Make sure to include the unit of the values whenever appropriate.

Q1 Build a regression model to predict wages using the following predictors: 1) years of education, 2) years of experience, and 3) sex.

Hint: The variables are available in the CPS85 data set from the mosaicData package.

data(CPS85, package="mosaicData")
wage<- lm(wage ~ educ + exper + sex, 
                data = CPS85)
# View summary of model 1
summary(wage)
## 
## Call:
## lm(formula = wage ~ educ + exper + sex, data = CPS85)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -9.571 -2.746 -0.653  1.893 37.724 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -6.50451    1.20985  -5.376 1.14e-07 ***
## educ         0.94051    0.07886  11.926  < 2e-16 ***
## exper        0.11330    0.01671   6.781 3.19e-11 ***
## sexM         2.33763    0.38806   6.024 3.19e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.454 on 530 degrees of freedom
## Multiple R-squared:  0.2532, Adjusted R-squared:  0.2489 
## F-statistic: 59.88 on 3 and 530 DF,  p-value: < 2.2e-16

Q2 Is the coefficient of education statistically significant at 5%?

The coefficent of education is not signifigant at 5% because the T value is higher than 5%.

Q3 Interpret the coefficient of education.

Hint: Discuss both its sign and magnitude. The coefficent of education is positive. We know this because the three * at the end of the number. 2e-16 ***

Q4 Is there evidence for gender discrimination in wages? Make your argument using the relevant test results.

Hint: Discuss all three aspects of the relevant predictor: 1) statistical significance, 2) sign, and 3) magnitude. There is evidence of gender discrimination between female and male wages because the male wage has a higher signifigance. A male makes

Q5 Predict wage for a woman who has 15 years of education, 5 years of experience.

A women who has 15 years of education and 5 yearsof experience would make $8.15

Q6 Interpret the Intercept.

Hint: Provide a technical interpretation. The intercept is -$6.50 which means that all other wages would be -$6.50 which is not possible for a wage to be negative. By itself it is irrelevant

Q7 Build another model by adding a predictor to the model above. The additional predictor is whether the person is a union member. Which of the two models is better?

Hint: Discuss in terms of both residual standard error and reported adjusted R squared.

data(CPS85, package="mosaicData")
wage<- lm(wage ~ educ + exper + sex + union, 
                data = CPS85)
# View summary of model 1
summary(wage)
## 
## Call:
## lm(formula = wage ~ educ + exper + sex + union, data = CPS85)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -9.496 -2.708 -0.712  1.909 37.784 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -6.48023    1.20159  -5.393 1.05e-07 ***
## educ         0.93495    0.07835  11.934  < 2e-16 ***
## exper        0.10692    0.01674   6.387 3.70e-10 ***
## sexM         2.14765    0.39097   5.493 6.14e-08 ***
## unionUnion   1.47111    0.50932   2.888  0.00403 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.423 on 529 degrees of freedom
## Multiple R-squared:  0.2648, Adjusted R-squared:  0.2592 
## F-statistic: 47.62 on 4 and 529 DF,  p-value: < 2.2e-16

adjusted R^2 is higher than .1 and the standard error is lower than .1

Q8 Hide the messages, but display the code and its results on the webpage.

Hint: Use message, echo and results in the chunk options. Refer to the RMarkdown Reference Guide.

Q9 Display the title and your name correctly at the top of the webpage.

Q10 Use the correct slug.