Introduction to your data set and questions of interest (this will help you draft your “Introduction” section of your
Summary
Connectedness to Nature as a Mediator in the Relationship Between Trait Mindfulness and Pro-Environmental Behavior
In the midst of an escalating ecological crisis, shifting towards pro-environmental and sustainable behaviors is becoming increasingly urgent. Behaviors involving transportation, food, and household operations have been found to be responsible for the majority of environmental problems (Brower & Leon, 1999). Stern (2000) asserts that environmentally significant behavior should be defined by its impact and that grounding research in those behaviors that have a large environmental impact will increase the utility of results for practical application. Brower and Leon (1999) suggest that these more impactful behaviors include reducing travel, using alternative methods of transportation (e.g. walking, biking, or taking public transportation), eating less meat, and conserving energy. If these behaviors are to be encouraged it is important to consider factors that may potentially increase the willingness to engage in pro-environmental behaviors.
A factor that has been found to influence pro-environmental behavior is mindfulness (Amel, Manning, & Scott, 2009). Mindfulness is defined as moment-to-moment, non-judgmental awareness, cultivated by paying attention in a specific way, that is, in the present moment, and as non-reactively, non-judgmentally, and open-heartedly as possible (Kabat-Zinn, 2015). Research has shown that the construct of mindfulness can be broken down into five facets: nonreactivity to inner experience (e.g. “I perceive my feelings and emotions without having to react to them”), observing sensations (e.g. “I sense my body, whether eating, cooking, cleaning, or talking”), acting with awareness (e.g. “I break or spill things because of carelessness, not paying attention, or thinking of something else”), labeling with words (e.g. “I can easily put my beliefs, opinions, and expectations into words”), and non-judging of experience (e.g. I tend to evaluate whether my perceptions are right or wrong”) (Baer, Smith, Hopkins, Krietemery, & Toney, 2006). Research indicates that mindfulness positively influences decision-making processes (Black, Sussman, Johnson, & Milan, 2012) and behavioral motivation (Levesque & Brown, 2007). Amel et al., (2009) found that mindfulness predicts sustainable behavioral choices and argue that mindfulness creates a greater self-world connection that enhances experiences with nature and motivates pro-environmental behavior.
To further understand the relationship between mindfulness and pro-environmental behavior, factors that may indirectly affect the relationship need to be considered. Barbaro & Pickette (2016) found that connectedness to nature significantly mediates the relationship between mindfulness and pro-environmental behavior. Past research has shown that mindfulness is significantly associated with greater connectedness to nature (Howell, Dopko, Passmore, & Buro, 2011). Mayer & Frantz (2004) define connectedness to nature as the extent to which one feels part of the natural world. It is suggested that the extent to which one incorporates others as part of the self increases a sense of closeness in a relationship (Aron, Aron, Tudor, & Nelson, 1991) and as relationship closeness increases, so does willingness to help (Cialdini, Brown, Lewis, Luce, & Neuberg, 1997). It is argued that individuals who have a strong sense of closeness in their relationship to nature are less likely to harm the environment and are more likely to demonstrate altruistic behavior towards the environment because they see the self as embedded in nature (Mayer & Frantz, 2004).
A study by Hood & Friedman (2011) indicates that connectedness to nature predicts engagement in pro-environmental behavior. Barbaro & Pickett (2016) suggest that connectedness to nature may motivate individuals to engage in behaviors that have minimal negative impacts on the natural environment. The authors conducted a study to assess the extent to which connectedness to nature mediates the relationship between mindfulness and pro-environmental behavior with 360 undergraduate students and 296 participants recruited from the general public through Amazon’s Mechanical Turk using the Five Facets of Mindfulness Questionnaire (Baer, et al., 2006), the Connectedness to Nature Scale (Mayer & Frantz, 2004), and the Pro-Environmental Behavior scale (Whitmarsh & O’Neill, 2010). It was found that mindfulness significantly predicted pro-environmental behavior and that connectedness significantly mediated the relationship between mindfulness and pro-environmental behavior in both samples. Additionally, the observation facet of mindfulness was significantly predictive of pro-environmental behavior and connectedness to nature significantly mediated that relationship as well.
The proposed study aims to replicate Barbaro & Pickett’s 2016 study with an undergraduate sample from Willamette University and a general public sample recruited through Prolific. The proposed study will also expand on Barbaro & Pickett’s 2016 study by using the Pro-Environmental Behavior Scale, a multi-faceted measure of pro-environmental behavior (Markle, 2013), rather than the Pro-Environmental Behavior measure (Whitmarsh & O’Neill, 2010) used in the original study. Markle (2013) argues that the Pro-Environmental Behavior Scale enables examination of those behaviors that have the greatest impact on the environment with the ultimate goal of developing policy interventions. Prior to her 2013 study, Markle argues that few previous pro-environmental behavior measures considered the environmental impact of the behavior they measured and were measuring marginally impactful behaviors (e.g. “If possible, I do not insist on my right of way and make the traffic stop before entering a crosswalk”: GEB; Kaiser & Wilson, 2000), that are of little use in developing strategic interventions to bring about meaningful change. Markle’s (2013) study showed that previous pro-environmental behavior measures demonstrated very little consistency (including the Pro-Environmental Behavior measure (PEB; Whitmarsh & O’Neill, 2010) used by Barbaro and Pickett (2016)). The Pro-Environmental Behavior Scale has also shown to be more accommodating toward a wider range of socioeconomic statuses (i.e. not measuring behaviors such as “Bought or built an energy-efficient home” or “Installed a more efficient heating system”: PEB; Whitmarsh & O’Neill, 2010) (Markle, 2013). Markle (2013) suggests that the Pro-Environmental Behavior Scale can serve as a tool for determining which factors influence pro-environmental behavior to aid researchers in developing interventions aiming to mitigate anthropogenic environmental impact.
Thus the proposed study will expand on Barbaro & Pickett’s 2016 study by using the Pro-Environmental Behavior Scale (Markle, 2013) in order to better understand the relationship between specific facets of mindfulness and pro-environmental behavior, and the extent to which connectedness to nature indirectly affects the relationships between those specific facets. This study aims to determine what specific category of pro-environmental behavior may be more practical to target with non-general mindfulness programs focusing on those facets most strongly associated with those targeted pro-environmental behaviors. In line with previous findings, my first hypothesis is that mindfulness will significantly predict greater levels of pro-environmental behavior and that connectedness to nature will significantly mediate that relationship. A second hypothesis is that the observation component of mindfulness will be the most significant predictor of pro-environmental behavior and its facets, with the most significant relationship being with the conservation facet of the Pro-Environmental Behavior Scale.
“Big Questions”
This study aims to answer the following questions:
Does Mindfulness significantly predict Pro-Environmental Behavior?
Does Connectedness to Nature significantly mediate the relationship between Mindfulness and Pro-Environment?
What facets of Mindfulness significantly predict facets of Pro-Environmental Behavior?
My Process:
I did not do any data wrangling in R. My data cleaning process involved downloading excel data matrices of individual responses from Survey Monkey for the three different samples (Introduction to Psychology sample pool, Prolific online participant recruitment sample pool, and a Volunteer sample pool). The raw excel matrices from Survey Monkey were structured with each row being an individual respondent and all of their responses for each item, with the columns being each item/question from the survey. My first step when cleaning in the first round of data cleaning was deleting the entire row for any participant that failed the attention check placed midway through the survey or any participant that indicated they did not fill out the survey honestly and that we should not use their responses. I then reverse coded the responses for each item that was indicated by the scale instructions to be reverse coded (i.e. for responses on a 1-5 scale, I reverse coded them by inserting a new adjacent column for reverse coded scores and entered a function for “6 - the unreversed response option”). Following this process, I inserted columns for sub-scale and scale totals and averages. At this point, I inserted a rule to fill in each blank cell with black so that they would be easier to locate. This is when I used your recommendation to impute sub-scale averages for missing values. I did this for each blank cell. After this, I inserted a function to compute the average for each column to get an item, sub-scale, and scale average. Once this was done, I entered the columns for each sub-scale and scale total and average into a new excel spreadsheet.
For the second round of data cleaning, I intended to be able to replicate the results (averages and totals) from the first cleaning. The only difference in this process was that instead of cleaning each data set for the samples separately and then combining the sub-scale and scale totals and averages, I combined the raw data matrices for all three samples and then cleaned them following the same steps described above. Using this process I was able to replicate the same averages and totals I found after the first cleaning. This process left me with the sub-scale and scale totals and averages for all 336 individual responses ready for analysis.
Analyses
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.2.1 ✔ purrr 0.3.2
## ✔ tibble 2.1.3 ✔ dplyr 0.8.3
## ✔ tidyr 0.8.3 ✔ stringr 1.4.0
## ✔ readr 1.3.1 ✔ forcats 0.4.0
## ── Conflicts ────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(readxl)
HonorsSurveyTotals_AveragesOct12 <- read_excel("HonorsSurveyTotals&AveragesOct12.xlsx")
survey=na.omit(HonorsSurveyTotals_AveragesOct12)
attach(survey)
Distributions of Main Variables of Interest
ggplot(survey, aes(x = `FFMQ TOTAL`))+
geom_histogram(aes(fill = ..count..), binwidth = 5)

ggplot(survey, aes(x = `PEBS TOTAL`))+
geom_histogram(aes(fill = ..count..), binwidth = 5)

ggplot(survey, aes(x = `CNS TOTAL`))+
geom_histogram(aes(fill = ..count..), binwidth = 5)

PEBS as function of FFMQ
mod1<-lm(`PEBS TOTAL`~`FFMQ TOTAL`)
summary(mod1)
##
## Call:
## lm(formula = `PEBS TOTAL` ~ `FFMQ TOTAL`)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.3984 -8.3904 -0.2868 7.8932 29.5629
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 40.92224 4.02337 10.17 < 2e-16 ***
## `FFMQ TOTAL` 0.13212 0.03191 4.14 4.41e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.24 on 333 degrees of freedom
## Multiple R-squared: 0.04895, Adjusted R-squared: 0.04609
## F-statistic: 17.14 on 1 and 333 DF, p-value: 4.407e-05
anova(mod1)
## Analysis of Variance Table
##
## Response: PEBS TOTAL
## Df Sum Sq Mean Sq F value Pr(>F)
## `FFMQ TOTAL` 1 2167 2166.82 17.139 4.407e-05 ***
## Residuals 333 42101 126.43
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ggplot(survey, aes(x=`FFMQ TOTAL`, y=`PEBS TOTAL`))+
geom_point()+
geom_abline(slope=mod1$coefficients[2], intercept=mod1$coefficients[1],
color="blue", lty=2, lwd=1)+
theme_bw()

CNS as a function of FFMQ
mod2<-lm(`CNS TOTAL`~`FFMQ TOTAL`)
summary(mod2)
##
## Call:
## lm(formula = `CNS TOTAL` ~ `FFMQ TOTAL`)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.7284 -6.3286 -0.2156 6.7567 24.4339
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28.17512 3.41029 8.262 3.44e-15 ***
## `FFMQ TOTAL` 0.17050 0.02705 6.303 9.26e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.531 on 333 degrees of freedom
## Multiple R-squared: 0.1066, Adjusted R-squared: 0.1039
## F-statistic: 39.73 on 1 and 333 DF, p-value: 9.258e-10
anova(mod2)
## Analysis of Variance Table
##
## Response: CNS TOTAL
## Df Sum Sq Mean Sq F value Pr(>F)
## `FFMQ TOTAL` 1 3608.6 3608.6 39.728 9.258e-10 ***
## Residuals 333 30247.5 90.8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ggplot(survey, aes(x=`FFMQ TOTAL`, y=`CNS TOTAL`))+
geom_point()+
geom_abline(slope=mod2$coefficients[2], intercept=mod2$coefficients[1],
color="blue", lty=2, lwd=1)+
theme_bw()

PEBS as a function of CNS
mod3<-lm(`PEBS TOTAL`~`CNS TOTAL`)
summary(mod3)
##
## Call:
## lm(formula = `PEBS TOTAL` ~ `CNS TOTAL`)
##
## Residuals:
## Min 1Q Median 3Q Max
## -26.1445 -7.3916 -0.0411 6.9168 27.2770
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 26.89922 2.66078 10.11 <2e-16 ***
## `CNS TOTAL` 0.61686 0.05276 11.69 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.708 on 333 degrees of freedom
## Multiple R-squared: 0.291, Adjusted R-squared: 0.2889
## F-statistic: 136.7 on 1 and 333 DF, p-value: < 2.2e-16
anova(mod3)
## Analysis of Variance Table
##
## Response: PEBS TOTAL
## Df Sum Sq Mean Sq F value Pr(>F)
## `CNS TOTAL` 1 12883 12882.8 136.69 < 2.2e-16 ***
## Residuals 333 31384 94.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ggplot(survey, aes(x=`CNS TOTAL`, y=`PEBS TOTAL`))+
geom_point()+
geom_abline(slope=mod3$coefficients[2], intercept=mod3$coefficients[1],
color="blue", lty=2, lwd=1)+
theme_bw()

Here we see that when FFMQ (Mindfulness) is controlled for, CNS still significantly predicts Pro-Environmental Behavior, while FFMQ (Mindfulness) no longer significantly predicts Pro-Environmental Behavior, suggesting a full mediation effect.
Here we observe that the model controlling for Mindfulness has a significantly less Residual Sum of Squares, suggesting this is the better model that accounts for more variance and suggests that CNS mediates the relationship between FFMQ and PEBS.
Exploratory Analysis of FFMQ Facets with PEBS Facets
FFMQ - Observation & PEBS FACETS
cor(`FFMQ-O Total`, `PEBS-Conservation Total`) # 0.37 #MODEL
## [1] 0.3700544
cor(`FFMQ-O Total`, `PEBS-Envi Citizenship Total`) # 0.36 #MODEL
## [1] 0.3621746
cor(`FFMQ-O Total`, `PEBS-Food Total`) # 0.26 #MODEL
## [1] 0.2684055
cor(`FFMQ-O Total`, `PEBS-Transportation Total`) # 0.23 #MODEL
## [1] 0.2396257
FFMQ - Describe & PEBS FACETS
cor(`FFMQ-D Total`, `PEBS-Conservation Total`) # 0.2 #MODEL
## [1] 0.2068397
cor(`FFMQ-D Total`, `PEBS-Envi Citizenship Total`) # 0.1
## [1] 0.1052516
cor(`FFMQ-D Total`, `PEBS-Food Total`) # 0.11
## [1] 0.1111223
cor(`FFMQ-D Total`, `PEBS-Transportation Total`) # 0.06
## [1] 0.06291377
FFMQ - Awareness & PEBS FACETS
cor(`FFMQ-A Total`, `PEBS-Conservation Total`) # 0.13 #MODEL?
## [1] 0.138052
cor(`FFMQ-A Total`, `PEBS-Envi Citizenship Total`) # 0.02
## [1] 0.02283776
cor(`FFMQ-A Total`, `PEBS-Food Total`) # 0.0
## [1] 0.0007331314
cor(`FFMQ-A Total`, `PEBS-Transportation Total`) # 0.02
## [1] 0.02256094
FFMQ - Non-Judgement & PEBS FACETS
cor(`FFMQ-NJ Total`, `PEBS-Conservation Total`) # 0
## [1] -0.002143537
cor(`FFMQ-NJ Total`, `PEBS-Envi Citizenship Total`) # 0
## [1] -0.03088336
cor(`FFMQ-NJ Total`, `PEBS-Food Total`) # 0
## [1] 0.0250095
cor(`FFMQ-NJ Total`, `PEBS-Transportation Total`) # -0.06
## [1] -0.06572394
FFMQ - Non-Reactivity & PEBS FACETS
cor(`FFMQ-NR Total`, `PEBS-Conservation Total`) # 0.15 MODEL?
## [1] 0.1510085
cor(`FFMQ-NR Total`, `PEBS-Envi Citizenship Total`) #0.04
## [1] 0.04861551
cor(`FFMQ-NR Total`, `PEBS-Food Total`) # 0.037
## [1] 0.03710116
cor(`FFMQ-NR Total`, `PEBS-Transportation Total`) # 0.04
## [1] 0.04091681
We will test for significance by performing ANOVA on Linear Models for FFMQ Observation with PEBS Conservation, Environmental Citizenship, Food, and Transportation, FFMQ Describe with PEBS Conservation, FFMQ Awareness with PEBS Conservation, and FFMQ Non-Reactivity with PEBS Conservation.
mod4<-lm(`PEBS-Conservation Total`~`FFMQ-O Total`) # *** Significant
summary(mod4)
##
## Call:
## lm(formula = `PEBS-Conservation Total` ~ `FFMQ-O Total`)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.643 -2.202 0.298 2.636 9.886
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 19.02698 1.03665 18.354 < 2e-16 ***
## `FFMQ-O Total` 0.26466 0.03641 7.269 2.6e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.569 on 333 degrees of freedom
## Multiple R-squared: 0.1369, Adjusted R-squared: 0.1343
## F-statistic: 52.84 on 1 and 333 DF, p-value: 2.601e-12
anova(mod4)
## Analysis of Variance Table
##
## Response: PEBS-Conservation Total
## Df Sum Sq Mean Sq F value Pr(>F)
## `FFMQ-O Total` 1 672.9 672.91 52.837 2.601e-12 ***
## Residuals 333 4241.0 12.74
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mod5<-lm(`PEBS-Envi Citizenship Total`~`FFMQ-O Total`) # *** Significant
summary(mod5)
##
## Call:
## lm(formula = `PEBS-Envi Citizenship Total` ~ `FFMQ-O Total`)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.7988 -3.7184 -0.4521 3.2615 12.8947
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.3563 1.3924 3.847 0.000143 ***
## `FFMQ-O Total` 0.3467 0.0489 7.090 8.05e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.793 on 333 degrees of freedom
## Multiple R-squared: 0.1312, Adjusted R-squared: 0.1286
## F-statistic: 50.27 on 1 and 333 DF, p-value: 8.052e-12
anova(mod5)
## Analysis of Variance Table
##
## Response: PEBS-Envi Citizenship Total
## Df Sum Sq Mean Sq F value Pr(>F)
## `FFMQ-O Total` 1 1155.1 1155.06 50.274 8.052e-12 ***
## Residuals 333 7650.7 22.98
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mod6<-lm(`PEBS-Food Total`~`FFMQ-O Total`) # *** Significant
summary(mod6)
##
## Call:
## lm(formula = `PEBS-Food Total` ~ `FFMQ-O Total`)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.8493 -4.2128 -0.6977 3.9084 9.9690
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.15216 1.35753 0.849 0.397
## `FFMQ-O Total` 0.24243 0.04768 5.085 6.16e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.673 on 333 degrees of freedom
## Multiple R-squared: 0.07204, Adjusted R-squared: 0.06925
## F-statistic: 25.85 on 1 and 333 DF, p-value: 6.163e-07
anova(mod6)
## Analysis of Variance Table
##
## Response: PEBS-Food Total
## Df Sum Sq Mean Sq F value Pr(>F)
## `FFMQ-O Total` 1 564.6 564.62 25.852 6.163e-07 ***
## Residuals 333 7272.8 21.84
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mod7<-lm(`PEBS-Transportation Total`~`FFMQ-O Total`) # *** Significant
summary(mod7)
##
## Call:
## lm(formula = `PEBS-Transportation Total` ~ `FFMQ-O Total`)
##
## Residuals:
## Min 1Q Median 3Q Max
## -6.477 -2.090 -0.113 2.023 7.433
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.15729 0.86227 4.821 2.17e-06 ***
## `FFMQ-O Total` 0.13640 0.03029 4.504 9.24e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.968 on 333 degrees of freedom
## Multiple R-squared: 0.05742, Adjusted R-squared: 0.05459
## F-statistic: 20.29 on 1 and 333 DF, p-value: 9.239e-06
anova(mod7)
## Analysis of Variance Table
##
## Response: PEBS-Transportation Total
## Df Sum Sq Mean Sq F value Pr(>F)
## `FFMQ-O Total` 1 178.75 178.749 20.286 9.239e-06 ***
## Residuals 333 2934.23 8.812
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mod8<-lm(`PEBS-Conservation Total`~`FFMQ-D Total`) # *** Significant
summary(mod8)
##
## Call:
## lm(formula = `PEBS-Conservation Total` ~ `FFMQ-D Total`)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12.1395 -2.0738 0.1743 2.7291 9.3057
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 22.93534 0.92826 24.708 < 2e-16 ***
## `FFMQ-D Total` 0.13138 0.03405 3.858 0.000137 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.758 on 333 degrees of freedom
## Multiple R-squared: 0.04278, Adjusted R-squared: 0.03991
## F-statistic: 14.88 on 1 and 333 DF, p-value: 0.0001373
anova(mod8)
## Analysis of Variance Table
##
## Response: PEBS-Conservation Total
## Df Sum Sq Mean Sq F value Pr(>F)
## `FFMQ-D Total` 1 210.2 210.229 14.883 0.0001373 ***
## Residuals 333 4703.7 14.125
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mod9<-lm(`PEBS-Conservation Total`~`FFMQ-A Total`) # * Significant
summary(mod9)
##
## Call:
## lm(formula = `PEBS-Conservation Total` ~ `FFMQ-A Total`)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.4679 -2.1965 0.1702 2.5749 8.8035
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.20609 0.89784 26.960 <2e-16 ***
## `FFMQ-A Total` 0.09047 0.03557 2.544 0.0114 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.805 on 333 degrees of freedom
## Multiple R-squared: 0.01906, Adjusted R-squared: 0.01611
## F-statistic: 6.47 on 1 and 333 DF, p-value: 0.01142
anova(mod9)
## Analysis of Variance Table
##
## Response: PEBS-Conservation Total
## Df Sum Sq Mean Sq F value Pr(>F)
## `FFMQ-A Total` 1 93.7 93.651 6.4697 0.01142 *
## Residuals 333 4820.2 14.475
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mod10<-lm(`PEBS-Conservation Total`~`FFMQ-NR Total`) # ** Significant
summary(mod10)
##
## Call:
## lm(formula = `PEBS-Conservation Total` ~ `FFMQ-NR Total`)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.932 -2.258 0.372 2.560 8.952
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 23.95910 0.90956 26.341 < 2e-16 ***
## `FFMQ-NR Total` 0.11604 0.04163 2.788 0.00561 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.797 on 333 degrees of freedom
## Multiple R-squared: 0.0228, Adjusted R-squared: 0.01987
## F-statistic: 7.771 on 1 and 333 DF, p-value: 0.005615
anova(mod10)
## Analysis of Variance Table
##
## Response: PEBS-Conservation Total
## Df Sum Sq Mean Sq F value Pr(>F)
## `FFMQ-NR Total` 1 112.1 112.05 7.7708 0.005615 **
## Residuals 333 4801.8 14.42
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
mod12=lm(`PEBS-Conservation Total`~`FFMQ-O Total`*`FFMQ-D Total`*`FFMQ-A Total`*`FFMQ-NR Total`)
anova(mod12)
## Analysis of Variance Table
##
## Response: PEBS-Conservation Total
## Df Sum Sq
## `FFMQ-O Total` 1 672.9
## `FFMQ-D Total` 1 48.8
## `FFMQ-A Total` 1 12.5
## `FFMQ-NR Total` 1 5.0
## `FFMQ-O Total`:`FFMQ-D Total` 1 37.5
## `FFMQ-O Total`:`FFMQ-A Total` 1 65.4
## `FFMQ-D Total`:`FFMQ-A Total` 1 13.0
## `FFMQ-O Total`:`FFMQ-NR Total` 1 7.3
## `FFMQ-D Total`:`FFMQ-NR Total` 1 0.5
## `FFMQ-A Total`:`FFMQ-NR Total` 1 1.6
## `FFMQ-O Total`:`FFMQ-D Total`:`FFMQ-A Total` 1 7.4
## `FFMQ-O Total`:`FFMQ-D Total`:`FFMQ-NR Total` 1 5.6
## `FFMQ-O Total`:`FFMQ-A Total`:`FFMQ-NR Total` 1 7.7
## `FFMQ-D Total`:`FFMQ-A Total`:`FFMQ-NR Total` 1 7.6
## `FFMQ-O Total`:`FFMQ-D Total`:`FFMQ-A Total`:`FFMQ-NR Total` 1 8.7
## Residuals 319 4012.4
## Mean Sq
## `FFMQ-O Total` 672.91
## `FFMQ-D Total` 48.76
## `FFMQ-A Total` 12.51
## `FFMQ-NR Total` 5.02
## `FFMQ-O Total`:`FFMQ-D Total` 37.47
## `FFMQ-O Total`:`FFMQ-A Total` 65.42
## `FFMQ-D Total`:`FFMQ-A Total` 12.99
## `FFMQ-O Total`:`FFMQ-NR Total` 7.27
## `FFMQ-D Total`:`FFMQ-NR Total` 0.46
## `FFMQ-A Total`:`FFMQ-NR Total` 1.57
## `FFMQ-O Total`:`FFMQ-D Total`:`FFMQ-A Total` 7.44
## `FFMQ-O Total`:`FFMQ-D Total`:`FFMQ-NR Total` 5.58
## `FFMQ-O Total`:`FFMQ-A Total`:`FFMQ-NR Total` 7.70
## `FFMQ-D Total`:`FFMQ-A Total`:`FFMQ-NR Total` 7.64
## `FFMQ-O Total`:`FFMQ-D Total`:`FFMQ-A Total`:`FFMQ-NR Total` 8.73
## Residuals 12.58
## F value
## `FFMQ-O Total` 53.4986
## `FFMQ-D Total` 3.8765
## `FFMQ-A Total` 0.9948
## `FFMQ-NR Total` 0.3995
## `FFMQ-O Total`:`FFMQ-D Total` 2.9790
## `FFMQ-O Total`:`FFMQ-A Total` 5.2012
## `FFMQ-D Total`:`FFMQ-A Total` 1.0325
## `FFMQ-O Total`:`FFMQ-NR Total` 0.5780
## `FFMQ-D Total`:`FFMQ-NR Total` 0.0362
## `FFMQ-A Total`:`FFMQ-NR Total` 0.1252
## `FFMQ-O Total`:`FFMQ-D Total`:`FFMQ-A Total` 0.5918
## `FFMQ-O Total`:`FFMQ-D Total`:`FFMQ-NR Total` 0.4439
## `FFMQ-O Total`:`FFMQ-A Total`:`FFMQ-NR Total` 0.6121
## `FFMQ-D Total`:`FFMQ-A Total`:`FFMQ-NR Total` 0.6074
## `FFMQ-O Total`:`FFMQ-D Total`:`FFMQ-A Total`:`FFMQ-NR Total` 0.6945
## Residuals
## Pr(>F)
## `FFMQ-O Total` 2.107e-12 ***
## `FFMQ-D Total` 0.04983 *
## `FFMQ-A Total` 0.31932
## `FFMQ-NR Total` 0.52782
## `FFMQ-O Total`:`FFMQ-D Total` 0.08532 .
## `FFMQ-O Total`:`FFMQ-A Total` 0.02323 *
## `FFMQ-D Total`:`FFMQ-A Total` 0.31035
## `FFMQ-O Total`:`FFMQ-NR Total` 0.44766
## `FFMQ-D Total`:`FFMQ-NR Total` 0.84921
## `FFMQ-A Total`:`FFMQ-NR Total` 0.72371
## `FFMQ-O Total`:`FFMQ-D Total`:`FFMQ-A Total` 0.44230
## `FFMQ-O Total`:`FFMQ-D Total`:`FFMQ-NR Total` 0.50573
## `FFMQ-O Total`:`FFMQ-A Total`:`FFMQ-NR Total` 0.43457
## `FFMQ-D Total`:`FFMQ-A Total`:`FFMQ-NR Total` 0.43634
## `FFMQ-O Total`:`FFMQ-D Total`:`FFMQ-A Total`:`FFMQ-NR Total` 0.40527
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
This suggests that the Observation facet of Mindfulness may be of greatest interest when trying to predcit Conservation based Pro-Environmental Behaviors
mod13=lm(`FFMQ-O Total`~`PEBS-Conservation Total`*`PEBS-Envi Citizenship Total`*`PEBS-Food Total`*`PEBS-Transportation Total`)
anova(mod13)
## Analysis of Variance Table
##
## Response: FFMQ-O Total
## Df
## `PEBS-Conservation Total` 1
## `PEBS-Envi Citizenship Total` 1
## `PEBS-Food Total` 1
## `PEBS-Transportation Total` 1
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total` 1
## `PEBS-Conservation Total`:`PEBS-Food Total` 1
## `PEBS-Envi Citizenship Total`:`PEBS-Food Total` 1
## `PEBS-Conservation Total`:`PEBS-Transportation Total` 1
## `PEBS-Envi Citizenship Total`:`PEBS-Transportation Total` 1
## `PEBS-Food Total`:`PEBS-Transportation Total` 1
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Food Total` 1
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Transportation Total` 1
## `PEBS-Conservation Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 1
## `PEBS-Envi Citizenship Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 1
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 1
## Residuals 319
## Sum Sq
## `PEBS-Conservation Total` 1315.6
## `PEBS-Envi Citizenship Total` 553.5
## `PEBS-Food Total` 131.5
## `PEBS-Transportation Total` 117.8
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total` 28.8
## `PEBS-Conservation Total`:`PEBS-Food Total` 1.2
## `PEBS-Envi Citizenship Total`:`PEBS-Food Total` 5.7
## `PEBS-Conservation Total`:`PEBS-Transportation Total` 8.9
## `PEBS-Envi Citizenship Total`:`PEBS-Transportation Total` 107.7
## `PEBS-Food Total`:`PEBS-Transportation Total` 1.0
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Food Total` 1.2
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Transportation Total` 45.7
## `PEBS-Conservation Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 1.6
## `PEBS-Envi Citizenship Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 4.1
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 9.2
## Residuals 7273.7
## Mean Sq
## `PEBS-Conservation Total` 1315.60
## `PEBS-Envi Citizenship Total` 553.51
## `PEBS-Food Total` 131.50
## `PEBS-Transportation Total` 117.80
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total` 28.79
## `PEBS-Conservation Total`:`PEBS-Food Total` 1.24
## `PEBS-Envi Citizenship Total`:`PEBS-Food Total` 5.68
## `PEBS-Conservation Total`:`PEBS-Transportation Total` 8.92
## `PEBS-Envi Citizenship Total`:`PEBS-Transportation Total` 107.69
## `PEBS-Food Total`:`PEBS-Transportation Total` 0.99
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Food Total` 1.18
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Transportation Total` 45.72
## `PEBS-Conservation Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 1.56
## `PEBS-Envi Citizenship Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 4.06
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 9.16
## Residuals 22.80
## F value
## `PEBS-Conservation Total` 57.6976
## `PEBS-Envi Citizenship Total` 24.2751
## `PEBS-Food Total` 5.7670
## `PEBS-Transportation Total` 5.1661
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total` 1.2626
## `PEBS-Conservation Total`:`PEBS-Food Total` 0.0546
## `PEBS-Envi Citizenship Total`:`PEBS-Food Total` 0.2489
## `PEBS-Conservation Total`:`PEBS-Transportation Total` 0.3910
## `PEBS-Envi Citizenship Total`:`PEBS-Transportation Total` 4.7229
## `PEBS-Food Total`:`PEBS-Transportation Total` 0.0432
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Food Total` 0.0519
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Transportation Total` 2.0053
## `PEBS-Conservation Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 0.0682
## `PEBS-Envi Citizenship Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 0.1781
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 0.4016
## Residuals
## Pr(>F)
## `PEBS-Conservation Total` 3.417e-13
## `PEBS-Envi Citizenship Total` 1.344e-06
## `PEBS-Food Total` 0.0169
## `PEBS-Transportation Total` 0.0237
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total` 0.2620
## `PEBS-Conservation Total`:`PEBS-Food Total` 0.8154
## `PEBS-Envi Citizenship Total`:`PEBS-Food Total` 0.6182
## `PEBS-Conservation Total`:`PEBS-Transportation Total` 0.5322
## `PEBS-Envi Citizenship Total`:`PEBS-Transportation Total` 0.0305
## `PEBS-Food Total`:`PEBS-Transportation Total` 0.8355
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Food Total` 0.8199
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Transportation Total` 0.1577
## `PEBS-Conservation Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 0.7941
## `PEBS-Envi Citizenship Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 0.6733
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Food Total`:`PEBS-Transportation Total` 0.5267
## Residuals
##
## `PEBS-Conservation Total` ***
## `PEBS-Envi Citizenship Total` ***
## `PEBS-Food Total` *
## `PEBS-Transportation Total` *
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`
## `PEBS-Conservation Total`:`PEBS-Food Total`
## `PEBS-Envi Citizenship Total`:`PEBS-Food Total`
## `PEBS-Conservation Total`:`PEBS-Transportation Total`
## `PEBS-Envi Citizenship Total`:`PEBS-Transportation Total` *
## `PEBS-Food Total`:`PEBS-Transportation Total`
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Food Total`
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Transportation Total`
## `PEBS-Conservation Total`:`PEBS-Food Total`:`PEBS-Transportation Total`
## `PEBS-Envi Citizenship Total`:`PEBS-Food Total`:`PEBS-Transportation Total`
## `PEBS-Conservation Total`:`PEBS-Envi Citizenship Total`:`PEBS-Food Total`:`PEBS-Transportation Total`
## Residuals
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
This suggests that the Observation facet of mindfulness best predicts Conservation and Environmental Citizenship
References
Amel, E. L., Manning, C. M., & Scott, B. A. (2009). Mindfulness and sustainable behavior: Pondering attention and awareness as means for increasing green behavior. Ecopsychology, 1(1), 14–25. https://doi.org/10.1089/eco.2008.0005
Aron, A., Aron, E. N., Tudor, M., & Nelson, G. (1991). Close relationships as including other in the self. Journal of Personality and Social Psychology, 60(2), 241–253. https://doi.org/10.1037/0022-3514.60.2.241
Baer, R. A., Smith, G. T., Hopkins, J., Krietemeyer, J., & Toney, L. (2006). Using self-report assessment methods to explore facets of mindfulness. Assessment, 13(1), 27–45. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=cmedm&AN=16443717
Barbaro, N., & Pickett, S. M. (2016). Mindfully green: Examining the effect of connectedness to nature on the relationship between mindfulness and engagement in pro-environmental behavior. Personality and Individual Differences, 93, 137–142. https://doi.org/10.1016/j.paid.2015.05.026
Black, D. S., Sussman, S., Johnson, C. A., & Milam, J. (2012). Trait mindfulness helps shield decision-making from translating into health-risk behavior. Journal of Adolescent Health, 51(6), 588–592. https://doi.org/10.1016/j.jadohealth.2012.03.011
Cialdini, R. B., Brown, S. L., Lewis, B. P., Luce, C., & Neuberg, S. L. (1997). Reinterpreting the empathy–altruism relationship: When one into one equals oneness. Journal of Personality and Social Psychology, 73(3), 481–494. https://doi.org/10.1037/0022-3514.73.3.481
Howell, A. J., Dopko, R. L., Passmore, H.-A., & Buro, K. (2011). Nature connectedness: Associations with well-being and mindfulness. Personality and Individual Differences, 51(2), 166–171. https://doi.org/10.1016/j.paid.2011.03.037
Kabat-Zinn, J. (2015). Mindfulness. Mindfulness, 6(6), 1481–1483.https://doi.org/10.1007/s12671-015-0456-x
Levesque, C., & Brown, K. W. (2007). Mindfulness as a moderator of the effect of implicit motivational self-concept on day-to-day behavioral motivation. Motivation & Emotion, 31(4), 284–299. https://doi.org/10.1007/s11031-007-9075-8
Markle, G. L. (2013). Pro-Environmental Behavior: Does It Matter How It’s Measured? Development and Validation of the Pro-Environmental Behavior Scale (PEBS). Human Ecology: An Interdisciplinary Journal, 41(6), 905–914. https://doi.org/10.1007/s10745-013-9614-8
Whitmarsh, L., & O’Neill, S. (2010). Green identity, green living? The role of pro-environmental self-identity in determining consistency across diverse pro-environmental behaviours. Journal of Environmental Psychology, 30(3), 305–314. https://doi.org/10.1016/j.jenvp.2010.01.003