library(tidyverse)
## ── Attaching packages ─────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.2.1     ✔ purrr   0.3.2
## ✔ tibble  2.1.3     ✔ dplyr   0.8.3
## ✔ tidyr   1.0.0     ✔ stringr 1.4.0
## ✔ readr   1.3.1     ✔ forcats 0.4.0
## ── Conflicts ────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(tidyr)
salary<-read.csv("NBA_season1718_salary (1).csv", header=TRUE, 
                 stringsAsFactors = FALSE)
head(salary)
##   X         Player  Tm season17_18
## 1 1  Stephen Curry GSW    34682550
## 2 2   LeBron James CLE    33285709
## 3 3   Paul Millsap DEN    31269231
## 4 4 Gordon Hayward BOS    29727900
## 5 5  Blake Griffin DET    29512900
## 6 6     Kyle Lowry TOR    28703704
summary(salary)
##        X          Player               Tm             season17_18      
##  Min.   :  1   Length:573         Length:573         Min.   :   17224  
##  1st Qu.:144   Class :character   Class :character   1st Qu.: 1312611  
##  Median :287   Mode  :character   Mode  :character   Median : 2386864  
##  Mean   :287                                         Mean   : 5858946  
##  3rd Qu.:430                                         3rd Qu.: 7936509  
##  Max.   :573                                         Max.   :34682550
player_stats<-read.csv("nba_extra2.csv", header=TRUE, 
                       stringsAsFactors = FALSE)
head(player_stats)
##   Rk                 Player Pos Age  Tm  G GS   MP  FG FGA   FG. X3P X3PA
## 1 NA                             NA     NA NA   NA  NA  NA    NA  NA   NA
## 2  1 Alex Abrines:abrinal01  SG  24 OKC 75  8 1134 115 291 0.395  84  221
## 3 NA                             NA     NA NA   NA  NA  NA    NA  NA   NA
## 4  2     Quincy Acy:acyqu01  PF  27 BRK 70  8 1359 130 365 0.356 102  292
## 5 NA                             NA     NA NA   NA  NA  NA    NA  NA   NA
## 6  3 Steven Adams:adamsst01   C  24 OKC 76 76 2487 448 712 0.629   0    2
##    X3P. X2P X2PA  X2P.  eFG.  FT FTA   FT. ORB DRB TRB AST STL BLK TOV  PF
## 1    NA  NA   NA    NA    NA  NA  NA    NA  NA  NA  NA  NA  NA  NA  NA  NA
## 2 0.380  31   70 0.443 0.540  39  46 0.848  26  88 114  28  38   8  25 124
## 3    NA  NA   NA    NA    NA  NA  NA    NA  NA  NA  NA  NA  NA  NA  NA  NA
## 4 0.349  28   73 0.384 0.496  49  60 0.817  40 217 257  57  33  29  60 149
## 5    NA  NA   NA    NA    NA  NA  NA    NA  NA  NA  NA  NA  NA  NA  NA  NA
## 6 0.000 448  710 0.631 0.629 160 286 0.559 384 301 685  88  92  78 128 215
##    PTS
## 1   NA
## 2  353
## 3   NA
## 4  411
## 5   NA
## 6 1056
summary(player_stats)
##        Rk           Player              Pos                 Age       
##  Min.   :  1.0   Length:1328        Length:1328        Min.   :19.00  
##  1st Qu.:139.0   Class :character   Class :character   1st Qu.:23.00  
##  Median :266.5   Mode  :character   Mode  :character   Median :26.00  
##  Mean   :270.8                                         Mean   :26.19  
##  3rd Qu.:401.2                                         3rd Qu.:29.00  
##  Max.   :540.0                                         Max.   :41.00  
##  NA's   :664                                           NA's   :664    
##       Tm                  G               GS              MP        
##  Length:1328        Min.   : 1.00   Min.   : 0.00   Min.   :   1.0  
##  Class :character   1st Qu.:17.00   1st Qu.: 0.00   1st Qu.: 186.0  
##  Mode  :character   Median :46.00   Median : 4.00   Median : 755.0  
##                     Mean   :43.28   Mean   :19.71   Mean   : 972.9  
##                     3rd Qu.:71.00   3rd Qu.:35.00   3rd Qu.:1651.5  
##                     Max.   :82.00   Max.   :82.00   Max.   :3026.0  
##                     NA's   :664     NA's   :664     NA's   :664     
##        FG             FGA              FG.              X3P        
##  Min.   :  0.0   Min.   :   0.0   Min.   :0.0000   Min.   :  0.00  
##  1st Qu.: 22.0   1st Qu.:  58.0   1st Qu.:0.3950   1st Qu.:  1.75  
##  Median :102.0   Median : 224.5   Median :0.4400   Median : 18.00  
##  Mean   :159.5   Mean   : 347.2   Mean   :0.4414   Mean   : 42.27  
##  3rd Qu.:253.0   3rd Qu.: 554.0   3rd Qu.:0.4930   3rd Qu.: 64.25  
##  Max.   :857.0   Max.   :1687.0   Max.   :1.0000   Max.   :265.00  
##  NA's   :664     NA's   :664      NA's   :668      NA's   :664     
##       X3PA            X3P.             X2P             X2PA       
##  Min.   :  0.0   Min.   :0.0000   Min.   :  0.0   Min.   :   0.0  
##  1st Qu.:  7.0   1st Qu.:0.2500   1st Qu.: 15.0   1st Qu.:  33.0  
##  Median : 56.5   Median :0.3370   Median : 71.0   Median : 143.0  
##  Mean   :117.2   Mean   :0.3100   Mean   :117.2   Mean   : 230.0  
##  3rd Qu.:189.2   3rd Qu.:0.3795   3rd Qu.:181.2   3rd Qu.: 361.2  
##  Max.   :722.0   Max.   :1.0000   Max.   :725.0   Max.   :1361.0  
##  NA's   :664     NA's   :729      NA's   :664     NA's   :664     
##       X2P.             eFG.             FT              FTA        
##  Min.   :0.0000   Min.   :0.000   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:0.4422   1st Qu.:0.458   1st Qu.:  8.00   1st Qu.: 12.00  
##  Median :0.4980   Median :0.506   Median : 37.50   Median : 51.00  
##  Mean   :0.4931   Mean   :0.498   Mean   : 66.93   Mean   : 87.19  
##  3rd Qu.:0.5468   3rd Qu.:0.551   3rd Qu.: 97.00   3rd Qu.:120.75  
##  Max.   :1.0000   Max.   :1.500   Max.   :624.00   Max.   :727.00  
##  NA's   :682      NA's   :668     NA's   :664      NA's   :664     
##       FT.              ORB              DRB             TRB        
##  Min.   :0.0000   Min.   :  0.00   Min.   :  0.0   Min.   :   0.0  
##  1st Qu.:0.6670   1st Qu.:  5.00   1st Qu.: 22.0   1st Qu.:  29.0  
##  Median :0.7680   Median : 21.50   Median : 95.5   Median : 121.5  
##  Mean   :0.7411   Mean   : 39.01   Mean   :135.3   Mean   : 174.3  
##  3rd Qu.:0.8330   3rd Qu.: 53.00   3rd Qu.:208.0   3rd Qu.: 259.2  
##  Max.   :1.0000   Max.   :399.00   Max.   :848.0   Max.   :1247.0  
##  NA's   :722      NA's   :664      NA's   :664     NA's   :664     
##       AST              STL              BLK              TOV        
##  Min.   :  0.00   Min.   :  0.00   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.: 11.75   1st Qu.:  5.00   1st Qu.:  2.00   1st Qu.:  8.00  
##  Median : 51.00   Median : 23.00   Median : 10.00   Median : 36.00  
##  Mean   : 93.18   Mean   : 31.15   Mean   : 19.01   Mean   : 55.01  
##  3rd Qu.:126.25   3rd Qu.: 47.00   3rd Qu.: 25.00   3rd Qu.: 86.00  
##  Max.   :820.00   Max.   :177.00   Max.   :193.00   Max.   :381.00  
##  NA's   :664      NA's   :664      NA's   :664      NA's   :664     
##        PF              PTS        
##  Min.   :  0.00   Min.   :   0.0  
##  1st Qu.: 16.75   1st Qu.:  59.0  
##  Median : 66.50   Median : 264.0  
##  Mean   : 79.91   Mean   : 428.1  
##  3rd Qu.:132.00   3rd Qu.: 667.2  
##  Max.   :285.00   Max.   :2251.0  
##  NA's   :664      NA's   :664
player_stats2<-player_stats%>%
  filter(is.na(Rk)==FALSE)

head(player_stats2)
##   Rk                  Player Pos Age  Tm  G GS   MP  FG FGA   FG. X3P X3PA
## 1  1  Alex Abrines:abrinal01  SG  24 OKC 75  8 1134 115 291 0.395  84  221
## 2  2      Quincy Acy:acyqu01  PF  27 BRK 70  8 1359 130 365 0.356 102  292
## 3  3  Steven Adams:adamsst01   C  24 OKC 76 76 2487 448 712 0.629   0    2
## 4  4   Bam Adebayo:adebaba01   C  20 MIA 69 19 1368 174 340 0.512   0    7
## 5  5 Arron Afflalo:afflaar01  SG  32 ORL 53  3  682  65 162 0.401  27   70
## 6  6  Cole Aldrich:aldrico01   C  29 MIN 21  0   49   5  15 0.333   0    0
##    X3P. X2P X2PA  X2P.  eFG.  FT FTA   FT. ORB DRB TRB AST STL BLK TOV  PF
## 1 0.380  31   70 0.443 0.540  39  46 0.848  26  88 114  28  38   8  25 124
## 2 0.349  28   73 0.384 0.496  49  60 0.817  40 217 257  57  33  29  60 149
## 3 0.000 448  710 0.631 0.629 160 286 0.559 384 301 685  88  92  78 128 215
## 4 0.000 174  333 0.523 0.512 129 179 0.721 118 263 381 101  32  41  66 138
## 5 0.386  38   92 0.413 0.485  22  26 0.846   4  62  66  30   4   9  21  56
## 6    NA   5   15 0.333 0.333   2   6 0.333   3  12  15   3   2   1   1  11
##    PTS
## 1  353
## 2  411
## 3 1056
## 4  477
## 5  179
## 6   12
player_stats3 <- player_stats2[-c(24, 25, 28, 29, 45, 46, 59, 60, 68, 69, 70, 73, 74, 77, 78, 97, 98, 102, 103, 118, 119, 122, 123, 142, 143, 145, 146, 167, 168, 174, 175, 180, 181, 190, 191, 202, 203, 229, 230, 237, 238, 242, 243, 250, 251, 252, 259, 260, 266, 267, 276, 277, 288, 289, 299, 300, 306, 307, 314, 315, 319, 320, 328, 329, 331, 332, 342, 342, 343, 344, 368, 369, 386, 387, 401, 402, 419, 420, 425, 426, 427, 439, 440, 442, 443, 450, 451, 454, 455, 471, 472, 481, 482, 493, 494, 496, 497, 523, 524, 535, 536, 550, 551, 568, 569, 585, 586, 602, 603, 604, 606, 607, 610, 611, 623, 624, 642, 643, 650, 651, 660, 661),]
head (player_stats3)
##   Rk                  Player Pos Age  Tm  G GS   MP  FG FGA   FG. X3P X3PA
## 1  1  Alex Abrines:abrinal01  SG  24 OKC 75  8 1134 115 291 0.395  84  221
## 2  2      Quincy Acy:acyqu01  PF  27 BRK 70  8 1359 130 365 0.356 102  292
## 3  3  Steven Adams:adamsst01   C  24 OKC 76 76 2487 448 712 0.629   0    2
## 4  4   Bam Adebayo:adebaba01   C  20 MIA 69 19 1368 174 340 0.512   0    7
## 5  5 Arron Afflalo:afflaar01  SG  32 ORL 53  3  682  65 162 0.401  27   70
## 6  6  Cole Aldrich:aldrico01   C  29 MIN 21  0   49   5  15 0.333   0    0
##    X3P. X2P X2PA  X2P.  eFG.  FT FTA   FT. ORB DRB TRB AST STL BLK TOV  PF
## 1 0.380  31   70 0.443 0.540  39  46 0.848  26  88 114  28  38   8  25 124
## 2 0.349  28   73 0.384 0.496  49  60 0.817  40 217 257  57  33  29  60 149
## 3 0.000 448  710 0.631 0.629 160 286 0.559 384 301 685  88  92  78 128 215
## 4 0.000 174  333 0.523 0.512 129 179 0.721 118 263 381 101  32  41  66 138
## 5 0.386  38   92 0.413 0.485  22  26 0.846   4  62  66  30   4   9  21  56
## 6    NA   5   15 0.333 0.333   2   6 0.333   3  12  15   3   2   1   1  11
##    PTS
## 1  353
## 2  411
## 3 1056
## 4  477
## 5  179
## 6   12
playerS<-separate(data=player_stats3,col=Player,into=c("Player", "nickname"), sep=":")
head(playerS)
##   Rk        Player  nickname Pos Age  Tm  G GS   MP  FG FGA   FG. X3P X3PA
## 1  1  Alex Abrines abrinal01  SG  24 OKC 75  8 1134 115 291 0.395  84  221
## 2  2    Quincy Acy   acyqu01  PF  27 BRK 70  8 1359 130 365 0.356 102  292
## 3  3  Steven Adams adamsst01   C  24 OKC 76 76 2487 448 712 0.629   0    2
## 4  4   Bam Adebayo adebaba01   C  20 MIA 69 19 1368 174 340 0.512   0    7
## 5  5 Arron Afflalo afflaar01  SG  32 ORL 53  3  682  65 162 0.401  27   70
## 6  6  Cole Aldrich aldrico01   C  29 MIN 21  0   49   5  15 0.333   0    0
##    X3P. X2P X2PA  X2P.  eFG.  FT FTA   FT. ORB DRB TRB AST STL BLK TOV  PF
## 1 0.380  31   70 0.443 0.540  39  46 0.848  26  88 114  28  38   8  25 124
## 2 0.349  28   73 0.384 0.496  49  60 0.817  40 217 257  57  33  29  60 149
## 3 0.000 448  710 0.631 0.629 160 286 0.559 384 301 685  88  92  78 128 215
## 4 0.000 174  333 0.523 0.512 129 179 0.721 118 263 381 101  32  41  66 138
## 5 0.386  38   92 0.413 0.485  22  26 0.846   4  62  66  30   4   9  21  56
## 6    NA   5   15 0.333 0.333   2   6 0.333   3  12  15   3   2   1   1  11
##    PTS
## 1  353
## 2  411
## 3 1056
## 4  477
## 5  179
## 6   12
data<-left_join(playerS, salary)
## Joining, by = c("Player", "Tm")
data<-data%>%
  mutate(MPG = MP/G, PPG = PTS/G, APG = AST/G, RPG = TRB/G, TOG = TOV/G)
data<-na.omit(data)
attach(data)
head(data)
##   Rk            Player  nickname Pos Age  Tm  G GS   MP  FG  FGA   FG. X3P
## 1  1      Alex Abrines abrinal01  SG  24 OKC 75  8 1134 115  291 0.395  84
## 2  2        Quincy Acy   acyqu01  PF  27 BRK 70  8 1359 130  365 0.356 102
## 3  3      Steven Adams adamsst01   C  24 OKC 76 76 2487 448  712 0.629   0
## 4  4       Bam Adebayo adebaba01   C  20 MIA 69 19 1368 174  340 0.512   0
## 5  5     Arron Afflalo afflaar01  SG  32 ORL 53  3  682  65  162 0.401  27
## 7  7 LaMarcus Aldridge aldrila01   C  32 SAS 75 75 2509 687 1347 0.510  27
##   X3PA  X3P. X2P X2PA  X2P.  eFG.  FT FTA   FT. ORB DRB TRB AST STL BLK
## 1  221 0.380  31   70 0.443 0.540  39  46 0.848  26  88 114  28  38   8
## 2  292 0.349  28   73 0.384 0.496  49  60 0.817  40 217 257  57  33  29
## 3    2 0.000 448  710 0.631 0.629 160 286 0.559 384 301 685  88  92  78
## 4    7 0.000 174  333 0.523 0.512 129 179 0.721 118 263 381 101  32  41
## 5   70 0.386  38   92 0.413 0.485  22  26 0.846   4  62  66  30   4   9
## 7   92 0.293 660 1255 0.526 0.520 334 399 0.837 246 389 635 152  43  90
##   TOV  PF  PTS   X season17_18      MPG       PPG       APG      RPG
## 1  25 124  353 185     5725000 15.12000  4.706667 0.3733333 1.520000
## 2  60 149  411 350     1709538 19.41429  5.871429 0.8142857 3.671429
## 3 128 215 1056  32    22471910 32.72368 13.894737 1.1578947 9.013158
## 4  66 138  477 281     2490360 19.82609  6.913043 1.4637681 5.521739
## 5  21  56  179 291     2328652 12.86792  3.377358 0.5660377 1.245283
## 7 111 161 1735  36    21461010 33.45333 23.133333 2.0266667 8.466667
##         TOG
## 1 0.3333333
## 2 0.8571429
## 3 1.6842105
## 4 0.9565217
## 5 0.3962264
## 7 1.4800000
stats_salary_cor <- data %>%
  select(season17_18, PTS, TOV, PPG, MPG, TOG, RPG, APG)
pairs(stats_salary_cor)

cor(stats_salary_cor)[,"season17_18"]
## season17_18         PTS         TOV         PPG         MPG         TOG 
##   1.0000000   0.5700031   0.5041297   0.6256246   0.5770201   0.5142743 
##         RPG         APG 
##   0.4696220   0.4472140
firstQT<-data%>%
  filter(season17_18<1465920)
dim(firstQT)
## [1] 66 38
set.seed(1)
samp1<-sample(121, 10)
sampFirst<-firstQT[samp1,]
sampFirst
##       Rk                  Player  nickname  Pos Age   Tm  G GS   MP  FG
## NA    NA                    <NA>      <NA> <NA>  NA <NA> NA NA   NA  NA
## NA.1  NA                    <NA>      <NA> <NA>  NA <NA> NA NA   NA  NA
## 39   306 Timothe Luwawu-Cabarrot luwawti01   SF  22  PHI 52  7  807 100
## 1     26            Dwayne Bacon bacondw01   SG  22  CHO 53  6  713  72
## 34   252        Brandon Jennings jennibr01   PG  28  MIL 14  0  205  27
## NA.2  NA                    <NA>      <NA> <NA>  NA <NA> NA NA   NA  NA
## 43   330        Alfonzo McKinnie mckinal01   SF  25  TOR 14  0   53   8
## 14    92         Tyler Cavanaugh cavanty01   PF  23  ATL 39  1  518  67
## NA.3  NA                    <NA>      <NA> <NA>  NA <NA> NA NA   NA  NA
## 59   488              Tyler Ulis  ulisty01   PG  22  PHO 71 43 1658 214
##      FGA   FG. X3P X3PA  X3P. X2P X2PA  X2P.  eFG. FT FTA   FT. ORB DRB
## NA    NA    NA  NA   NA    NA  NA   NA    NA    NA NA  NA    NA  NA  NA
## NA.1  NA    NA  NA   NA    NA  NA   NA    NA    NA NA  NA    NA  NA  NA
## 39   267 0.375  53  158 0.335  47  109 0.431 0.474 46  58 0.793  14  58
## 1    192 0.375  11   43 0.256  61  149 0.409 0.404 20  25 0.800   4 120
## 34    72 0.375   9   33 0.273  18   39 0.462 0.438 10  10 1.000   5  26
## NA.2  NA    NA  NA   NA    NA  NA   NA    NA    NA NA  NA    NA  NA  NA
## 43    15 0.533   3    9 0.333   5    6 0.833 0.633  2   3 0.667   1   6
## 14   152 0.441  32   89 0.360  35   63 0.556 0.546 17  21 0.810  45  82
## NA.3  NA    NA  NA   NA    NA  NA   NA    NA    NA NA  NA    NA  NA  NA
## 59   551 0.388  42  146 0.288 172  405 0.425 0.426 84 101 0.832  24 104
##      TRB AST STL BLK TOV  PF PTS   X season17_18       MPG      PPG
## NA    NA  NA  NA  NA  NA  NA  NA  NA          NA        NA       NA
## NA.1  NA  NA  NA  NA  NA  NA  NA  NA          NA        NA       NA
## 39    72  54  12   5  38  97 299 405     1386600 15.519231 5.750000
## 1    124  38  16   2  23  46 175 467      815615 13.452830 3.301887
## 34    31  44   6   4  18  11  73 511      119010 14.642857 5.214286
## NA.2  NA  NA  NA  NA  NA  NA  NA  NA          NA        NA       NA
## 43     7   1   1   1   3   8  21 471      815615  3.785714 1.500000
## 14   127  27   9   4  14  61 183 484      679919 13.282051 4.692308
## NA.3  NA  NA  NA  NA  NA  NA  NA  NA          NA        NA       NA
## 59   128 311  70   7 127 120 554 421     1312611 23.352113 7.802817
##             APG      RPG       TOG
## NA           NA       NA        NA
## NA.1         NA       NA        NA
## 39   1.03846154 1.384615 0.7307692
## 1    0.71698113 2.339623 0.4339623
## 34   3.14285714 2.214286 1.2857143
## NA.2         NA       NA        NA
## 43   0.07142857 0.500000 0.2142857
## 14   0.69230769 3.256410 0.3589744
## NA.3         NA       NA        NA
## 59   4.38028169 1.802817 1.7887324
secondQT<-data%>%
  filter(season17_18>=1465920 & season17_18<3028410)
dim(secondQT)
## [1] 99 38
set.seed(2)
samp2<-sample(122, 10)
sampSecond<-secondQT[samp2,]

sampSecond
##     Rk                  Player  nickname Pos Age  Tm  G GS   MP  FG FGA
## 85 443              Mike Scott scottmi01  PF  29 WAS 76  1 1406 276 524
## 79 426         Josh Richardson richajo01  SF  24 MIA 81 81 2689 399 885
## 70 367               Raul Neto  netora01  PG  25 UTA 41  0  498  69 151
## 6   13           Kyle Anderson anderky01  SF  24 SAS 74 67 1978 231 438
## 32 183            Jerami Grant grantje01  PF  23 OKC 81  1 1647 244 456
## 8   38           Malik Beasley beaslma01  SG  21 DEN 62  0  583  73 178
## 17  88 Michael Carter-Williams cartemi01  PG  26 CHO 52  2  835  76 229
## 93 516          Damien Wilkins wilkida02  SF  38 IND 19  1  152  13  39
## 81 435            Terry Rozier roziete01  PG  23 BOS 80 16 2068 316 800
## 76 407            Jakob Poeltl poeltja01   C  22 TOR 82  0 1524 253 384
##      FG. X3P X3PA  X3P. X2P X2PA  X2P.  eFG.  FT FTA   FT. ORB DRB TRB AST
## 85 0.527  66  163 0.405 210  361 0.582 0.590  50  76 0.658  50 197 247  80
## 79 0.451 127  336 0.378 272  549 0.495 0.523 120 142 0.845  69 216 285 231
## 70 0.457  19   47 0.404  50  104 0.481 0.520  26  35 0.743   7  42  49  75
## 6  0.527  19   57 0.333 212  381 0.556 0.549 104 146 0.712  84 312 396 202
## 32 0.535  32  110 0.291 212  346 0.613 0.570 162 240 0.675  86 233 319  57
## 8  0.410  28   82 0.341  45   96 0.469 0.489  22  33 0.667  14  57  71  31
## 17 0.332  14   59 0.237  62  170 0.365 0.362  73  89 0.820  37 101 138 116
## 93 0.333   4   18 0.222   9   21 0.429 0.385   3   4 0.750   5  11  16   9
## 81 0.395 153  402 0.381 163  398 0.410 0.491 115 149 0.772  63 313 376 232
## 76 0.659   1    2 0.500 252  382 0.660 0.660  60 101 0.594 165 228 393  57
##    STL BLK TOV  PF  PTS   X season17_18       MPG       PPG       APG
## 85  23  10  79 148  668 348     1709538 18.500000  8.789474 1.0526316
## 79 121  75 140 199 1045 380     1471382 33.197531 12.901235 2.8518519
## 70  13   4  36  38  183 387     1471382 12.146341  4.463415 1.8292683
## 6  115  60  94 114  585 313     2151704 26.729730  7.905405 2.7297297
## 32  31  77  54 155  682 366     1524305 20.333333  8.419753 0.7037037
## 8   15   7  24  36  196 351     1700640  9.403226  3.161290 0.5000000
## 17  44  23  52  99  239 270     2700000 16.057692  4.596154 2.2307692
## 93   2   1   5   7   33 324     2116955  8.000000  1.736842 0.4736842
## 81  80  19  80 123  900 333     1988520 25.850000 11.250000 2.9000000
## 76  39 100  85 212  567 267     2825640 18.585366  6.914634 0.6951220
##          RPG       TOG
## 85 3.2500000 1.0394737
## 79 3.5185185 1.7283951
## 70 1.1951220 0.8780488
## 6  5.3513514 1.2702703
## 32 3.9382716 0.6666667
## 8  1.1451613 0.3870968
## 17 2.6538462 1.0000000
## 93 0.8421053 0.2631579
## 81 4.7000000 1.0000000
## 76 4.7926829 1.0365854
thirdQT<-data%>%
  filter(season17_18>=3028410 & season17_18<9539057)
dim(thirdQT)
## [1] 99 38
set.seed(3)
samp3<-sample(122, 10)
sampThird<-thirdQT[samp3,]

sampThird
##       Rk        Player  nickname  Pos Age   Tm  G GS   MP  FG FGA   FG.
## 5     24 D.J. Augustin augusdj01   PG  30  ORL 75 36 1760 244 540 0.452
## 58   333   Jodie Meeks meeksjo01   SG  30  WAS 77  0 1119 157 393 0.399
## 12    43 Dragan Bender bendedr01   PF  20  PHO 82 37 2069 187 484 0.386
## NA    NA          <NA>      <NA> <NA>  NA <NA> NA NA   NA  NA  NA    NA
## 36   179  Aaron Gordon gordoaa01   PF  22  ORL 58 57 1909 375 865 0.434
## NA.1  NA          <NA>      <NA> <NA>  NA <NA> NA NA   NA  NA  NA    NA
## NA.2  NA          <NA>      <NA> <NA>  NA <NA> NA NA   NA  NA  NA    NA
## NA.3  NA          <NA>      <NA> <NA>  NA <NA> NA NA   NA  NA  NA    NA
## 95   487     Ekpe Udoh  udohek01    C  30  UTA 63  3  810  60 120 0.500
## 8     30    J.J. Barea bareajo01   PG  33  DAL 69 10 1603 303 690 0.439
##      X3P X3PA  X3P. X2P X2PA  X2P.  eFG.  FT FTA   FT. ORB DRB TRB AST STL
## 5    114  272 0.419 130  268 0.485 0.557 164 189 0.868  30 130 160 287  54
## 58    72  210 0.343  85  183 0.464 0.491 101 117 0.863  15 111 126  70  29
## 12   118  322 0.366  69  162 0.426 0.508  39  51 0.765  40 321 361 130  22
## NA    NA   NA    NA  NA   NA    NA    NA  NA  NA    NA  NA  NA  NA  NA  NA
## 36   115  342 0.336 260  523 0.497 0.500 157 225 0.698  87 370 457 136  59
## NA.1  NA   NA    NA  NA   NA    NA    NA  NA  NA    NA  NA  NA  NA  NA  NA
## NA.2  NA   NA    NA  NA   NA    NA    NA  NA  NA    NA  NA  NA  NA  NA  NA
## NA.3  NA   NA    NA  NA   NA    NA    NA  NA  NA    NA  NA  NA  NA  NA  NA
## 95     0    1 0.000  60  119 0.504 0.500  42  56 0.750  68  82 150  53  43
## 8    115  313 0.367 188  377 0.499 0.522  80 102 0.784  15 186 201 434  35
##      BLK TOV  PF  PTS   X season17_18      MPG       PPG       APG
## 5      0 123  94  766 156     7250000 23.46667 10.213333 3.8266667
## 58     4  37  55  487 246     3290000 14.53247  6.324675 0.9090909
## 12    53 112 166  531 214     4468800 25.23171  6.475610 1.5853659
## NA    NA  NA  NA   NA  NA          NA       NA        NA        NA
## 36    45 107 111 1022 190     5504420 32.91379 17.620690 2.3448276
## NA.1  NA  NA  NA   NA  NA          NA       NA        NA        NA
## NA.2  NA  NA  NA   NA  NA          NA       NA        NA        NA
## NA.3  NA  NA  NA   NA  NA          NA       NA        NA        NA
## 95    74  20 105  162 252     3200000 12.85714  2.571429 0.8412698
## 8      3 143  83  801 229     3903900 23.23188 11.608696 6.2898551
##           RPG       TOG
## 5    2.133333 1.6400000
## 58   1.636364 0.4805195
## 12   4.402439 1.3658537
## NA         NA        NA
## 36   7.879310 1.8448276
## NA.1       NA        NA
## NA.2       NA        NA
## NA.3       NA        NA
## 95   2.380952 0.3174603
## 8    2.913043 2.0724638
fourthQT<-data%>%
  filter(season17_18>=9539097 & season17_18<=34682550)
dim(fourthQT)
## [1] 104  38
set.seed(4)
samp4<-sample(122, 10)
sampFourth<-fourthQT[samp4,]

sampFourth
##       Rk           Player  nickname  Pos Age   Tm  G GS   MP  FG FGA   FG.
## NA    NA             <NA>      <NA> <NA>  NA <NA> NA NA   NA  NA  NA    NA
## 75   341     Paul Millsap millspa01   PF  32  DEN 38 37 1143 202 435 0.464
## 51   234   Andre Iguodala iguodan01   SF  34  GSW 64  7 1622 148 320 0.463
## 3     14    Ryan Anderson anderry01   PF  29  HOU 66 50 1725 207 480 0.431
## 71   311      Ian Mahinmi mahinia01    C  31  WAS 77  0 1145 138 248 0.556
## 44   195 Maurice Harkless harklma01   SF  24  POR 59 36 1264 147 297 0.495
## NA.1  NA             <NA>      <NA> <NA>  NA <NA> NA NA   NA  NA  NA    NA
## 58   257    James Johnson johnsja01   PF  30  MIA 73 41 1943 309 614 0.503
## NA.2  NA             <NA>      <NA> <NA>  NA <NA> NA NA   NA  NA  NA    NA
## 56   250     Al Jefferson jeffeal01    C  33  IND 36  1  484 111 208 0.534
##      X3P X3PA  X3P. X2P X2PA  X2P.  eFG.  FT FTA   FT. ORB DRB TRB AST STL
## NA    NA   NA    NA  NA   NA    NA    NA  NA  NA    NA  NA  NA  NA  NA  NA
## 75    39  113 0.345 163  322 0.506 0.509 112 161 0.696  65 180 245 105  39
## 51    33  117 0.282 115  203 0.567 0.514  55  87 0.632  50 196 246 210  54
## 3    131  339 0.386  76  141 0.539 0.568  72  93 0.774  94 237 331  60  24
## 71     0    2 0.000 138  246 0.561 0.556  90 128 0.703 135 177 312  53  38
## 44    49  118 0.415  98  179 0.547 0.577  42  59 0.712  46 116 162  53  48
## NA.1  NA   NA    NA  NA   NA    NA    NA  NA  NA    NA  NA  NA  NA  NA  NA
## 58    57  185 0.308 252  429 0.587 0.550 113 162 0.698  61 297 358 280  70
## NA.2  NA   NA    NA  NA   NA    NA    NA  NA  NA    NA  NA  NA  NA  NA  NA
## 56     0    3 0.000 111  205 0.541 0.534  30  36 0.833  30 113 143  30  16
##      BLK TOV  PF PTS   X season17_18      MPG       PPG       APG      RPG
## NA    NA  NA  NA  NA  NA          NA       NA        NA        NA       NA
## 75    44  73  99 555   3    31269231 30.07895 14.605263 2.7631579 6.447368
## 51    38  67  99 384  75    14814815 25.34375  6.000000 3.2812500 3.843750
## 3     21  42 126 617  42    19578455 26.13636  9.348485 0.9090909 5.015152
## 71    42 100 230 366  63    16661641 14.87013  4.753247 0.6883117 4.051948
## 44    43  40 103 385 122    10162922 21.42373  6.525424 0.8983051 2.745763
## NA.1  NA  NA  NA  NA  NA          NA       NA        NA        NA       NA
## 58    51 141 192 788  85    13954000 26.61644 10.794521 3.8356164 4.904110
## NA.2  NA  NA  NA  NA  NA          NA       NA        NA        NA       NA
## 56    23  21  66 252 128     9769821 13.44444  7.000000 0.8333333 3.972222
##            TOG
## NA          NA
## 75   1.9210526
## 51   1.0468750
## 3    0.6363636
## 71   1.2987013
## 44   0.6779661
## NA.1        NA
## 58   1.9315068
## NA.2        NA
## 56   0.5833333
college<-read.csv("College:International_Stats.csv", header=TRUE, 
                  stringsAsFactors = FALSE)
college
##                  Player                      Team cMPG cPPG cFGM cFGA
## 1     Willy Hernangomez               Real Madrid 12.6 18.8  7.5 11.2
## 2             Ivan Rabb                      Cal  32.6 14.0  4.9 10.1
## 3           David Nwaba                  Cal Poly 28.0 12.5  4.4  9.5
## 4       Tyler Cavanaugh         George Washington 32.2 18.3  5.7 12.7
## 5            Tyler Ulis                  Kentucky 36.8 17.3  5.5 12.6
## 6        Ersan Ilyasova              FC Barcelona 29.0 10.7  4.0  8.0
## 7           Travis Wear                      UCLA 23.9  7.2  3.1  5.8
## 8  James Micheal McAdoo            North Carolina 30.1 14.2  5.1 11.1
## 9            Khem Birch                      UNLV 31.4 11.5  3.8  7.4
## 10          Frank Mason                    Kansas 36.1 20.9  6.7 13.7
## 11         Jusuf Nurkic Cedevita Zagreb (Croatia) 15.4  8.9  3.2  5.5
## 12     Shabazz Muhammad                      UCLA 30.8 17.9  6.3 14.3
## 13         TJ McConnell                   Arizona 30.5 10.4  4.1  8.2
## 14        Kyle Anderson                      UCLA 33.2 14.6  5.0 10.5
## 15          Tyler Ennis                  Syracuse 35.7 12.9  4.4 10.6
## 16          Luke Babbit                    Nevada 37.1 21.9  7.4 14.8
## 17        Norman Powell                      UCLA 34.6 16.4  5.9 13.0
## 18        Bruno Caboclo        Pinheiros (Brazil) 12.8  5.0  1.7  3.3
## 19       Shabazz Napier                     UConn 35.1 18.0  5.3 12.4
## 20     Donovan Mitchell                Louisville 32.3 15.6  5.3 13.1
## 21       Darrell Arthur                    Kansas 24.7 12.8  5.4  9.9
## 22       Wesley Johnson                  Syracuse 35.0 16.5  5.9 11.8
## 23          Aron Baynes          Washington State 28.8 12.7  4.6  8.0
## 24            Ish Smith               Wake Forest 36.8 13.2  5.7 13.5
## 25         Tyreke Evans                   Memphis 29.0 17.1  6.2 13.6
## 26      Brandan Wright             North Carolina 27.4 14.7  6.2  9.5
## 27          Jason Smith            Colorado State 30.2 16.8  5.8 10.1
## 28         Jayson Tatum                      Duke 33.3 16.8  5.7 12.6
## 29          Rajon Rondo                   Kentuck 31.0 11.2  4.3  9.0
## 30           Lonzo Ball                      UCLA 35.1 14.6  5.3  9.5
## 31      Marvin Williams            North Carolina 22.2 11.3  3.5  6.9
## 32       Meyers Leonard                 Illinois  31.8 13.6  5.3  9.1
## 33         James Harden            Arizona States 35.8 20.1  6.3 12.9
## 34        Ryan Anderson                       Cal 32.8 21.1  7.0 14.2
## 35          Rudy Gobert           Cholet (France) 22.7  8.4  3.3  4.6
## 36          Enes Kanter       Fenerbahce (Turkey)  7.8  2.0  0.8  1.8
## 37         Dion Waiters                  Syracuse 24.1 12.6  4.6  9.6
## 38         Jrue Holiday                      UCLA 27.1  8.5  3.2  7.1
## 39          Cody Zeller                   Indiana 29.5 16.5  5.5  9.8
## 40         George Hill                      IUPUI 36.8 21.5  6.9 12.6
##     cFGp cAPG cRPG
## 1  0.667  1.2 11.0
## 2  0.484  1.5 10.5
## 3  0.462  3.5  6.3
## 4  0.448  2.0  8.4
## 5  0.434  7.0  3.0
## 6  0.500  0.7  7.6
## 7  0.530  1.4  3.2
## 8  0.458  1.7  6.8
## 9  0.510  1.2 10.2
## 10 0.490  5.2  4.2
## 11 0.585  0.6  3.3
## 12 0.443  0.8  5.2
## 13 0.500  6.3  3.8
## 14 0.480  6.5  8.8
## 15 0.411  5.5  3.4
## 16 0.500  2.1  8.9
## 17 0.456  2.1  4.7
## 18 0.507  0.2  2.8
## 19 0.429  4.9  5.9
## 20 0.408  2.7  4.9
## 21 0.543  0.8  6.3
## 22 0.502  2.2  8.5
## 23 0.580  0.6  7.5
## 24 0.420  6.0  4.9
## 25 0.455  3.9  5.4
## 26 0.646  1.0  6.2
## 27 0.579  1.9 10.1
## 28 0.452  2.1  7.3
## 29 0.482  4.9  6.1
## 30 0.551  7.6  6.0
## 31 0.506  0.7  6.6
## 32 0.584  1.3  8.2
## 33 0.489  4.2  5.6
## 34 0.490  1.4  9.9
## 35 0.718  0.4  5.4
## 36 0.429  0.0  1.5
## 37 0.476  2.5  2.3
## 38 0.450  3.7  3.8
## 39 0.564  1.3  8.0
## 40 0.545  4.3  6.8