n data_chr15.info | grep '^ *1116092'
less -S data_chr04.info
install.packages("devtools")
library('devtools')
devtools::install_github("MRCIEU/MRInstruments")
library(MRInstruments)
install_github("MRCIEU/TwoSampleMR")
library('TwoSampleMR')
library('plyr')
library(lattice)
library(readr)
library(readxl)
library(stringr)
library('lmtest')
library('sandwich')
setwd("C:/Users/charl/Dropbox/Bristol")
# Read in the exposure data
data(gwas_catalog)
# Read-in the prostate cancer hits from various GWASes of prostate cancer in Europeans
# Study=="Al Olama AA"
pca_gwas <- subset(gwas_catalog, grepl("Al Olama AA", Author) & Phenotype == "Prostate cancer")
pca_exp_dat <- format_data(pca_gwas)
# LD clumping (will do all at the end)
#pca_exp_dat <- clump_data(pca_exp_dat)
#head(pca_exp_dat)
#pca_exp_dat$SNP
# Study=="Kote-Jarai Z"
Kote_gwas <- subset(gwas_catalog, grepl("Kote-Jarai Z", Author) & Phenotype == "Prostate cancer")
Kote_exp_dat <- format_data(Kote_gwas)
total <- rbind(pca_exp_dat,Kote_exp_dat,by="SNP")
# Study=="Eeles RA"
Eeles_gwas <- subset(gwas_catalog, grepl("Eeles RA", Author) & Phenotype == "Prostate cancer")
Eeles_exp_dat <- format_data(Eeles_gwas)
total <- rbind(total,Eeles_exp_dat,by="SNP")
# Study==Thomas G
Thomas_gwas <- subset(gwas_catalog, grepl("Thomas G", Author) & Phenotype == "Prostate cancer")
Thomas_exp_dat <- format_data(Thomas_gwas)
total <- rbind(total,Thomas_exp_dat,by="SNP")
# Study==Berndt SI
Berndt_gwas <- subset(gwas_catalog, grepl("Berndt SI", Author) & Phenotype == "Prostate cancer")
Berndt_exp_dat <- format_data(Berndt_gwas)
total <- rbind(total,Berndt_exp_dat,by="SNP")
# Study==Schumacher FR
Schumacher_gwas <- subset(gwas_catalog, grepl("Schumacher FR", Author) & Phenotype == "Prostate cancer")
Schumacher_exp_dat <- format_data(Schumacher_gwas)
total <- rbind(total,Schumacher_exp_dat,by="SNP")
# Study==Gudmundsson J
Gudmundsson_gwas <- subset(gwas_catalog, grepl("Gudmundsson J", Author) & Phenotype == "Prostate cancer")
Gudmundsson_exp_dat <- format_data(Gudmundsson_gwas)
total <- rbind(total,Gudmundsson_exp_dat,by="SNP")
## LD clump all the snps
total <- clump_data(total)
# Order the SNPs
total_removed=total[order(total$'SNP'),]
# Multiple SNP entries. Just keep the first instance
total_removed2 <- do.call(rbind, lapply(split(total_removed, total_removed$SNP), `[`, 1, ))
dim(total_removed2)
rownames(total_removed2) <- NULL
total_removed2=total_removed2[order(total_removed2$'SNP'),]
total_removed2$SNP
# Remove SNPs with missing betas
which(total_removed2$SNP=="rs4242384")
total_removed2<- total_removed2[-c(54), ]
which(total_removed2$SNP=="rs1775148")
total_removed2<- total_removed2[-c(36), ]
which(total_removed2$SNP=="rs7153648")
total_removed2<- total_removed2[-c(70), ]
which(total_removed2$SNP=="rs1859962")
total_removed2<- total_removed2[-c(37), ]
which(total_removed2$SNP=="rs6465657")
total_removed2<- total_removed2[-c(59), ]
which(total_removed2$SNP=="rs7130881")
total_removed2<- total_removed2[-c(66), ]
which(total_removed2$SNP=="rs7501939")
total_removed2<- total_removed2[-c(69), ]
which(total_removed2$SNP=="rs6545977")
total_removed2<- total_removed2[-c(59), ]
write.csv(total_removed2$SNP,"C:/Users/ca16591/Dropbox/Bristol/snplist_poly7.csv")
#module add apps/plink-1.90
#plink --bfile /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/mymerged --snps rs10009409,
#rs1016343,rs10187424,rs1041449,rs10486567,rs10774740,rs10875943,rs10896449,rs10934853,rs10936632,
#rs10993994,rs11135910,rs11214775,rs11228565,rs11568818,rs11650494,rs11902236,rs12051443,rs12155172,
#rs1218582,rs12198220,rs12480328,rs12597458,rs12621278,rs1270884,rs130067,rs1447295,rs1465618,rs1512268,
#rs16901979,rs16902094,rs17021918,rs17023900,rs17599629,rs17694493,rs17765344,rs1894292,rs1933488,rs2121875,
#rs2238776,rs2242652,rs2273669,rs2292884,rs2427345,rs2430386,rs2660753,rs2735839,rs3096702,rs3771570,rs3850699,
#rs4242382,rs4245739,rs4430796,rs445114,rs4713266,rs4962416,rs56232506,rs6062509,rs6763931,rs684232,rs6869841,
#rs6983267,rs71277158,rs7127900,rs7141529,rs721048,rs7241993,rs7584330,rs7611694,rs7679673,rs76934034,rs7725218,
#rs7758229,rs7929962,rs8008270,rs80130819,rs8014671,rs8064454,rs8102476,rs902774,rs9287719,rs9364554,rs9443189
#--recode A --out /panfs/panasas01/sscm/ca16591/hrc_protect_1sampleMr/poly8
# Read in the metabolite data
setwd("C:/Users/ca16591/Dropbox/Bristol")
#library(lattice)
#library(readr)
#library(readxl)
cleaned_met3 <- read.csv("C:/Users/ca16591/Dropbox/Bristol/metabol.data.clean.demo3.20.02.17.csv")
data <- cleaned_met3
completedHistoryData <- read.csv("C:/Users/ca16591/Dropbox/Bristol/completedHistoryData.csv")
data$Glol_imputed <- completedHistoryData$Glol
mname=colnames(data)[-c(1:93)]
smname=mname[-c(229:231)]
smname[[length(smname)+1]] <- "Glol_imputed"
data$casecontrol_n=ifelse(data$casecontrol=="Control", 0,1)
data$pounds = (data$p1dhl_wght_stones)*14
data$weight = data$pounds + data$p1dhl_wght_pounds
data$feet_to_inches = (data$p1dhl_tall_ft)*12
data$height_inches = data$p1dhl_tall_in + data$feet_to_inches
data$inches = (data$height_inches^2)
data$inches_squared = (data$inches)
data$bmi=(data$weight*703)/data$inches_squared
data$fac_centre <- as.factor(data$centre)
data$fhhistpca <- ifelse(data$fhhistpca=="yes", 1, 0)
data$fhhistpca2 <- completedHistoryData$family_history
data$fhhistpca2 <- as.factor(data$fhhistpca2)
data[, 94:321][data[, 94:321] == 0] <- NA
head(data$XXL.VLDL.P)
which(data$sampleid==5511753)
data <- data[-c(569), ]
dim(data)
head(data$Glol)
smname=mname[-c(229:231)]
head(data)
# Log transforming function
logtransform<-function(dataset,smname)
{
tx=dataset[,smname]
tx=apply(tx,2,function(x){if (min(x,na.rm=T)==0) x=x+1 else x })
tx=log(tx)
dataset[,smname]=tx
dataset
}
data=data
logtransform(data[smname])
head(data$subjectid)
# Read in the ProtecT snps and merge with the metabolite dataset
setwd("M:/data/protect/_devs/PROTECT_Clinical/data/hrc_protect_1sampleMR")
polySNPs <- read_excel("M:/data/protect/_devs/PROTECT_Clinical/data/hrc_protect_1sampleMR/poly8.xlsx")
snps_data <- merge(data, polySNPs, id=subjectid, quote="")
# Merge in the principal components obtained in Plink
eigenvec <- read_excel("M:/data/protect/_devs/PROTECT_Clinical/data/hrc_protect_1sampleMR/eigenvec.xlsx")
eigen_snps_data <- merge(eigenvec, snps_data, id=subjectid, quote="")
# Change working directory back to my home drive
setwd("C:/Users/ca16591/Dropbox/Bristol")
# Order the snps and check that there is the same number pulled in from ProtecT as we have with weights
colnames(eigen_snps_data)
eigen_snps_data=eigen_snps_data[ , order(names(eigen_snps_data))]
difftest=setdiff(colnames(eigen_snps_data[c(229:311)]), total_removed2$SNP)
# Save the prostate instrument weight data as "weights"
weights=total_removed2
dim(weights)
rownames(weights)=NULL
write.csv(weights, "C:/Users/ca16591/Dropbox/Bristol/total_removed2.csv")
# Save the master dataset as "eigen_snps_data"
write.csv(eigen_snps_data, "C:/Users/ca16591/Dropbox/Bristol/polydataset.csv")
snpname=colnames(eigen_snps_data[c(229:311)])
# Script to harmonize the alleles
protect_snps=read.csv("C:/Users/ca16591/Dropbox/Bristol/t2_snps_with_alleles.csv")
weights2 <- merge(protect_snps, weights, id=SNP, quote="")
head(weights2)
dim(weights2)
#Merge into weights the columns from poly8 with the effect allele in a separate column
which(weights2$Protect_eaf!=weights2$effect_allele.exposure)
myvars=c("SNP", "Protect_eaf", "gene.exposure", "effect_allele.exposure", "other_allele.exposure","beta.exposure","se.exposure", "pval.exposure")
weights2=weights2[myvars]
weights2$beta.exposure=as.numeric(weights2$beta.exposure)
# To harmonize the alleles, multiple the beta estimate by -1 for those snps that don't match
ifelse(weights2$Protect_eaf==weights2$effect_allele.exposure,weights2$beta.exposure, (weights2$beta.exposure*(-1)))
# check rs10486567 to see if beta is reversed (was 0.113328685307003)
# To identify which snps of these not include in the score
newdata <- subset(weights2, Protect_eaf==effect_allele.exposure | Protect_eaf==other_allele.exposure)
dim(newdata)
newdata$columns=rownames(newdata)
newdata$snp="snp"
# check newdata to see if rs10187424 is dropped
# Get the list of the truncated snps
pastename=paste("snp", newdata$columns, "+")
pastename=str_replace_all(string=pastename, pattern=" ", repl="")
pastename=noquote(pastename)
pastename
# Create the score by multiplying the weights2 by the genotype data for each snp and summing
colnames(eigen_snps_data)
#rs10009409
for (i in eigen_snps_data[c(229)]){
eigen_snps_data$snp1=i*weights2$beta.exposure[1]
}
#rs1016343
for (i in eigen_snps_data[c(230)]){
eigen_snps_data$snp2=i*weights2$beta.exposure[2]
}
#rs10187424
#for (i in eigen_snps_data[c(231)]){
# eigen_snps_data$snp3=i*weights2$beta.exposure[3]
#}
#rs1041449
for (i in eigen_snps_data[c(232)]){
eigen_snps_data$snp4=i*weights2$beta.exposure[4]
}
#rs10486567
#recoded
for (i in eigen_snps_data[c(233)]){
eigen_snps_data$snp5=i*weights2$beta.exposure[5]
}
#rs10774740
#recoded
for (i in eigen_snps_data[c(234)]){
eigen_snps_data$snp6=i*weights2$beta.exposure[6]
}
#rs10875943
for (i in eigen_snps_data[c(235)]){
eigen_snps_data$snp7=i*weights2$beta.exposure[7]
}
#rs10896449
#recoded
for (i in eigen_snps_data[c(236)]){
eigen_snps_data$snp8=i*weights2$beta.exposure[8]
}
#rs10934853
for (i in eigen_snps_data[c(237)]){
eigen_snps_data$snp9=i*weights2$beta.exposure[9]
}
#rs10936632
#recoded
for (i in eigen_snps_data[c(238)]){
eigen_snps_data$snp10=i*weights2$beta.exposure[10]
}
#rs10993994
for (i in eigen_snps_data[c(239)]){
eigen_snps_data$snp11=i*weights2$beta.exposure[11]
}
#for (i in eigen_snps_data[c(240)]){
# eigen_snps_data$snp12=i*weights2$beta.exposure[12]
#}
#rs11214775
#recoded
for (i in eigen_snps_data[c(241)]){
eigen_snps_data$snp13=i*weights2$beta.exposure[13]
}
#rs11228565
for (i in eigen_snps_data[c(242)]){
eigen_snps_data$snp14=i*weights2$beta.exposure[14]
}
#rs11568818
#for (i in eigen_snps_data[c(243)]){
# eigen_snps_data$snp15=i*weights2$beta.exposure[15]
#}
#rs11650494
for (i in eigen_snps_data[c(244)]){
eigen_snps_data$snp16=i*weights2$beta.exposure[16]
}
#rs11902236
#for (i in eigen_snps_data[c(245)]){
# eigen_snps_data$snp17=i*weights2$beta.exposure[17]
#}
#rs12051443
for (i in eigen_snps_data[c(246)]){
eigen_snps_data$snp18=i*weights2$beta.exposure[18]
}
#rs12155172
for (i in eigen_snps_data[c(247)]){
eigen_snps_data$snp19=i*weights2$beta.exposure[19]
}
#rs1218582
for (i in eigen_snps_data[c(248)]){
eigen_snps_data$snp20=i*weights2$beta.exposure[20]
}
#rs12198220
#recoded
for (i in eigen_snps_data[c(249)]){
eigen_snps_data$snp21=i*weights2$beta.exposure[21]
}
#rs12480328
#recoded
for (i in eigen_snps_data[c(250)]){
eigen_snps_data$snp22=i*weights2$beta.exposure[22]
}
#rs12597458
#recoded
for (i in eigen_snps_data[c(251)]){
eigen_snps_data$snp23=i*weights2$beta.exposure[23]
}
for (i in eigen_snps_data[c(252)]){
eigen_snps_data$snp24=i*weights2$beta.exposure[24]
}
for (i in eigen_snps_data[c(253)]){
eigen_snps_data$snp25=i*weights2$beta.exposure[25]
}
for (i in eigen_snps_data[c(254)]){
eigen_snps_data$snp26=i*weights2$beta.exposure[26]
}
for (i in eigen_snps_data[c(255)]){
eigen_snps_data$snp27=i*weights2$beta.exposure[27]
}
for (i in eigen_snps_data[c(256)]){
eigen_snps_data$snp28=i*weights2$beta.exposure[28]
}
#for (i in eigen_snps_data[c(257)]){
# eigen_snps_data$snp29=i*weights2$beta.exposure[29]
#}
for (i in eigen_snps_data[c(258)]){
eigen_snps_data$snp30=i*weights2$beta.exposure[30]
}
for (i in eigen_snps_data[c(259)]){
eigen_snps_data$snp31=i*weights2$beta.exposure[31]
}
for (i in eigen_snps_data[c(260)]){
eigen_snps_data$snp32=i*weights2$beta.exposure[32]
}
for (i in eigen_snps_data[c(261)]){
eigen_snps_data$snp33=i*weights2$beta.exposure[33]
}
for (i in eigen_snps_data[c(262)]){
eigen_snps_data$snp34=i*weights2$beta.exposure[34]
}
for (i in eigen_snps_data[c(263)]){
eigen_snps_data$snp35=i*weights2$beta.exposure[35]
}
for (i in eigen_snps_data[c(264)]){
eigen_snps_data$snp36=i*weights2$beta.exposure[36]
}
for (i in eigen_snps_data[c(265)]){
eigen_snps_data$snp37=i*weights2$beta.exposure[37]
}
for (i in eigen_snps_data[c(266)]){
eigen_snps_data$snp38=i*weights2$beta.exposure[38]
}
#for (i in eigen_snps_data[c(267)]){
# eigen_snps_data$snp39=i*weights2$beta.exposure[39]
#}
#for (i in eigen_snps_data[c(268)]){
# eigen_snps_data$snp40=i*weights2$beta.exposure[40]
#}
for (i in eigen_snps_data[c(269)]){
eigen_snps_data$snp41=i*weights2$beta.exposure[41]
}
for (i in eigen_snps_data[c(270)]){
eigen_snps_data$snp42=i*weights2$beta.exposure[42]
}
for (i in eigen_snps_data[c(271)]){
eigen_snps_data$snp43=i*weights2$beta.exposure[43]
}
for (i in eigen_snps_data[c(272)]){
eigen_snps_data$snp44=i*weights2$beta.exposure[44]
}
for (i in eigen_snps_data[c(273)]){
eigen_snps_data$snp45=i*weights2$beta.exposure[45]
}
for (i in eigen_snps_data[c(274)]){
eigen_snps_data$snp46=i*weights2$beta.exposure[46]
}
for (i in eigen_snps_data[c(275)]){
eigen_snps_data$snp47=i*weights2$beta.exposure[47]
}
for (i in eigen_snps_data[c(276)]){
eigen_snps_data$snp48=i*weights2$beta.exposure[48]
}
#for (i in eigen_snps_data[c(277)]){
# eigen_snps_data$snp49=i*weights2$beta.exposure[49]
#}
for (i in eigen_snps_data[c(278)]){
eigen_snps_data$snp50=i*weights2$beta.exposure[50]
}
for (i in eigen_snps_data[c(279)]){
eigen_snps_data$snp51=i*weights2$beta.exposure[51]
}
for (i in eigen_snps_data[c(280)]){
eigen_snps_data$snp52=i*weights2$beta.exposure[52]
}
for (i in eigen_snps_data[c(281)]){
eigen_snps_data$snp53=i*weights2$beta.exposure[53]
}
for (i in eigen_snps_data[c(282)]){
eigen_snps_data$snp54=i*weights2$beta.exposure[54]
}
for (i in eigen_snps_data[c(283)]){
eigen_snps_data$snp55=i*weights2$beta.exposure[55]
}
for (i in eigen_snps_data[c(284)]){
eigen_snps_data$snp56=i*weights2$beta.exposure[56]
}
for (i in eigen_snps_data[c(285)]){
eigen_snps_data$snp57=i*weights2$beta.exposure[57]
}
#for (i in eigen_snps_data[c(286)]){
# eigen_snps_data$snp58=i*weights2$beta.exposure[58]
#}
#for (i in eigen_snps_data[c(287)]){
# eigen_snps_data$snp59=i*weights2$beta.exposure[59]
#}
#for (i in eigen_snps_data[c(288)]){
# eigen_snps_data$snp60=i*weights2$beta.exposure[60]
#}
#for (i in eigen_snps_data[c(289)]){
# eigen_snps_data$snp61=i*weights2$beta.exposure[61]
#}
for (i in eigen_snps_data[c(290)]){
eigen_snps_data$snp62=i*weights2$beta.exposure[62]
}
for (i in eigen_snps_data[c(291)]){
eigen_snps_data$snp63=i*weights2$beta.exposure[63]
}
#for (i in eigen_snps_data[c(292)]){
# eigen_snps_data$snp64=i*weights2$beta.exposure[64]
#}
#for (i in eigen_snps_data[c(293)]){
# eigen_snps_data$snp65=i*weights2$beta.exposure[65]
#}
for (i in eigen_snps_data[c(294)]){
eigen_snps_data$snp66=i*weights2$beta.exposure[66]
}
#for (i in eigen_snps_data[c(295)]){
# eigen_snps_data$snp67=i*weights2$beta.exposure[67]
#}
#for (i in eigen_snps_data[c(296)]){
# eigen_snps_data$snp68=i*weights2$beta.exposure[68]
#}
#for (i in eigen_snps_data[c(297)]){ eigen_snps_data$snp69=i*weights2$beta.exposure[69]
#}
#for (i in eigen_snps_data[c(298)]){
# eigen_snps_data$snp70=i*weights2$beta.exposure[70]
#}
for (i in eigen_snps_data[c(299)]){
eigen_snps_data$snp71=i*weights2$beta.exposure[71]
}
for (i in eigen_snps_data[c(300)]){
eigen_snps_data$snp72=i*weights2$beta.exposure[72]
}
for (i in eigen_snps_data[c(301)]){
eigen_snps_data$snp73=i*weights2$beta.exposure[73]
}
for (i in eigen_snps_data[c(302)]){
eigen_snps_data$snp74=i*weights2$beta.exposure[74]
}
#for (i in eigen_snps_data[c(303)]){
# eigen_snps_data$snp75=i*weights2$beta.exposure[75]
#}
for (i in eigen_snps_data[c(304)]){
eigen_snps_data$snp76=i*weights2$beta.exposure[76]
}
for (i in eigen_snps_data[c(305)]){
eigen_snps_data$snp77=i*weights2$beta.exposure[77]
}
for (i in eigen_snps_data[c(306)]){
eigen_snps_data$snp78=i*weights2$beta.exposure[78]
}
for (i in eigen_snps_data[c(307)]){
eigen_snps_data$snp79=i*weights2$beta.exposure[79]
}
for (i in eigen_snps_data[c(308)]){
eigen_snps_data$snp80=i*weights2$beta.exposure[80]
}
for (i in eigen_snps_data[c(309)]){
eigen_snps_data$snp81=i*weights2$beta.exposure[81]
}
for (i in eigen_snps_data[c(310)]){
eigen_snps_data$snp82=i*weights2$beta.exposure[82]
}
for (i in eigen_snps_data[c(311)]){
eigen_snps_data$snp83=i*weights2$beta.exposure[83]
}
# Create the score
attach(eigen_snps_data)
colnames(eigen_snps_data)
eigen_snps_data$poly_score2 <- apply(eigen_snps_data[,437:500],1,sum)
summary(eigen_snps_data$poly_score2)
# Principal components for multiple-testing correction
ncomp<-function(data,metabolite.name)
{
tx=data;
ptx=scale(tx[,metabolite.name])
pca=princomp(~.,data=data.frame(ptx),na.action=na.exclude)
var=pca$sdev^2 / sum(pca$sdev^2)
cumvar=cumsum(var)
n=which(cumvar>=0.99)[1]
n
}
ncomp(data,smname)
0.05/37
# Regress metabolites on the poly_score
confint.robust <- function(object, parm, level = 0.95, ...)
{
cf <- coef(object)
pnames <- names(cf)
if (missing(parm))
parm <- pnames
else if (is.numeric(parm))
parm <- pnames[parm]
a <- (1 - level)/2
a <- c(a, 1 - a)
pct <- stats:::format.perc(a, 3)
fac <- qnorm(a)
ci <- array(NA, dim = c(length(parm), 2L), dimnames = list(parm,
pct))
ses <- sqrt(diag(sandwich::vcovHC(object)))[parm]
ci[] <- cf[parm] + ses %o% fac
ci
}
linearRegress_t<-function(metabolite.name,exposure.name,dataset,covariate.name='T',metabolite.log='T',robustSE='T', subset=NULL)
{
##subseting
tx=dataset
if(!is.null(subset)) {ind=with(tx,eval(parse(text=subset))); tx=tx[ind,]}
##log-transform and scaling the metabolites
logname=metabolite.name
scalename=metabolite.name
if (metabolite.log=='T') {tx=logtransform(tx,logname)}
tx[,scalename]=scale(tx[,scalename])
##linear regression of exposure with metabolites
add=numeric()
fom=formula(paste('met~',paste(c('poly_score2', covariate.name=c('age', 'one', 'two', 'three', 'four', 'five', 'six',cluster = "centre", adjust =T)),collapse='+')))
for (j in 1:length(metabolite.name))
{
met=tx[,metabolite.name[j]];
fit=lm(fom,data=tx)
if(robustSE=='T'){
temp=c(nobs(fit),coeftest(fit, vcov =vcovHC(fit,"HC1"))[exposure.name,], confint.robust(fit,exposure.name,level=0.95))
names(temp)=c('N',names(coeftest(fit, vcov = vcovHC(fit, "HC1"))[exposure.name,]),colnames(confint.robust(fit,exposure.name,level=0.95)))
}else{
temp=c(summary(fit)$coef['poly_score2',],confint(fit)['poly_score2',]);
}
add=rbind(add,temp);
}
rownames(add)=metabolite.name
add=data.frame(add,check.names = F)
add
}
poly_result=linearRegress_t(smname,'poly_score2', eigen_snps_data, covariate.name=c('age','one', 'two', 'three', 'four', 'five', 'six',cluster = "centre", adjust =T),robustSE='T')
head(poly_result)
poly_result$Metabolite=rownames(poly_result)
myvars=c("Metabolite", "Estimate","Std. Error", "2.5 %", "97.5 %", "Pr(>|t|)", "N" )
poly_result=poly_result[myvars]
poly_result <- poly_result[order(poly_result$'Pr(>|t|)'),]
head(poly_result)
write.csv(poly_result, "C:/Users/ca16591/Dropbox/Bristol/polygenic_prostate_predis_total.csv")
# Among just cases
as.factor(eigen_snps_data$casecontrol)
eigen_snps_data_cases <- eigen_snps_data[ which(casecontrol=='Case'),]
dim(eigen_snps_data_cases)
eigen_snps_data_cases
linearRegress_c<-function(metabolite.name,exposure.name,dataset,covariate.name='T',metabolite.log='T',robustSE='T', subset=NULL)
{
##subseting
tx=dataset
if(!is.null(subset)) {ind=with(tx,eval(parse(text=subset))); tx=tx[ind,]}
##log-transform and scaling the metabolites
logname=metabolite.name
scalename=metabolite.name
if (metabolite.log=='T') {tx=logtransform(tx,logname)}
tx[,scalename]=scale(tx[,scalename])
##linear regression of exposure with metabolites
add=numeric()
fom=formula(paste('met~',paste(c('poly_score2', covariate.name=c('age', 'one', 'two', 'three', 'four', 'five', 'six',cluster = "centre", adjust =T)),collapse='+')))
for (j in 1:length(metabolite.name))
{
met=tx[,metabolite.name[j]];
fit=lm(fom,data=tx)
if(robustSE=='T'){
temp=c(nobs(fit),coeftest(fit, vcov =vcovHC(fit,"HC1"))[exposure.name,], confint.robust(fit,exposure.name,level=0.95))
names(temp)=c('N',names(coeftest(fit, vcov = vcovHC(fit, "HC1"))[exposure.name,]),colnames(confint.robust(fit,exposure.name,level=0.95)))
}else{
temp=c(summary(fit)$coef['poly_score2',],confint(fit)['poly_score2',]);
}
add=rbind(add,temp);
}
rownames(add)=metabolite.name
add=data.frame(add,check.names = F)
add
}
poly_result_cases=linearRegress_c(smname,'poly_score2', eigen_snps_data_cases, covariate.name=c('age','one', 'two', 'three', 'four', 'five', 'six',cluster = "centre", adjust =T),robustSE='T')
head(poly_result_cases)
poly_result_cases$Metabolite=rownames(poly_result_cases)
myvars=c("Metabolite", "Estimate","Std. Error", "2.5 %", "97.5 %", "Pr(>|t|)", "N" )
poly_result_cases=poly_result_cases[myvars]
poly_result_cases <- poly_result_cases[order(poly_result_cases$'Pr(>|t|)'),]
head(poly_result_cases)
write.csv(poly_result_cases, "C:/Users/charl/Dropbox/Bristol/polygenic_prostate_predis_cases.csv")
# Among controls
as.factor(eigen_snps_data$casecontrol)
eigen_snps_data_controls <- eigen_snps_data[ which(casecontrol=='Control'),]
dim(eigen_snps_data_controls)
poly_result_controls=linearRegress_c(smname,'poly_score2', eigen_snps_data_controls, covariate.name=c('age','one', 'two', 'three', 'four', 'five', 'six',cluster = "centre", adjust =T),robustSE='T')
head(poly_result_controls)
poly_result_controls$Metabolite=rownames(poly_result_controls)
myvars=c("Metabolite", "Estimate","Std. Error", "2.5 %", "97.5 %", "Pr(>|t|)", "N" )
poly_result_controls=poly_result_controls[myvars]
poly_result_controls <- poly_result_controls[order(poly_result_controls$'Pr(>|t|)'),]
head(poly_result_controls)
write.csv(poly_result_controls, "C:/Users/charl/Dropbox/Bristol/polygenic_prostate_predis_controls.csv")
SNP | effect_allele.exposure | beta.exposure | se.exposure |
---|---|---|---|
rs10009409 | T | 0.0769610 | 0.0127551 |
rs1016343 | T | 0.2700271 | 0.0561224 |
rs1041449 | G | 0.0582689 | 0.0102041 |
rs10486567 | G | 0.1133287 | 0.0586735 |
rs10774740 | G | 0.1310283 | 0.0229592 |
rs10875943 | C | 0.0676586 | 0.0153061 |
rs10896449 | G | 0.0953102 | 0.0637755 |
rs10934853 | A | 0.1133287 | 0.0204082 |
rs10936632 | A | 0.1043600 | 0.0153061 |
rs10993994 | T | 0.1484200 | 0.0637755 |
rs11214775 | G | 0.0676586 | 0.0127551 |
rs11228565 | A | 0.2070142 | 0.0382653 |
rs11650494 | A | 0.1397619 | 0.0331633 |
rs12051443 | A | 0.0582689 | 0.0102041 |
rs12155172 | A | 0.0487902 | 0.0255102 |
rs1218582 | G | 0.0582689 | 0.0153061 |
rs12198220 | T | 0.1133287 | 0.0255102 |
rs12480328 | T | 0.1222176 | 0.0178571 |
rs12597458 | G | 0.1043600 | 0.0229592 |
rs12621278 | A | 0.2851789 | 0.0459184 |
rs1270884 | A | 0.0676586 | 0.0153061 |
rs130067 | G | 0.0487902 | 0.0178571 |
rs1447295 | A | 0.4700036 | 0.0867347 |
rs1465618 | T | 0.0769610 | 0.0229592 |
rs16901979 | A | 0.5007753 | 0.1428571 |
rs16902094 | G | 0.1906204 | 0.0280612 |
rs17021918 | C | 0.1043600 | 0.0178571 |
rs17023900 | G | 0.2311117 | 0.0408163 |
rs17599629 | G | 0.0769610 | 0.0127551 |
rs17694493 | G | 0.0769610 | 0.0153061 |
rs17765344 | A | 0.1739533 | 0.0204082 |
rs1894292 | G | 0.0953102 | 0.0153061 |
rs1933488 | A | 0.1133287 | 0.0153061 |
rs2242652 | G | 0.1397619 | 0.0204082 |
rs2273669 | G | 0.0676586 | 0.0204082 |
rs2292884 | G | 0.1310283 | 0.0255102 |
rs2430386 | T | 0.1310283 | 0.0204082 |
rs2660753 | T | 0.1655144 | 0.0637755 |
rs2735839 | G | 0.1823216 | 0.0586735 |
rs3096702 | A | 0.0676586 | 0.0153061 |
rs3850699 | A | 0.0953102 | 0.0153061 |
rs4242382 | A | 0.5068176 | 0.1020408 |
rs4245739 | A | 0.0953102 | 0.0229592 |
rs4430796 | A | 0.1655144 | 0.0714286 |
rs445114 | T | 0.1988509 | 0.0510204 |
rs4713266 | C | 0.0582689 | 0.0102041 |
rs4962416 | C | 0.1570037 | 0.0637755 |
rs56232506 | A | 0.0582689 | 0.0102041 |
rs6983267 | G | 0.2468601 | 0.0765306 |
rs71277158 | T | 0.1988509 | 0.0331633 |
rs721048 | A | 0.1397619 | 0.0280612 |
rs7679673 | C | 0.1133287 | 0.0204082 |
rs76934034 | T | 0.1222176 | 0.0204082 |
rs7725218 | G | 0.1397619 | 0.0229592 |
rs7758229 | T | 0.1397619 | 0.0255102 |
rs7929962 | T | 0.1397619 | 0.0204082 |
rs80130819 | A | 0.1310283 | 0.0229592 |
rs8014671 | G | 0.0582689 | 0.0102041 |
rs8064454 | C | 0.2151114 | 0.0255102 |
rs8102476 | C | 0.1133287 | 0.0178571 |
rs902774 | A | 0.1570037 | 0.0331633 |
rs9287719 | C | 0.0582689 | 0.0102041 |
rs9364554 | T | 0.1570037 | 0.0459184 |
rs9443189 | G | 0.0769610 | 0.0153061 |
Metabolite | Estimate | 2.5% | 97.5% | Pval | N |
---|---|---|---|---|---|
M.LDL.TG.. | 0.0703696 | 0.0148762 | 0.1258631 | 0.0127910 | 1592 |
His | -0.0669785 | -0.1237354 | -0.0102216 | 0.0206961 | 1590 |
L.LDL.TG.. | 0.0626723 | 0.0068230 | 0.1185216 | 0.0275231 | 1594 |
S.LDL.TG.. | 0.0581847 | 0.0023200 | 0.1140495 | 0.0408485 | 1591 |
Tyr | -0.0554159 | -0.1135386 | 0.0027067 | 0.0610521 | 1590 |
IDL.TG.. | 0.0540765 | -0.0034563 | 0.1116093 | 0.0648820 | 1593 |
M.LDL.C.. | -0.0462568 | -0.0969226 | 0.0044090 | 0.0732789 | 1592 |
M.HDL.CE.. | -0.0482979 | -0.1025503 | 0.0059545 | 0.0803174 | 1594 |
M.HDL.PL.. | 0.0480024 | -0.0063793 | 0.1023842 | 0.0830342 | 1594 |
M.HDL.C.. | -0.0476557 | -0.1029753 | 0.0076639 | 0.0908610 | 1594 |
S.LDL.C.. | -0.0447814 | -0.0973260 | 0.0077632 | 0.0945571 | 1591 |
M.LDL.CE.. | -0.0384309 | -0.0838484 | 0.0069865 | 0.0969699 | 1592 |
L.VLDL.FC.. | 0.0476500 | -0.0094028 | 0.1047029 | 0.1011201 | 1580 |
L.LDL.C.. | -0.0432441 | -0.0955871 | 0.0090990 | 0.1050519 | 1594 |
S.LDL.CE.. | -0.0406603 | -0.0898802 | 0.0085595 | 0.1051861 | 1591 |
IDL.C.. | -0.0465245 | -0.1031170 | 0.0100681 | 0.1067829 | 1593 |
Alb | -0.0459912 | -0.1022035 | 0.0102211 | 0.1083249 | 1594 |
Val | -0.0474486 | -0.1058698 | 0.0109726 | 0.1100528 | 1593 |
L.HDL.TG.. | 0.0459410 | -0.0106457 | 0.1025277 | 0.1112367 | 1590 |
Glol | 0.1229248 | -0.0315016 | 0.2773513 | 0.1121471 | 281 |
L.HDL.TG | 0.0447662 | -0.0108790 | 0.1004113 | 0.1141614 | 1590 |
L.LDL.CE.. | -0.0428962 | -0.0968840 | 0.0110917 | 0.1191215 | 1594 |
S.LDL.CE | -0.0419889 | -0.0966318 | 0.0126540 | 0.1316549 | 1591 |
M.LDL.PL.. | 0.0412435 | -0.0135741 | 0.0960610 | 0.1398797 | 1592 |
M.LDL.CE | -0.0396135 | -0.0934895 | 0.0142624 | 0.1490906 | 1592 |
S.LDL.C | -0.0416610 | -0.0984207 | 0.0150987 | 0.1497966 | 1591 |
S.LDL.PL.. | 0.0409241 | -0.0150584 | 0.0969067 | 0.1514028 | 1591 |
HDL.TG | 0.0409651 | -0.0154171 | 0.0973472 | 0.1535326 | 1594 |
L.VLDL.FC | 0.0416349 | -0.0169814 | 0.1002512 | 0.1628795 | 1580 |
M.LDL.C | -0.0401600 | -0.0967804 | 0.0164604 | 0.1639552 | 1592 |
S.HDL.TG.. | 0.0405310 | -0.0169807 | 0.0980427 | 0.1663645 | 1594 |
S.LDL.FC | -0.0405157 | -0.0985588 | 0.0175274 | 0.1707241 | 1591 |
XS.VLDL.TG.. | 0.0390836 | -0.0182145 | 0.0963816 | 0.1805149 | 1594 |
S.VLDL.C.. | -0.0376308 | -0.0944723 | 0.0192107 | 0.1938413 | 1594 |
L.VLDL.C | 0.0384687 | -0.0204472 | 0.0973847 | 0.1994149 | 1580 |
M.HDL.TG.. | 0.0380451 | -0.0203150 | 0.0964052 | 0.2007183 | 1594 |
L.VLDL.PL | 0.0376704 | -0.0209862 | 0.0963270 | 0.2069550 | 1580 |
S.VLDL.CE.. | -0.0358790 | -0.0917980 | 0.0200400 | 0.2079792 | 1594 |
L.VLDL.L | 0.0375085 | -0.0212633 | 0.0962804 | 0.2098337 | 1580 |
S.LDL.L | -0.0369697 | -0.0949329 | 0.0209936 | 0.2106567 | 1591 |
L.VLDL.P | 0.0372951 | -0.0214855 | 0.0960756 | 0.2125098 | 1580 |
IDL.CE.. | -0.0356672 | -0.0918976 | 0.0205632 | 0.2134255 | 1593 |
L.VLDL.CE | 0.0369370 | -0.0219659 | 0.0958399 | 0.2177294 | 1580 |
S.VLDL.TG.. | 0.0362985 | -0.0215291 | 0.0941261 | 0.2178635 | 1594 |
L.VLDL.TG | 0.0367375 | -0.0219936 | 0.0954685 | 0.2190760 | 1580 |
M.LDL.FC | -0.0361573 | -0.0942855 | 0.0219709 | 0.2221486 | 1592 |
M.LDL.L | -0.0359521 | -0.0937653 | 0.0218612 | 0.2222784 | 1592 |
XXL.VLDL.FC.. | 0.0367765 | -0.0228861 | 0.0964390 | 0.2253122 | 1532 |
M.VLDL.PL.. | -0.0373996 | -0.0980130 | 0.0232138 | 0.2258811 | 1594 |
S.LDL.P | -0.0355414 | -0.0936254 | 0.0225426 | 0.2297721 | 1591 |
S.HDL.C | -0.0325232 | -0.0864547 | 0.0214084 | 0.2366505 | 1594 |
M.LDL.P | -0.0347410 | -0.0926385 | 0.0231565 | 0.2389230 | 1592 |
TotCho | -0.0464416 | -0.1245495 | 0.0316662 | 0.2426456 | 1591 |
LDL.C | -0.0336773 | -0.0903134 | 0.0229587 | 0.2432448 | 1594 |
FAw3.FA | -0.0342072 | -0.0921855 | 0.0237710 | 0.2449264 | 1590 |
L.HDL.PL.. | -0.0321253 | -0.0877125 | 0.0234619 | 0.2566463 | 1590 |
L.LDL.CE | -0.0327512 | -0.0899905 | 0.0244880 | 0.2615010 | 1594 |
S.HDL.TG | 0.0332406 | -0.0251283 | 0.0916094 | 0.2630529 | 1594 |
M.LDL.FC.. | 0.0323394 | -0.0246342 | 0.0893129 | 0.2652554 | 1592 |
L.LDL.C | -0.0323646 | -0.0895749 | 0.0248457 | 0.2669188 | 1594 |
MUFA.FA | 0.0332420 | -0.0255855 | 0.0920695 | 0.2671005 | 1590 |
PUFA.FA | -0.0319827 | -0.0887054 | 0.0247400 | 0.2677234 | 1590 |
Gly | 0.0322751 | -0.0250010 | 0.0895512 | 0.2688483 | 1591 |
LDL.D | 0.0294551 | -0.0240995 | 0.0830097 | 0.2804495 | 1594 |
L.LDL.FC | -0.0311883 | -0.0879708 | 0.0255941 | 0.2810879 | 1594 |
M.HDL.FC.. | -0.0304749 | -0.0871008 | 0.0261509 | 0.2909168 | 1594 |
XL.HDL.C.. | -0.0310099 | -0.0887805 | 0.0267608 | 0.2915462 | 1594 |
EstC | -0.0309219 | -0.0891432 | 0.0272995 | 0.2972286 | 1591 |
M.HDL.TG | 0.0310636 | -0.0276707 | 0.0897978 | 0.2988275 | 1594 |
L.LDL.L | -0.0301333 | -0.0878973 | 0.0276308 | 0.3059320 | 1594 |
FAw3 | -0.0309143 | -0.0904818 | 0.0286533 | 0.3061027 | 1590 |
L.LDL.PL.. | 0.0291932 | -0.0268260 | 0.0852124 | 0.3065456 | 1594 |
M.HDL.CE | -0.0297266 | -0.0872579 | 0.0278047 | 0.3105941 | 1594 |
XS.VLDL.C.. | -0.0293287 | -0.0862804 | 0.0276231 | 0.3121246 | 1594 |
S.HDL.CE | -0.0264462 | -0.0781344 | 0.0252421 | 0.3153689 | 1594 |
L.LDL.PL | -0.0292444 | -0.0874144 | 0.0289255 | 0.3237603 | 1594 |
PC | -0.0309646 | -0.0932433 | 0.0313142 | 0.3287136 | 1591 |
L.LDL.P | -0.0288082 | -0.0867117 | 0.0290953 | 0.3288428 | 1594 |
M.HDL.C | -0.0286092 | -0.0863488 | 0.0291304 | 0.3308323 | 1594 |
UnSat | -0.0280872 | -0.0850954 | 0.0289209 | 0.3332025 | 1590 |
S.LDL.PL | -0.0281983 | -0.0868144 | 0.0304178 | 0.3449380 | 1591 |
XL.HDL.TG | 0.0271160 | -0.0297550 | 0.0839870 | 0.3493629 | 1594 |
Leu | -0.0270310 | -0.0843784 | 0.0303164 | 0.3534876 | 1594 |
TotPG | -0.0282099 | -0.0880501 | 0.0316302 | 0.3541618 | 1591 |
IDL.C | -0.0268786 | -0.0846638 | 0.0309066 | 0.3613156 | 1593 |
M.LDL.PL | -0.0272598 | -0.0860506 | 0.0315310 | 0.3627082 | 1592 |
IDL.CE | -0.0266807 | -0.0846767 | 0.0313152 | 0.3666162 | 1593 |
XL.HDL.CE.. | -0.0260917 | -0.0833104 | 0.0311269 | 0.3701611 | 1594 |
Serum.TG | 0.0262884 | -0.0316941 | 0.0842709 | 0.3730715 | 1594 |
XXL.VLDL.C | 0.0248388 | -0.0302109 | 0.0798884 | 0.3754027 | 1532 |
Serum.C | -0.0262063 | -0.0843422 | 0.0319297 | 0.3762592 | 1594 |
VLDL.D | 0.0253812 | -0.0322415 | 0.0830038 | 0.3871156 | 1594 |
XXL.VLDL.FC | 0.0249475 | -0.0317614 | 0.0816565 | 0.3874355 | 1532 |
XS.VLDL.PL.. | -0.0228220 | -0.0748187 | 0.0291748 | 0.3889056 | 1594 |
XL.VLDL.P | 0.0262018 | -0.0336315 | 0.0860351 | 0.3895841 | 1555 |
M.VLDL.CE.. | -0.0251352 | -0.0824886 | 0.0322182 | 0.3896857 | 1594 |
DHA | -0.0260493 | -0.0859623 | 0.0338637 | 0.3906524 | 1590 |
IDL.PL | -0.0252808 | -0.0831036 | 0.0325419 | 0.3907884 | 1593 |
XL.VLDL.TG | 0.0260992 | -0.0336551 | 0.0858535 | 0.3907907 | 1555 |
XL.HDL.FC.. | -0.0233402 | -0.0769964 | 0.0303160 | 0.3935225 | 1594 |
IDL.TG | 0.0256294 | -0.0334699 | 0.0847287 | 0.3940500 | 1593 |
XS.VLDL.CE.. | -0.0245886 | -0.0814462 | 0.0322690 | 0.3960363 | 1594 |
XL.VLDL.L | 0.0258346 | -0.0340031 | 0.0856724 | 0.3963063 | 1555 |
M.HDL.FC | -0.0249227 | -0.0828791 | 0.0330337 | 0.3985131 | 1594 |
IDL.L | -0.0248943 | -0.0828483 | 0.0330597 | 0.3992048 | 1594 |
PUFA | -0.0253358 | -0.0844393 | 0.0337678 | 0.3998496 | 1590 |
S.HDL.C.. | -0.0224152 | -0.0747149 | 0.0298845 | 0.4000557 | 1594 |
FAw6.FA | -0.0241067 | -0.0813386 | 0.0331252 | 0.4057813 | 1590 |
L.VLDL.PL.. | 0.0239058 | -0.0328803 | 0.0806919 | 0.4083744 | 1580 |
XXL.VLDL.C.. | 0.0234249 | -0.0327648 | 0.0796147 | 0.4124055 | 1532 |
bOHBut | 0.0240081 | -0.0347927 | 0.0828089 | 0.4224754 | 1577 |
IDL.FC | -0.0225542 | -0.0784582 | 0.0333498 | 0.4284457 | 1593 |
S.HDL.L | -0.0237860 | -0.0835350 | 0.0359631 | 0.4342943 | 1594 |
LA.FA | -0.0235991 | -0.0836875 | 0.0364893 | 0.4359183 | 1590 |
XS.VLDL.TG | 0.0233090 | -0.0357404 | 0.0823585 | 0.4377408 | 1594 |
VLDL.TG | 0.0229421 | -0.0352091 | 0.0810934 | 0.4383276 | 1594 |
M.VLDL.FC.. | 0.0229837 | -0.0352784 | 0.0812457 | 0.4383898 | 1594 |
IDL.P | -0.0228717 | -0.0809536 | 0.0352101 | 0.4395921 | 1594 |
XXL.VLDL.CE | 0.0209040 | -0.0323381 | 0.0741461 | 0.4405942 | 1532 |
L.VLDL.TG.. | -0.0219164 | -0.0790067 | 0.0351738 | 0.4504391 | 1580 |
DHA.FA | -0.0217418 | -0.0793973 | 0.0359136 | 0.4574811 | 1590 |
S.HDL.P | -0.0224880 | -0.0824377 | 0.0374617 | 0.4612362 | 1594 |
SFA.FA | 0.0221511 | -0.0374842 | 0.0817865 | 0.4648249 | 1590 |
FAw6 | -0.0217346 | -0.0805662 | 0.0370970 | 0.4681617 | 1590 |
L.VLDL.C.. | 0.0211976 | -0.0363224 | 0.0787177 | 0.4690186 | 1580 |
S.VLDL.TG | 0.0215614 | -0.0370572 | 0.0801800 | 0.4698176 | 1594 |
XL.VLDL.CE | 0.0225872 | -0.0390591 | 0.0842335 | 0.4716543 | 1555 |
M.VLDL.TG.. | 0.0207443 | -0.0359120 | 0.0774006 | 0.4722868 | 1594 |
XL.VLDL.PL | 0.0216329 | -0.0378066 | 0.0810725 | 0.4746159 | 1555 |
AcAce | 0.0212497 | -0.0373106 | 0.0798099 | 0.4758175 | 1594 |
S.HDL.PL.. | 0.0197010 | -0.0348522 | 0.0742541 | 0.4781895 | 1594 |
S.HDL.FC | -0.0211447 | -0.0798298 | 0.0375404 | 0.4788761 | 1594 |
S.HDL.CE.. | -0.0181769 | -0.0689369 | 0.0325830 | 0.4820556 | 1594 |
LA | -0.0212019 | -0.0805678 | 0.0381640 | 0.4826474 | 1590 |
M.VLDL.TG | 0.0207182 | -0.0373802 | 0.0788166 | 0.4836326 | 1594 |
S.LDL.FC.. | 0.0202247 | -0.0371823 | 0.0776318 | 0.4889799 | 1591 |
ApoA1 | -0.0199688 | -0.0775573 | 0.0376196 | 0.4958991 | 1594 |
XL.VLDL.C.. | -0.0254682 | -0.0990438 | 0.0481074 | 0.4960244 | 1555 |
M.VLDL.C.. | -0.0198268 | -0.0771578 | 0.0375041 | 0.4972311 | 1594 |
L.LDL.TG | 0.0201781 | -0.0384064 | 0.0787625 | 0.4985534 | 1594 |
LDL.TG | 0.0200655 | -0.0384538 | 0.0785848 | 0.5004762 | 1594 |
XL.HDL.PL.. | 0.0197415 | -0.0380135 | 0.0774964 | 0.5021209 | 1594 |
M.VLDL.FC | 0.0198337 | -0.0383640 | 0.0780313 | 0.5031830 | 1594 |
XL.VLDL.C | 0.0207218 | -0.0409963 | 0.0824400 | 0.5095383 | 1555 |
M.HDL.L | -0.0195458 | -0.0777768 | 0.0386853 | 0.5098331 | 1594 |
M.VLDL.P | 0.0192940 | -0.0388635 | 0.0774515 | 0.5145994 | 1594 |
M.VLDL.L | 0.0191473 | -0.0390415 | 0.0773360 | 0.5180202 | 1594 |
Cit | -0.0190495 | -0.0773645 | 0.0392655 | 0.5211553 | 1593 |
XS.VLDL.FC.. | -0.0169552 | -0.0689179 | 0.0350075 | 0.5221903 | 1594 |
S.LDL.TG | 0.0187690 | -0.0394086 | 0.0769467 | 0.5261324 | 1591 |
FreeC | -0.0184689 | -0.0766467 | 0.0397089 | 0.5331860 | 1591 |
SM | -0.0187193 | -0.0783598 | 0.0409212 | 0.5376182 | 1590 |
M.LDL.TG | 0.0183592 | -0.0401994 | 0.0769178 | 0.5379596 | 1592 |
XL.VLDL.CE.. | -0.0198086 | -0.0833329 | 0.0437157 | 0.5394757 | 1555 |
XXL.VLDL.L | 0.0174466 | -0.0387951 | 0.0736883 | 0.5422042 | 1532 |
L.HDL.FC.. | -0.0171265 | -0.0728232 | 0.0385702 | 0.5462285 | 1590 |
M.VLDL.PL | 0.0177987 | -0.0402952 | 0.0758926 | 0.5472489 | 1594 |
M.HDL.P | -0.0177575 | -0.0760351 | 0.0405201 | 0.5495895 | 1594 |
Ile | -0.0173991 | -0.0750018 | 0.0402036 | 0.5524687 | 1594 |
TG.PG | 0.0174196 | -0.0404273 | 0.0752666 | 0.5542676 | 1591 |
HDL2.C | -0.0173114 | -0.0749378 | 0.0403150 | 0.5553599 | 1594 |
HDL.C | -0.0172429 | -0.0747694 | 0.0402835 | 0.5561728 | 1594 |
XL.HDL.TG.. | 0.0170114 | -0.0398471 | 0.0738700 | 0.5569562 | 1594 |
XXL.VLDL.P | 0.0167385 | -0.0395239 | 0.0730008 | 0.5588563 | 1532 |
XXL.VLDL.TG.. | -0.0155933 | -0.0691403 | 0.0379537 | 0.5670774 | 1532 |
Gp | 0.0162658 | -0.0398789 | 0.0724104 | 0.5695404 | 1594 |
XL.VLDL.FC | 0.0174663 | -0.0434369 | 0.0783696 | 0.5732011 | 1555 |
XL.HDL.PL | 0.0159513 | -0.0404352 | 0.0723378 | 0.5785602 | 1594 |
XS.VLDL.CE | -0.0160175 | -0.0739194 | 0.0418844 | 0.5870088 | 1594 |
XS.VLDL.C | -0.0159576 | -0.0739284 | 0.0420132 | 0.5888117 | 1594 |
XXL.VLDL.PL.. | -0.0111525 | -0.0529977 | 0.0306927 | 0.6003911 | 1532 |
XXL.VLDL.TG | 0.0147563 | -0.0414555 | 0.0709681 | 0.6060002 | 1532 |
M.VLDL.C | 0.0152000 | -0.0430640 | 0.0734640 | 0.6082898 | 1594 |
Pyr | 0.0148866 | -0.0423649 | 0.0721380 | 0.6094556 | 1593 |
S.VLDL.FC.. | -0.0144791 | -0.0715189 | 0.0425607 | 0.6180987 | 1594 |
Phe | -0.0137205 | -0.0683143 | 0.0408734 | 0.6220226 | 1594 |
IDL.FC.. | -0.0125022 | -0.0630601 | 0.0380557 | 0.6272322 | 1593 |
XS.VLDL.PL | -0.0141040 | -0.0713243 | 0.0431163 | 0.6284895 | 1594 |
XS.VLDL.FC | -0.0140191 | -0.0712885 | 0.0432503 | 0.6307116 | 1594 |
M.HDL.PL | -0.0140711 | -0.0722949 | 0.0441526 | 0.6349668 | 1594 |
L.VLDL.CE.. | -0.0136343 | -0.0702075 | 0.0429389 | 0.6360970 | 1580 |
IDL.PL.. | -0.0129261 | -0.0675166 | 0.0416644 | 0.6409260 | 1593 |
S.VLDL.PL | 0.0138262 | -0.0453811 | 0.0730336 | 0.6461044 | 1594 |
Crea | -0.0133863 | -0.0711478 | 0.0443751 | 0.6489129 | 1589 |
S.VLDL.CE | -0.0132937 | -0.0717914 | 0.0452041 | 0.6553425 | 1594 |
S.VLDL.P | 0.0132686 | -0.0456796 | 0.0722167 | 0.6581819 | 1594 |
XXL.VLDL.PL | 0.0118792 | -0.0420191 | 0.0657775 | 0.6649373 | 1532 |
XL.HDL.P | 0.0120611 | -0.0437373 | 0.0678594 | 0.6712730 | 1594 |
HDL3.C | -0.0115099 | -0.0684726 | 0.0454528 | 0.6911880 | 1594 |
S.VLDL.L | 0.0117089 | -0.0472772 | 0.0706949 | 0.6964004 | 1594 |
XL.HDL.L | 0.0108024 | -0.0449102 | 0.0665149 | 0.7034318 | 1594 |
Remnant.C | -0.0108727 | -0.0692336 | 0.0474882 | 0.7144786 | 1594 |
XL.VLDL.FC.. | -0.0114490 | -0.0773063 | 0.0544082 | 0.7328458 | 1555 |
M.VLDL.CE | 0.0101086 | -0.0481732 | 0.0683904 | 0.7333188 | 1594 |
S.VLDL.FC | 0.0102070 | -0.0490219 | 0.0694360 | 0.7347145 | 1594 |
Ace | 0.0108311 | -0.0530686 | 0.0747308 | 0.7368344 | 1594 |
Gln | 0.0095288 | -0.0479938 | 0.0670514 | 0.7437143 | 1594 |
ApoB | -0.0097365 | -0.0683314 | 0.0488585 | 0.7442134 | 1594 |
L.LDL.FC.. | -0.0087436 | -0.0632917 | 0.0458044 | 0.7529391 | 1594 |
Ala | -0.0084842 | -0.0656308 | 0.0486624 | 0.7707999 | 1594 |
TotFA | -0.0081167 | -0.0662898 | 0.0500564 | 0.7839437 | 1590 |
XS.VLDL.L | -0.0080520 | -0.0667303 | 0.0506263 | 0.7875014 | 1594 |
XXL.VLDL.CE.. | 0.0068574 | -0.0484381 | 0.0621529 | 0.8075052 | 1532 |
S.HDL.PL | -0.0063844 | -0.0646174 | 0.0518486 | 0.8294603 | 1594 |
L.HDL.FC | -0.0058406 | -0.0629396 | 0.0512584 | 0.8408406 | 1590 |
S.VLDL.C | -0.0058729 | -0.0650374 | 0.0532917 | 0.8453350 | 1594 |
VLDL.C | 0.0055813 | -0.0526980 | 0.0638605 | 0.8507190 | 1594 |
HDL.D | 0.0052755 | -0.0518163 | 0.0623672 | 0.8560351 | 1594 |
L.HDL.C.. | -0.0051930 | -0.0626093 | 0.0522233 | 0.8591059 | 1590 |
XS.VLDL.P | -0.0053062 | -0.0641343 | 0.0535220 | 0.8593505 | 1594 |
XL.HDL.FC | 0.0045171 | -0.0501520 | 0.0591861 | 0.8711460 | 1594 |
L.HDL.PL | -0.0046451 | -0.0623431 | 0.0530529 | 0.8743853 | 1590 |
MUFA | 0.0045969 | -0.0534832 | 0.0626770 | 0.8763847 | 1590 |
SFA | -0.0044571 | -0.0621068 | 0.0531925 | 0.8791944 | 1590 |
S.VLDL.PL.. | 0.0040566 | -0.0532658 | 0.0613789 | 0.8894822 | 1594 |
Lac | -0.0032654 | -0.0572988 | 0.0507681 | 0.9055688 | 1594 |
XL.VLDL.PL.. | -0.0030554 | -0.0583716 | 0.0522608 | 0.9136519 | 1555 |
XL.HDL.C | 0.0029256 | -0.0522969 | 0.0581481 | 0.9171687 | 1594 |
XL.HDL.CE | 0.0025053 | -0.0528153 | 0.0578259 | 0.9291581 | 1594 |
L.HDL.CE.. | 0.0023915 | -0.0539404 | 0.0587234 | 0.9336055 | 1590 |
Glc | 0.0020966 | -0.0547812 | 0.0589745 | 0.9423423 | 1589 |
S.HDL.FC.. | 0.0015774 | -0.0539256 | 0.0570804 | 0.9554563 | 1594 |
XL.VLDL.TG.. | 0.0016203 | -0.0571629 | 0.0604034 | 0.9568501 | 1555 |
L.HDL.C | -0.0009837 | -0.0584154 | 0.0564480 | 0.9731711 | 1590 |
ApoB.ApoA1 | -0.0007674 | -0.0589024 | 0.0573676 | 0.9793219 | 1594 |
L.HDL.P | 0.0007222 | -0.0568225 | 0.0582668 | 0.9803383 | 1590 |
L.HDL.CE | 0.0002180 | -0.0572031 | 0.0576391 | 0.9940520 | 1590 |
L.HDL.L | -0.0002067 | -0.0577351 | 0.0573217 | 0.9943704 | 1590 |
Metabolite | Estimate | 2.5% | 97.5% | Pval | N |
---|---|---|---|---|---|
His | -0.0798869 | -0.1571298 | -0.0026439 | 0.0423154 | 938 |
Alb | -0.0656477 | -0.1368580 | 0.0055627 | 0.0704714 | 940 |
FAw3.FA | -0.0542994 | -0.1271083 | 0.0185094 | 0.1394054 | 938 |
Val | -0.0547475 | -0.1308975 | 0.0214025 | 0.1567463 | 939 |
Pyr | 0.0528507 | -0.0218764 | 0.1275778 | 0.1639532 | 940 |
Leu | -0.0514415 | -0.1254367 | 0.0225537 | 0.1714033 | 940 |
L.VLDL.FC.. | 0.0527775 | -0.0260472 | 0.1316022 | 0.1879452 | 929 |
M.HDL.PL.. | 0.0424164 | -0.0289728 | 0.1138056 | 0.2427621 | 940 |
S.HDL.FC | -0.0446311 | -0.1205042 | 0.0312419 | 0.2467184 | 940 |
Ile | -0.0429705 | -0.1169666 | 0.0310256 | 0.2530036 | 940 |
FAw3 | -0.0423282 | -0.1185668 | 0.0339105 | 0.2708006 | 938 |
Tyr | -0.0412977 | -0.1151160 | 0.0325205 | 0.2711492 | 938 |
S.HDL.P | -0.0402187 | -0.1187783 | 0.0383410 | 0.3133887 | 940 |
S.HDL.L | -0.0401044 | -0.1184700 | 0.0382611 | 0.3136356 | 940 |
DHA.FA | -0.0369329 | -0.1095948 | 0.0357289 | 0.3136775 | 938 |
L.VLDL.FC | 0.0384147 | -0.0385659 | 0.1153952 | 0.3258290 | 929 |
LDL.D | 0.0334094 | -0.0341169 | 0.1009356 | 0.3310632 | 940 |
Cit | -0.0351116 | -0.1071766 | 0.0369533 | 0.3369745 | 939 |
Glol | 0.0919520 | -0.1066941 | 0.2905980 | 0.3463224 | 176 |
DHA | -0.0355600 | -0.1107662 | 0.0396462 | 0.3469911 | 938 |
L.HDL.TG | 0.0316754 | -0.0381294 | 0.1014803 | 0.3720829 | 939 |
L.VLDL.C | 0.0338254 | -0.0427458 | 0.1103965 | 0.3842731 | 929 |
M.HDL.FC.. | -0.0321991 | -0.1070782 | 0.0426800 | 0.3975188 | 940 |
XL.HDL.TG | 0.0313631 | -0.0417924 | 0.1045186 | 0.3993787 | 940 |
L.VLDL.PL | 0.0322971 | -0.0438789 | 0.1084732 | 0.4037024 | 929 |
L.VLDL.CE | 0.0323216 | -0.0441405 | 0.1087838 | 0.4050582 | 929 |
M.LDL.TG.. | 0.0284732 | -0.0388852 | 0.0958316 | 0.4051325 | 938 |
L.VLDL.L | 0.0320747 | -0.0442232 | 0.1083726 | 0.4077692 | 929 |
XL.HDL.P | 0.0283847 | -0.0394445 | 0.0962139 | 0.4105244 | 940 |
L.VLDL.P | 0.0317441 | -0.0445458 | 0.1080339 | 0.4125779 | 929 |
M.HDL.C.. | -0.0296504 | -0.1015576 | 0.0422568 | 0.4173002 | 940 |
XL.HDL.L | 0.0276524 | -0.0400058 | 0.0953105 | 0.4215457 | 940 |
XL.VLDL.CE.. | -0.0347197 | -0.1201753 | 0.0507358 | 0.4230712 | 912 |
L.VLDL.TG | 0.0309566 | -0.0452570 | 0.1071702 | 0.4238575 | 929 |
M.HDL.CE | -0.0298459 | -0.1034855 | 0.0437938 | 0.4257297 | 940 |
M.HDL.C | -0.0298611 | -0.1037582 | 0.0440361 | 0.4269778 | 940 |
S.HDL.C | -0.0280467 | -0.0975800 | 0.0414865 | 0.4275983 | 940 |
M.HDL.FC | -0.0300067 | -0.1045634 | 0.0445500 | 0.4283469 | 940 |
UnSat | -0.0282307 | -0.0990855 | 0.0426241 | 0.4325091 | 938 |
M.LDL.CE.. | -0.0243310 | -0.0862856 | 0.0376236 | 0.4405648 | 938 |
L.HDL.TG.. | 0.0275301 | -0.0443544 | 0.0994146 | 0.4516246 | 939 |
Phe | -0.0264729 | -0.0956265 | 0.0426808 | 0.4522564 | 940 |
XL.HDL.CE | 0.0253018 | -0.0415595 | 0.0921632 | 0.4569591 | 940 |
M.HDL.CE.. | -0.0265063 | -0.0971995 | 0.0441869 | 0.4601547 | 940 |
S.HDL.PL | -0.0277287 | -0.1019323 | 0.0464750 | 0.4621510 | 940 |
XL.HDL.C | 0.0248334 | -0.0419185 | 0.0915854 | 0.4645955 | 940 |
L.VLDL.TG.. | -0.0270267 | -0.1008760 | 0.0468225 | 0.4712156 | 929 |
XL.HDL.PL | 0.0254204 | -0.0442102 | 0.0950511 | 0.4724944 | 940 |
M.HDL.L | -0.0265771 | -0.1004372 | 0.0472830 | 0.4789234 | 940 |
XS.VLDL.CE.. | 0.0250898 | -0.0447520 | 0.0949316 | 0.4796217 | 940 |
L.VLDL.C.. | 0.0265014 | -0.0484107 | 0.1014134 | 0.4865458 | 929 |
XL.HDL.FC | 0.0232016 | -0.0430716 | 0.0894748 | 0.4913641 | 940 |
HDL.TG | 0.0246883 | -0.0465023 | 0.0958788 | 0.4943081 | 940 |
M.HDL.P | -0.0255748 | -0.0994273 | 0.0482777 | 0.4955415 | 940 |
XL.VLDL.TG | 0.0266312 | -0.0509714 | 0.1042339 | 0.4985506 | 912 |
L.HDL.PL.. | -0.0243748 | -0.0952184 | 0.0464689 | 0.4991901 | 939 |
XL.VLDL.P | 0.0262140 | -0.0513578 | 0.1037858 | 0.5051733 | 912 |
M.HDL.TG.. | 0.0250736 | -0.0494787 | 0.0996260 | 0.5081591 | 940 |
XL.VLDL.L | 0.0259579 | -0.0515973 | 0.1035131 | 0.5092688 | 912 |
XS.VLDL.FC.. | -0.0218304 | -0.0879204 | 0.0442596 | 0.5164659 | 940 |
S.LDL.TG.. | 0.0222156 | -0.0454665 | 0.0898977 | 0.5176707 | 938 |
bOHBut | 0.0243008 | -0.0499246 | 0.0985263 | 0.5196779 | 936 |
S.HDL.TG.. | 0.0237310 | -0.0491801 | 0.0966421 | 0.5213439 | 940 |
XL.VLDL.C.. | -0.0335425 | -0.1371231 | 0.0700382 | 0.5238450 | 912 |
XL.VLDL.PL | 0.0247395 | -0.0533536 | 0.1028326 | 0.5322890 | 912 |
L.VLDL.PL.. | 0.0225472 | -0.0495282 | 0.0946227 | 0.5379187 | 929 |
M.HDL.PL | -0.0226484 | -0.0961461 | 0.0508492 | 0.5439361 | 940 |
S.LDL.CE.. | -0.0178271 | -0.0783242 | 0.0426700 | 0.5626571 | 938 |
S.HDL.CE | -0.0194307 | -0.0859348 | 0.0470733 | 0.5655861 | 940 |
Crea | 0.0208613 | -0.0516705 | 0.0933930 | 0.5714970 | 937 |
M.LDL.C.. | -0.0177021 | -0.0798877 | 0.0444834 | 0.5757675 | 938 |
M.VLDL.PL.. | -0.0213847 | -0.0969443 | 0.0541749 | 0.5780839 | 940 |
XL.VLDL.FC | 0.0220276 | -0.0572715 | 0.1013266 | 0.5842242 | 912 |
XXL.VLDL.CE | 0.0182999 | -0.0486631 | 0.0852630 | 0.5901120 | 899 |
S.HDL.FC.. | -0.0192814 | -0.0897412 | 0.0511783 | 0.5905116 | 940 |
XXL.VLDL.C | 0.0185977 | -0.0496134 | 0.0868088 | 0.5907546 | 899 |
XL.HDL.C.. | -0.0197437 | -0.0937422 | 0.0542548 | 0.5993990 | 940 |
MUFA.FA | 0.0197233 | -0.0549415 | 0.0943881 | 0.6028175 | 938 |
XXL.VLDL.FC | 0.0181719 | -0.0519443 | 0.0882882 | 0.6091869 | 899 |
XXL.VLDL.TG | 0.0180459 | -0.0524532 | 0.0885450 | 0.6140443 | 899 |
XXL.VLDL.L | 0.0177940 | -0.0527812 | 0.0883693 | 0.6192294 | 899 |
XL.HDL.CE.. | -0.0184936 | -0.0918002 | 0.0548131 | 0.6194244 | 940 |
XXL.VLDL.P | 0.0177517 | -0.0528863 | 0.0883898 | 0.6203924 | 899 |
XL.VLDL.C | 0.0189999 | -0.0617732 | 0.0997730 | 0.6429935 | 912 |
PUFA.FA | -0.0161836 | -0.0858681 | 0.0535010 | 0.6471710 | 938 |
XL.VLDL.CE | 0.0178815 | -0.0625297 | 0.0982927 | 0.6612405 | 912 |
S.LDL.C.. | -0.0138270 | -0.0760558 | 0.0484018 | 0.6623017 | 938 |
HDL.D | 0.0150888 | -0.0566769 | 0.0868545 | 0.6791163 | 940 |
M.LDL.CE | -0.0143197 | -0.0824335 | 0.0537941 | 0.6796647 | 938 |
S.LDL.CE | -0.0134954 | -0.0804234 | 0.0534327 | 0.6920753 | 938 |
XXL.VLDL.PL | 0.0127105 | -0.0537822 | 0.0792031 | 0.7062717 | 899 |
XXL.VLDL.PL.. | -0.0086770 | -0.0552094 | 0.0378555 | 0.7133417 | 899 |
L.LDL.TG.. | 0.0124027 | -0.0545156 | 0.0793210 | 0.7149788 | 940 |
L.LDL.FC.. | 0.0128063 | -0.0564314 | 0.0820439 | 0.7152231 | 940 |
M.LDL.PL.. | 0.0121373 | -0.0535306 | 0.0778052 | 0.7165044 | 938 |
ApoA1 | -0.0129730 | -0.0838075 | 0.0578616 | 0.7184051 | 940 |
AcAce | 0.0136687 | -0.0612093 | 0.0885468 | 0.7194201 | 940 |
M.LDL.TG | 0.0132125 | -0.0595254 | 0.0859505 | 0.7205566 | 938 |
XS.VLDL.C.. | 0.0125002 | -0.0582295 | 0.0832299 | 0.7277539 | 940 |
LDL.TG | 0.0127254 | -0.0603745 | 0.0858254 | 0.7315812 | 940 |
L.LDL.TG | 0.0125981 | -0.0602056 | 0.0854018 | 0.7331459 | 940 |
M.LDL.FC.. | 0.0120662 | -0.0584854 | 0.0826177 | 0.7368956 | 938 |
S.LDL.FC | -0.0120911 | -0.0834409 | 0.0592587 | 0.7390928 | 938 |
M.HDL.TG | 0.0121385 | -0.0627330 | 0.0870100 | 0.7493216 | 940 |
PUFA | -0.0122203 | -0.0877430 | 0.0633024 | 0.7500960 | 938 |
XS.VLDL.CE | 0.0114365 | -0.0595808 | 0.0824538 | 0.7513262 | 940 |
S.LDL.C | -0.0108468 | -0.0795944 | 0.0579007 | 0.7566143 | 938 |
L.HDL.FC.. | 0.0107209 | -0.0579299 | 0.0793716 | 0.7585768 | 939 |
Gly | -0.0114872 | -0.0852342 | 0.0622598 | 0.7592184 | 938 |
M.LDL.C | -0.0106597 | -0.0800139 | 0.0586946 | 0.7627124 | 938 |
HDL.C | -0.0109418 | -0.0823486 | 0.0604649 | 0.7628912 | 940 |
S.HDL.TG | 0.0113444 | -0.0629958 | 0.0856846 | 0.7633913 | 940 |
XL.HDL.PL.. | 0.0112613 | -0.0631937 | 0.0857162 | 0.7658338 | 940 |
SFA.FA | 0.0105485 | -0.0618089 | 0.0829059 | 0.7742803 | 938 |
S.LDL.TG | 0.0107872 | -0.0637315 | 0.0853060 | 0.7754035 | 938 |
S.VLDL.FC.. | -0.0102282 | -0.0824091 | 0.0619527 | 0.7803827 | 940 |
Ala | -0.0098104 | -0.0807740 | 0.0611532 | 0.7859961 | 940 |
HDL3.C | -0.0097031 | -0.0803174 | 0.0609111 | 0.7860674 | 940 |
Serum.TG | 0.0102985 | -0.0645599 | 0.0851568 | 0.7862945 | 940 |
S.LDL.PL.. | 0.0091303 | -0.0576174 | 0.0758780 | 0.7881259 | 938 |
XL.VLDL.PL.. | 0.0107587 | -0.0680992 | 0.0896166 | 0.7883962 | 912 |
Lac | -0.0096582 | -0.0806170 | 0.0613005 | 0.7885844 | 940 |
XXL.VLDL.FC.. | 0.0095485 | -0.0619854 | 0.0810824 | 0.7915782 | 899 |
HDL2.C | -0.0095160 | -0.0811883 | 0.0621564 | 0.7938702 | 940 |
S.LDL.L | -0.0091507 | -0.0802389 | 0.0619375 | 0.8003299 | 938 |
XXL.VLDL.TG.. | 0.0084747 | -0.0583022 | 0.0752516 | 0.8028138 | 899 |
IDL.TG | 0.0092104 | -0.0644049 | 0.0828258 | 0.8051445 | 940 |
XL.HDL.TG.. | 0.0089403 | -0.0631022 | 0.0809828 | 0.8070900 | 940 |
S.LDL.P | -0.0086693 | -0.0800638 | 0.0627251 | 0.8114156 | 938 |
L.HDL.C.. | 0.0085625 | -0.0624962 | 0.0796212 | 0.8127755 | 939 |
L.HDL.CE.. | 0.0083223 | -0.0614083 | 0.0780530 | 0.8146699 | 939 |
ApoB.ApoA1 | 0.0087139 | -0.0650397 | 0.0824676 | 0.8162505 | 940 |
M.LDL.L | -0.0083158 | -0.0792927 | 0.0626611 | 0.8179487 | 938 |
M.LDL.P | -0.0082210 | -0.0793464 | 0.0629045 | 0.8203546 | 938 |
M.VLDL.CE | 0.0085682 | -0.0667876 | 0.0839239 | 0.8228378 | 940 |
L.VLDL.CE.. | -0.0079252 | -0.0802738 | 0.0644234 | 0.8296421 | 929 |
S.LDL.PL | -0.0080395 | -0.0818481 | 0.0657690 | 0.8303630 | 938 |
VLDL.D | 0.0077415 | -0.0652597 | 0.0807427 | 0.8347199 | 940 |
IDL.C.. | 0.0067848 | -0.0585244 | 0.0720940 | 0.8383113 | 940 |
VLDL.TG | 0.0071246 | -0.0679451 | 0.0821944 | 0.8516934 | 940 |
TotPG | -0.0067765 | -0.0789193 | 0.0653663 | 0.8531068 | 938 |
S.VLDL.TG.. | 0.0067871 | -0.0660296 | 0.0796039 | 0.8544436 | 940 |
L.HDL.FC | 0.0066316 | -0.0645613 | 0.0778244 | 0.8545785 | 939 |
M.VLDL.CE.. | 0.0065820 | -0.0643406 | 0.0775046 | 0.8552568 | 940 |
M.LDL.FC | -0.0065955 | -0.0778995 | 0.0647086 | 0.8557786 | 938 |
IDL.FC | 0.0058761 | -0.0601855 | 0.0719377 | 0.8612898 | 940 |
XS.VLDL.PL.. | -0.0054745 | -0.0689653 | 0.0580164 | 0.8652125 | 940 |
M.VLDL.C | 0.0064095 | -0.0690741 | 0.0818930 | 0.8671770 | 940 |
EstC | -0.0059836 | -0.0774327 | 0.0654655 | 0.8692504 | 938 |
IDL.C | 0.0058270 | -0.0641497 | 0.0758037 | 0.8700786 | 940 |
XS.VLDL.C | 0.0059065 | -0.0653318 | 0.0771449 | 0.8703794 | 940 |
IDL.PL | 0.0057402 | -0.0642854 | 0.0757658 | 0.8720776 | 940 |
S.HDL.C.. | -0.0052954 | -0.0706629 | 0.0600721 | 0.8733842 | 940 |
Ace | -0.0052221 | -0.0717803 | 0.0613362 | 0.8740702 | 940 |
IDL.CE | 0.0056951 | -0.0651295 | 0.0765196 | 0.8744944 | 940 |
IDL.P | 0.0056810 | -0.0654540 | 0.0768159 | 0.8753108 | 940 |
L.HDL.C | 0.0057082 | -0.0659567 | 0.0773731 | 0.8754785 | 939 |
IDL.L | 0.0055656 | -0.0651891 | 0.0763203 | 0.8771902 | 940 |
L.LDL.C.. | 0.0047773 | -0.0560733 | 0.0656278 | 0.8775026 | 940 |
L.HDL.CE | 0.0055953 | -0.0660298 | 0.0772204 | 0.8778582 | 939 |
VLDL.C | 0.0057838 | -0.0693584 | 0.0809259 | 0.8794276 | 940 |
S.HDL.PL.. | 0.0052128 | -0.0625619 | 0.0729875 | 0.8798451 | 940 |
XS.VLDL.FC | -0.0053281 | -0.0762118 | 0.0655556 | 0.8824095 | 940 |
L.HDL.P | 0.0052307 | -0.0666650 | 0.0771265 | 0.8861452 | 939 |
Remnant.C | 0.0053224 | -0.0685854 | 0.0792303 | 0.8873198 | 940 |
M.VLDL.C.. | 0.0050170 | -0.0663709 | 0.0764049 | 0.8900979 | 940 |
M.LDL.PL | -0.0051401 | -0.0787366 | 0.0684563 | 0.8907989 | 938 |
M.VLDL.FC.. | -0.0050382 | -0.0783420 | 0.0682655 | 0.8922998 | 940 |
L.HDL.L | 0.0048538 | -0.0670277 | 0.0767354 | 0.8942829 | 939 |
L.LDL.FC | 0.0046172 | -0.0636339 | 0.0728684 | 0.8942872 | 940 |
XL.HDL.FC.. | -0.0043905 | -0.0692802 | 0.0604992 | 0.8943094 | 940 |
FreeC | 0.0047743 | -0.0665654 | 0.0761140 | 0.8953525 | 938 |
M.VLDL.L | 0.0050041 | -0.0702424 | 0.0802505 | 0.8957918 | 940 |
M.VLDL.TG | 0.0049312 | -0.0700118 | 0.0798741 | 0.8968994 | 940 |
M.VLDL.P | 0.0049449 | -0.0702429 | 0.0801328 | 0.8969388 | 940 |
LA | -0.0050225 | -0.0816557 | 0.0716107 | 0.8973914 | 938 |
IDL.CE.. | 0.0044163 | -0.0653047 | 0.0741372 | 0.9010518 | 940 |
SM | 0.0047479 | -0.0708508 | 0.0803466 | 0.9015405 | 938 |
XL.VLDL.TG.. | 0.0050618 | -0.0775806 | 0.0877042 | 0.9041608 | 912 |
L.LDL.PL.. | -0.0039244 | -0.0707173 | 0.0628684 | 0.9081851 | 940 |
IDL.TG.. | 0.0040163 | -0.0648673 | 0.0728998 | 0.9085493 | 940 |
M.VLDL.PL | 0.0040652 | -0.0711448 | 0.0792751 | 0.9152077 | 940 |
M.VLDL.FC | 0.0038877 | -0.0712762 | 0.0790517 | 0.9188487 | 940 |
ApoB | 0.0038529 | -0.0708861 | 0.0785918 | 0.9192296 | 940 |
PC | -0.0037205 | -0.0762711 | 0.0688301 | 0.9195796 | 938 |
Glc | 0.0036059 | -0.0674932 | 0.0747050 | 0.9206899 | 938 |
MUFA | 0.0037155 | -0.0714491 | 0.0788801 | 0.9223494 | 938 |
XL.VLDL.FC.. | 0.0042619 | -0.0820039 | 0.0905278 | 0.9225977 | 912 |
Gln | 0.0034677 | -0.0679117 | 0.0748471 | 0.9234774 | 940 |
S.VLDL.C.. | -0.0033997 | -0.0736808 | 0.0668814 | 0.9241936 | 940 |
LA.FA | -0.0035016 | -0.0786547 | 0.0716515 | 0.9260639 | 938 |
TotFA | -0.0032321 | -0.0786229 | 0.0721588 | 0.9326569 | 938 |
XS.VLDL.P | 0.0027774 | -0.0707542 | 0.0763091 | 0.9407055 | 940 |
XS.VLDL.L | 0.0027403 | -0.0703185 | 0.0757992 | 0.9411315 | 940 |
IDL.FC.. | 0.0021425 | -0.0555984 | 0.0598835 | 0.9417212 | 940 |
S.VLDL.FC | -0.0028179 | -0.0791849 | 0.0735491 | 0.9419504 | 940 |
S.HDL.CE.. | -0.0023584 | -0.0664279 | 0.0617111 | 0.9422760 | 940 |
S.VLDL.C | -0.0026974 | -0.0778615 | 0.0724667 | 0.9436224 | 940 |
FAw6 | -0.0026668 | -0.0776019 | 0.0722683 | 0.9442172 | 938 |
XS.VLDL.TG | 0.0023887 | -0.0730102 | 0.0777877 | 0.9501486 | 940 |
L.LDL.C | 0.0021809 | -0.0671192 | 0.0714811 | 0.9507171 | 940 |
FAw6.FA | 0.0021907 | -0.0681194 | 0.0725008 | 0.9508374 | 938 |
TotCho | -0.0021425 | -0.0743178 | 0.0700327 | 0.9533855 | 938 |
L.HDL.PL | 0.0018936 | -0.0702705 | 0.0740576 | 0.9588108 | 939 |
SFA | -0.0018825 | -0.0764412 | 0.0726762 | 0.9602894 | 938 |
S.VLDL.CE.. | 0.0016601 | -0.0669655 | 0.0702857 | 0.9620647 | 940 |
XXL.VLDL.C.. | 0.0015749 | -0.0672773 | 0.0704271 | 0.9640140 | 899 |
S.VLDL.TG | 0.0015925 | -0.0742362 | 0.0774211 | 0.9669795 | 940 |
Serum.C | -0.0013670 | -0.0727267 | 0.0699927 | 0.9699564 | 940 |
L.LDL.CE | 0.0012901 | -0.0683030 | 0.0708831 | 0.9709602 | 940 |
L.LDL.P | 0.0012609 | -0.0695283 | 0.0720501 | 0.9720884 | 940 |
XS.VLDL.PL | 0.0012532 | -0.0694240 | 0.0719304 | 0.9721923 | 940 |
L.LDL.PL | 0.0011977 | -0.0701743 | 0.0725697 | 0.9736995 | 940 |
L.LDL.L | 0.0011014 | -0.0693305 | 0.0715332 | 0.9754960 | 940 |
TG.PG | 0.0009772 | -0.0734311 | 0.0753855 | 0.9793729 | 938 |
S.VLDL.PL.. | 0.0009485 | -0.0724216 | 0.0743185 | 0.9797199 | 940 |
S.VLDL.L | -0.0009818 | -0.0772446 | 0.0752809 | 0.9797447 | 940 |
M.VLDL.TG.. | 0.0008658 | -0.0697226 | 0.0714543 | 0.9807528 | 940 |
S.VLDL.PL | -0.0008566 | -0.0774552 | 0.0757421 | 0.9823915 | 940 |
S.LDL.FC.. | -0.0007891 | -0.0719715 | 0.0703934 | 0.9826146 | 938 |
S.VLDL.P | -0.0007526 | -0.0770305 | 0.0755253 | 0.9844770 | 940 |
Gp | 0.0006997 | -0.0708737 | 0.0722730 | 0.9846507 | 940 |
S.VLDL.CE | 0.0006845 | -0.0725437 | 0.0739126 | 0.9853236 | 940 |
L.LDL.CE.. | -0.0005477 | -0.0658111 | 0.0647156 | 0.9868642 | 940 |
XXL.VLDL.CE.. | 0.0004061 | -0.0699509 | 0.0707630 | 0.9909362 | 899 |
IDL.PL.. | -0.0002511 | -0.0683544 | 0.0678522 | 0.9941794 | 940 |
XS.VLDL.TG.. | 0.0000709 | -0.0711729 | 0.0713147 | 0.9984346 | 940 |
LDL.C | 0.0000436 | -0.0685050 | 0.0685922 | 0.9990041 | 940 |
Metabolite | Estimate | 2.5% | 97.5% | Pval | N |
---|---|---|---|---|---|
L.LDL.TG.. | 0.1380187 | 0.0347338 | 0.2413035 | 0.0085039 | 654 |
M.LDL.TG.. | 0.1308995 | 0.0298373 | 0.2319617 | 0.0107821 | 654 |
L.LDL.C.. | -0.1252209 | -0.2256451 | -0.0247966 | 0.0140205 | 654 |
IDL.TG.. | 0.1289438 | 0.0233134 | 0.2345743 | 0.0161349 | 653 |
L.LDL.CE.. | -0.1204028 | -0.2202131 | -0.0205926 | 0.0172809 | 654 |
IDL.C.. | -0.1266099 | -0.2351094 | -0.0181105 | 0.0213851 | 653 |
S.LDL.TG.. | 0.1169412 | 0.0163803 | 0.2175022 | 0.0220211 | 653 |
Gly | 0.0965295 | 0.0026854 | 0.1903736 | 0.0424750 | 653 |
S.VLDL.CE.. | -0.1004165 | -0.1983957 | -0.0024372 | 0.0429485 | 654 |
XS.VLDL.CE.. | -0.1019247 | -0.2016975 | -0.0021519 | 0.0436251 | 654 |
XS.VLDL.TG.. | 0.1007169 | 0.0018673 | 0.1995664 | 0.0445061 | 654 |
M.LDL.C.. | -0.0910522 | -0.1811476 | -0.0009568 | 0.0466409 | 654 |
S.LDL.C.. | -0.0955258 | -0.1910705 | 0.0000190 | 0.0489229 | 653 |
S.VLDL.C.. | -0.0976470 | -0.1959831 | 0.0006890 | 0.0498567 | 654 |
S.VLDL.TG.. | 0.0926438 | -0.0038369 | 0.1891245 | 0.0581336 | 654 |
S.LDL.C | -0.0969793 | -0.1982867 | 0.0043280 | 0.0587275 | 653 |
S.LDL.CE | -0.0921662 | -0.1886914 | 0.0043589 | 0.0596205 | 653 |
S.LDL.PL.. | 0.0971260 | -0.0048885 | 0.1991405 | 0.0601402 | 653 |
XS.VLDL.C.. | -0.0933794 | -0.1918800 | 0.0051212 | 0.0611328 | 654 |
M.LDL.PL.. | 0.0918936 | -0.0072333 | 0.1910205 | 0.0673699 | 654 |
M.LDL.C | -0.0922035 | -0.1920864 | 0.0076793 | 0.0682434 | 654 |
LDL.C | -0.0934624 | -0.1949735 | 0.0080488 | 0.0688633 | 654 |
S.LDL.FC | -0.0927506 | -0.1940076 | 0.0085064 | 0.0703423 | 653 |
L.LDL.CE | -0.0930074 | -0.1951457 | 0.0091309 | 0.0718114 | 654 |
S.LDL.CE.. | -0.0799484 | -0.1674375 | 0.0075408 | 0.0721213 | 653 |
L.LDL.C | -0.0930123 | -0.1954194 | 0.0093948 | 0.0725859 | 654 |
L.LDL.FC | -0.0922891 | -0.1943643 | 0.0097862 | 0.0740946 | 654 |
M.LDL.CE | -0.0829522 | -0.1755434 | 0.0096390 | 0.0770373 | 654 |
M.VLDL.FC.. | 0.0837251 | -0.0097730 | 0.1772232 | 0.0776538 | 654 |
M.VLDL.CE.. | -0.0876955 | -0.1860216 | 0.0106306 | 0.0777341 | 654 |
IDL.CE.. | -0.0878481 | -0.1864176 | 0.0107215 | 0.0786198 | 653 |
M.LDL.FC | -0.0899817 | -0.1919573 | 0.0119939 | 0.0811646 | 654 |
S.LDL.L | -0.0884806 | -0.1900786 | 0.0131174 | 0.0851712 | 653 |
M.HDL.CE.. | -0.0790776 | -0.1701596 | 0.0120044 | 0.0871020 | 654 |
L.LDL.PL.. | 0.0889748 | -0.0140027 | 0.1919524 | 0.0873656 | 654 |
M.LDL.L | -0.0863702 | -0.1878178 | 0.0150774 | 0.0923270 | 654 |
S.LDL.P | -0.0855809 | -0.1870226 | 0.0158608 | 0.0953118 | 653 |
L.LDL.L | -0.0857292 | -0.1880200 | 0.0165617 | 0.0974343 | 654 |
M.LDL.CE.. | -0.0651109 | -0.1424468 | 0.0122249 | 0.0975746 | 654 |
M.LDL.P | -0.0835189 | -0.1850221 | 0.0179844 | 0.1037114 | 654 |
M.HDL.C.. | -0.0761104 | -0.1687955 | 0.0165747 | 0.1053134 | 654 |
L.LDL.PL | -0.0833470 | -0.1852914 | 0.0185973 | 0.1059442 | 654 |
M.VLDL.PL.. | -0.0821646 | -0.1826412 | 0.0183120 | 0.1061871 | 654 |
L.LDL.P | -0.0828027 | -0.1849482 | 0.0193428 | 0.1088339 | 654 |
IDL.C | -0.0833239 | -0.1866740 | 0.0200262 | 0.1108443 | 653 |
IDL.CE | -0.0821179 | -0.1848399 | 0.0206041 | 0.1138180 | 653 |
FAw6.FA | -0.0793879 | -0.1794496 | 0.0206738 | 0.1177194 | 652 |
IDL.PL | -0.0803588 | -0.1834637 | 0.0227462 | 0.1232416 | 653 |
IDL.L | -0.0786542 | -0.1809377 | 0.0236292 | 0.1282033 | 654 |
L.HDL.TG.. | 0.0727343 | -0.0216228 | 0.1670913 | 0.1282819 | 651 |
EstC | -0.0764926 | -0.1779431 | 0.0249578 | 0.1360403 | 653 |
M.VLDL.C.. | -0.0719324 | -0.1694557 | 0.0255908 | 0.1447656 | 654 |
S.HDL.TG.. | 0.0702752 | -0.0264620 | 0.1670124 | 0.1518690 | 654 |
IDL.P | -0.0739236 | -0.1760033 | 0.0281561 | 0.1518796 | 654 |
LA.FA | -0.0727971 | -0.1732262 | 0.0276320 | 0.1527163 | 652 |
S.HDL.TG | 0.0701301 | -0.0266874 | 0.1669476 | 0.1528923 | 654 |
IDL.FC | -0.0724007 | -0.1745676 | 0.0297661 | 0.1615417 | 653 |
Serum.C | -0.0715830 | -0.1728462 | 0.0296802 | 0.1621599 | 654 |
M.LDL.FC.. | 0.0699957 | -0.0293768 | 0.1693682 | 0.1634870 | 654 |
Tyr | -0.0683681 | -0.1652958 | 0.0285596 | 0.1644051 | 652 |
Crea | -0.0679312 | -0.1645413 | 0.0286790 | 0.1650547 | 652 |
HDL.TG | 0.0667313 | -0.0281749 | 0.1616375 | 0.1655253 | 654 |
M.VLDL.TG.. | 0.0656617 | -0.0307878 | 0.1621112 | 0.1788249 | 654 |
PUFA.FA | -0.0671556 | -0.1662775 | 0.0319663 | 0.1814701 | 652 |
M.LDL.PL | -0.0673542 | -0.1671021 | 0.0323937 | 0.1814893 | 654 |
PC | -0.0785296 | -0.1952940 | 0.0382349 | 0.1828192 | 653 |
TotCho | -0.1131342 | -0.2816590 | 0.0553905 | 0.1829652 | 653 |
VLDL.D | 0.0641573 | -0.0310731 | 0.1593876 | 0.1832461 | 654 |
S.LDL.PL | -0.0649870 | -0.1630024 | 0.0330283 | 0.1897599 | 653 |
XXL.VLDL.FC.. | 0.0714167 | -0.0363518 | 0.1791852 | 0.1910107 | 633 |
SFA.FA | 0.0669077 | -0.0354970 | 0.1693125 | 0.1958195 | 652 |
FAw6 | -0.0616331 | -0.1569478 | 0.0336816 | 0.2009142 | 652 |
M.HDL.PL.. | 0.0585936 | -0.0325822 | 0.1497693 | 0.2052335 | 654 |
L.HDL.FC.. | -0.0621807 | -0.1606180 | 0.0362567 | 0.2124580 | 651 |
LA | -0.0578837 | -0.1504740 | 0.0347067 | 0.2165332 | 652 |
S.VLDL.TG | 0.0583135 | -0.0348550 | 0.1514821 | 0.2166023 | 654 |
Serum.TG | 0.0579966 | -0.0349926 | 0.1509858 | 0.2182241 | 654 |
Pyr | -0.0552855 | -0.1444079 | 0.0338369 | 0.2206375 | 653 |
S.HDL.C.. | -0.0562171 | -0.1467040 | 0.0342699 | 0.2210098 | 654 |
M.HDL.TG | 0.0605485 | -0.0371642 | 0.1582612 | 0.2212461 | 654 |
M.HDL.TG.. | 0.0597507 | -0.0371715 | 0.1566729 | 0.2236362 | 654 |
TotPG | -0.0658660 | -0.1730526 | 0.0413206 | 0.2237703 | 653 |
XS.VLDL.CE | -0.0623076 | -0.1638378 | 0.0392225 | 0.2243119 | 654 |
XXL.VLDL.TG.. | -0.0541287 | -0.1430794 | 0.0348221 | 0.2268946 | 633 |
VLDL.TG | 0.0562121 | -0.0364522 | 0.1488764 | 0.2310629 | 654 |
L.HDL.TG | 0.0563151 | -0.0371344 | 0.1497646 | 0.2337476 | 651 |
S.LDL.FC.. | 0.0599288 | -0.0397218 | 0.1595794 | 0.2341518 | 653 |
FreeC | -0.0603595 | -0.1620359 | 0.0413169 | 0.2401456 | 653 |
M.VLDL.TG | 0.0547107 | -0.0378624 | 0.1472838 | 0.2432394 | 654 |
XS.VLDL.TG | 0.0569043 | -0.0402147 | 0.1540232 | 0.2470247 | 654 |
M.VLDL.FC | 0.0535527 | -0.0384536 | 0.1455589 | 0.2505380 | 654 |
AcAce | 0.0543256 | -0.0400388 | 0.1486901 | 0.2562161 | 654 |
XS.VLDL.PL.. | -0.0525060 | -0.1447636 | 0.0397517 | 0.2624884 | 654 |
L.VLDL.FC | 0.0519312 | -0.0399253 | 0.1437876 | 0.2645720 | 651 |
L.VLDL.TG | 0.0525823 | -0.0409786 | 0.1461432 | 0.2670447 | 651 |
L.VLDL.P | 0.0523483 | -0.0412592 | 0.1459559 | 0.2694769 | 651 |
L.VLDL.L | 0.0522617 | -0.0413024 | 0.1458257 | 0.2700722 | 651 |
L.VLDL.PL | 0.0521662 | -0.0412536 | 0.1455859 | 0.2702366 | 651 |
MUFA.FA | 0.0549010 | -0.0435419 | 0.1533439 | 0.2709702 | 652 |
XXL.VLDL.C.. | 0.0548562 | -0.0439792 | 0.1536916 | 0.2712247 | 633 |
S.HDL.CE.. | -0.0485400 | -0.1356164 | 0.0385364 | 0.2722814 | 654 |
S.HDL.C | -0.0502249 | -0.1405067 | 0.0400569 | 0.2733661 | 654 |
S.HDL.PL.. | 0.0521121 | -0.0427657 | 0.1469900 | 0.2785622 | 654 |
PUFA | -0.0521809 | -0.1477557 | 0.0433939 | 0.2798551 | 652 |
L.VLDL.C | 0.0508859 | -0.0426136 | 0.1443855 | 0.2827958 | 651 |
M.VLDL.P | 0.0501680 | -0.0421411 | 0.1424770 | 0.2832089 | 654 |
XS.VLDL.C | -0.0547275 | -0.1559451 | 0.0464900 | 0.2843066 | 654 |
M.VLDL.L | 0.0495788 | -0.0427129 | 0.1418705 | 0.2888123 | 654 |
S.HDL.CE | -0.0467970 | -0.1338571 | 0.0402631 | 0.2900505 | 654 |
TG.PG | 0.0489377 | -0.0449156 | 0.1427910 | 0.3032827 | 653 |
XL.HDL.FC.. | -0.0506434 | -0.1477331 | 0.0464463 | 0.3034220 | 654 |
L.VLDL.CE | 0.0480620 | -0.0455605 | 0.1416846 | 0.3110569 | 651 |
M.VLDL.PL | 0.0469266 | -0.0451469 | 0.1390001 | 0.3142160 | 654 |
SM | -0.0505537 | -0.1503060 | 0.0491985 | 0.3163656 | 652 |
Glol | 0.1528850 | -0.1681832 | 0.4739533 | 0.3213397 | 105 |
L.VLDL.FC.. | 0.0419295 | -0.0427095 | 0.1265686 | 0.3293328 | 651 |
His | -0.0405381 | -0.1245118 | 0.0434355 | 0.3412392 | 652 |
Ile | 0.0455656 | -0.0492255 | 0.1403567 | 0.3425931 | 654 |
L.LDL.FC.. | -0.0442263 | -0.1375441 | 0.0490915 | 0.3498443 | 654 |
IDL.TG | 0.0471226 | -0.0552281 | 0.1494732 | 0.3622781 | 653 |
XS.VLDL.PL | -0.0442674 | -0.1433525 | 0.0548178 | 0.3767345 | 654 |
IDL.FC.. | -0.0408431 | -0.1353202 | 0.0536340 | 0.3946815 | 653 |
XXL.VLDL.C | 0.0404896 | -0.0539057 | 0.1348849 | 0.3971389 | 633 |
IDL.PL.. | -0.0402383 | -0.1343648 | 0.0538881 | 0.3989608 | 653 |
XL.VLDL.FC.. | -0.0407207 | -0.1365069 | 0.0550655 | 0.4015983 | 643 |
L.HDL.PL.. | -0.0394894 | -0.1326960 | 0.0537171 | 0.4025762 | 651 |
S.VLDL.CE | -0.0415483 | -0.1410103 | 0.0579136 | 0.4078760 | 654 |
XXL.VLDL.FC | 0.0406769 | -0.0568182 | 0.1381720 | 0.4100910 | 633 |
XL.HDL.TG.. | 0.0388028 | -0.0556432 | 0.1332487 | 0.4174415 | 654 |
S.VLDL.P | 0.0382490 | -0.0554668 | 0.1319647 | 0.4199659 | 654 |
M.HDL.FC.. | -0.0377106 | -0.1302123 | 0.0547910 | 0.4209654 | 654 |
S.HDL.FC.. | 0.0376973 | -0.0566162 | 0.1320107 | 0.4302201 | 654 |
S.VLDL.PL | 0.0374575 | -0.0568473 | 0.1317623 | 0.4325257 | 654 |
Remnant.C | -0.0382919 | -0.1356215 | 0.0590377 | 0.4361776 | 654 |
Gp | 0.0359218 | -0.0564464 | 0.1282899 | 0.4412911 | 654 |
S.VLDL.FC.. | -0.0367518 | -0.1312938 | 0.0577902 | 0.4425001 | 654 |
M.VLDL.C | 0.0347930 | -0.0571269 | 0.1267130 | 0.4547674 | 654 |
XL.HDL.C.. | -0.0362376 | -0.1322119 | 0.0597366 | 0.4559527 | 654 |
XL.HDL.CE | -0.0373465 | -0.1371166 | 0.0624235 | 0.4588572 | 654 |
HDL2.C | -0.0372271 | -0.1382727 | 0.0638186 | 0.4664192 | 654 |
L.VLDL.CE.. | -0.0337030 | -0.1259263 | 0.0585202 | 0.4693099 | 651 |
Leu | 0.0343431 | -0.0594424 | 0.1281287 | 0.4696443 | 654 |
XL.HDL.C | -0.0361202 | -0.1357783 | 0.0635378 | 0.4731558 | 654 |
ApoA1 | -0.0368416 | -0.1386037 | 0.0649205 | 0.4737910 | 654 |
S.VLDL.L | 0.0340284 | -0.0599135 | 0.1279702 | 0.4740504 | 654 |
XL.VLDL.PL.. | -0.0259883 | -0.1005062 | 0.0485296 | 0.4894238 | 643 |
HDL.C | -0.0351751 | -0.1361934 | 0.0658432 | 0.4912248 | 654 |
XS.VLDL.FC | -0.0342078 | -0.1327067 | 0.0642912 | 0.4919396 | 654 |
XL.VLDL.CE | 0.0330728 | -0.0627148 | 0.1288605 | 0.4957127 | 643 |
S.LDL.TG | 0.0313191 | -0.0631565 | 0.1257947 | 0.5121452 | 653 |
L.HDL.FC | -0.0328662 | -0.1325340 | 0.0668016 | 0.5143203 | 651 |
UnSat | -0.0320216 | -0.1291552 | 0.0651119 | 0.5149137 | 652 |
L.HDL.C.. | -0.0332523 | -0.1345473 | 0.0680427 | 0.5165734 | 651 |
ApoB | -0.0315229 | -0.1277779 | 0.0647322 | 0.5168091 | 654 |
S.VLDL.FC | 0.0310342 | -0.0636297 | 0.1256981 | 0.5169459 | 654 |
M.HDL.CE | -0.0322080 | -0.1306297 | 0.0662137 | 0.5173033 | 654 |
XL.VLDL.P | 0.0310740 | -0.0647720 | 0.1269200 | 0.5218753 | 643 |
XXL.VLDL.CE | 0.0289721 | -0.0607429 | 0.1186871 | 0.5240531 | 633 |
Ace | 0.0425838 | -0.0928763 | 0.1780438 | 0.5288027 | 654 |
XL.VLDL.TG | 0.0304307 | -0.0653003 | 0.1261617 | 0.5300418 | 643 |
XL.VLDL.L | 0.0304377 | -0.0654140 | 0.1262894 | 0.5304679 | 643 |
XL.HDL.FC | -0.0308872 | -0.1294369 | 0.0676624 | 0.5348502 | 654 |
bOHBut | 0.0302718 | -0.0681058 | 0.1286495 | 0.5435056 | 641 |
M.HDL.C | -0.0299073 | -0.1285571 | 0.0687424 | 0.5485926 | 654 |
XXL.VLDL.PL.. | -0.0256620 | -0.1110780 | 0.0597540 | 0.5505579 | 633 |
XS.VLDL.L | -0.0302437 | -0.1307888 | 0.0703015 | 0.5512769 | 654 |
S.HDL.PL | 0.0288764 | -0.0706302 | 0.1283829 | 0.5660209 | 654 |
Alb | -0.0269141 | -0.1218568 | 0.0680286 | 0.5756807 | 654 |
XL.VLDL.C | 0.0268660 | -0.0688297 | 0.1225616 | 0.5794685 | 643 |
LDL.D | 0.0253302 | -0.0658402 | 0.1165006 | 0.5839009 | 654 |
XL.HDL.CE.. | -0.0259931 | -0.1210799 | 0.0690936 | 0.5890359 | 654 |
HDL3.C | -0.0266632 | -0.1248601 | 0.0715338 | 0.5917689 | 654 |
LDL.TG | 0.0259948 | -0.0740274 | 0.1260171 | 0.6069128 | 654 |
XL.HDL.TG | 0.0236251 | -0.0683844 | 0.1156345 | 0.6123204 | 654 |
L.VLDL.PL.. | 0.0244028 | -0.0709994 | 0.1198051 | 0.6141812 | 651 |
L.LDL.TG | 0.0253934 | -0.0758598 | 0.1266465 | 0.6195047 | 654 |
XXL.VLDL.L | 0.0233852 | -0.0704980 | 0.1172683 | 0.6220213 | 633 |
XXL.VLDL.P | 0.0217544 | -0.0720403 | 0.1155491 | 0.6461142 | 633 |
M.HDL.FC | -0.0227597 | -0.1208199 | 0.0753005 | 0.6461892 | 654 |
XL.HDL.L | -0.0228785 | -0.1227942 | 0.0770373 | 0.6501615 | 654 |
XS.VLDL.P | -0.0227877 | -0.1229847 | 0.0774093 | 0.6523258 | 654 |
L.HDL.PL | -0.0226217 | -0.1228360 | 0.0775926 | 0.6552018 | 651 |
XL.VLDL.PL | 0.0204235 | -0.0729702 | 0.1138173 | 0.6656209 | 643 |
XL.HDL.PL.. | 0.0202451 | -0.0756377 | 0.1161279 | 0.6769896 | 654 |
XL.VLDL.C.. | -0.0192103 | -0.1104093 | 0.0719888 | 0.6775371 | 643 |
XL.HDL.P | -0.0209073 | -0.1208238 | 0.0790092 | 0.6785307 | 654 |
L.HDL.C | -0.0192407 | -0.1191491 | 0.0806678 | 0.7031840 | 651 |
XS.VLDL.FC.. | -0.0165933 | -0.1033333 | 0.0701467 | 0.7061718 | 654 |
M.LDL.TG | 0.0185301 | -0.0823235 | 0.1193836 | 0.7159920 | 654 |
XXL.VLDL.TG | 0.0167807 | -0.0768509 | 0.1104123 | 0.7225527 | 633 |
TotFA | -0.0159588 | -0.1085036 | 0.0765859 | 0.7329330 | 652 |
M.VLDL.CE | 0.0148921 | -0.0776928 | 0.1074771 | 0.7506270 | 654 |
L.HDL.L | -0.0159817 | -0.1158527 | 0.0838892 | 0.7515358 | 651 |
L.HDL.CE | -0.0158529 | -0.1157771 | 0.0840712 | 0.7535948 | 651 |
HDL.D | -0.0144886 | -0.1121076 | 0.0831303 | 0.7691193 | 654 |
XL.VLDL.FC | 0.0142254 | -0.0815132 | 0.1099641 | 0.7691641 | 643 |
Val | -0.0139502 | -0.1080246 | 0.0801241 | 0.7697108 | 654 |
S.VLDL.C | -0.0142257 | -0.1117631 | 0.0833117 | 0.7727317 | 654 |
XXL.VLDL.PL | 0.0132733 | -0.0794733 | 0.1060200 | 0.7767243 | 633 |
L.HDL.P | -0.0141983 | -0.1140693 | 0.0856726 | 0.7784850 | 651 |
Lac | 0.0121246 | -0.0762225 | 0.1004717 | 0.7863086 | 654 |
ApoB.ApoA1 | -0.0133887 | -0.1113586 | 0.0845813 | 0.7867854 | 654 |
Gln | 0.0130766 | -0.0862606 | 0.1124139 | 0.7948998 | 654 |
S.HDL.FC | 0.0127592 | -0.0855699 | 0.1110883 | 0.7975216 | 654 |
DHA.FA | 0.0124298 | -0.0865326 | 0.1113922 | 0.8040431 | 652 |
XXL.VLDL.CE.. | 0.0113605 | -0.0810244 | 0.1037454 | 0.8076221 | 633 |
M.HDL.L | -0.0112749 | -0.1117984 | 0.0892485 | 0.8242861 | 654 |
Phe | 0.0100445 | -0.0831636 | 0.1032525 | 0.8314991 | 654 |
L.HDL.CE.. | -0.0103027 | -0.1099897 | 0.0893844 | 0.8383149 | 651 |
FAw3.FA | 0.0098450 | -0.0906192 | 0.1103093 | 0.8463607 | 652 |
XL.HDL.PL | -0.0081754 | -0.1070867 | 0.0907359 | 0.8700360 | 654 |
M.HDL.P | -0.0081237 | -0.1088275 | 0.0925800 | 0.8731212 | 654 |
VLDL.C | 0.0074560 | -0.0864159 | 0.1013280 | 0.8752313 | 654 |
Ala | -0.0075712 | -0.1076549 | 0.0925124 | 0.8808518 | 654 |
L.VLDL.TG.. | -0.0062301 | -0.0979590 | 0.0854988 | 0.8934846 | 651 |
MUFA | 0.0060528 | -0.0870479 | 0.0991535 | 0.8976926 | 652 |
L.VLDL.C.. | 0.0059033 | -0.0847303 | 0.0965369 | 0.8978320 | 651 |
XL.VLDL.CE.. | -0.0047392 | -0.0982153 | 0.0887369 | 0.9200641 | 643 |
FAw3 | -0.0047938 | -0.1038393 | 0.0942517 | 0.9235979 | 652 |
SFA | -0.0044354 | -0.0968308 | 0.0879600 | 0.9243599 | 652 |
Glc | -0.0032043 | -0.0962822 | 0.0898735 | 0.9456252 | 651 |
S.HDL.L | -0.0029933 | -0.1005649 | 0.0945783 | 0.9516517 | 654 |
M.HDL.PL | -0.0029191 | -0.1039322 | 0.0980941 | 0.9543857 | 654 |
DHA | -0.0018880 | -0.1051473 | 0.1013712 | 0.9711173 | 652 |
S.VLDL.PL.. | -0.0012708 | -0.0941114 | 0.0915698 | 0.9784044 | 654 |
S.HDL.P | 0.0011985 | -0.0967767 | 0.0991736 | 0.9807067 | 654 |
Cit | 0.0012075 | -0.0988033 | 0.1012183 | 0.9809441 | 654 |
XL.VLDL.TG.. | 0.0008852 | -0.0910010 | 0.0927715 | 0.9848889 | 643 |