Factor

Detalis

Total

N=

211

Survival

μ ±DS

23.67 ±22.6

M (min:max)

17 (0:114)

Status

0

81 (38.4%)

1

123 (58.3%)

2

7 (3.3%)

Treatment

Curative

83 (39.7%)

Transplant

8 (3.8%)

Loco-regional

46 (22.0%)

Systemic

39 (18.7%)

No treatment

33 (15.8%)

Diagnosis

NASH

55 (26.1%)

ASH

79 (37.4%)

VIRAL

77 (36.5%)

μ ±DS = Mean (standard deviation); M (min:max) = Median (min:max);

0.1 Treatment x DG

Factor

Detalis

Total

NASH

ASH

VIRAL

Statistics

Diagnosis

211

55 (26.1%)

79 (37.4%)

77 (36.5%)

Survival

μ ±DS

23.67 ±22.6

21.93 ±23.9

23.50 ±23.6

25.20 ±20.7

Kruskal-Wallis: p=0.368

M (min:max)

17 (0:114)

14 (0:110)

15 (0:114)

20.5 (0:93)

Status

0

81 (38.4%)

23 (41.8%)

32 (40.5%)

26 (33.8%)

V=0.08 (p=0.661)

1

123 (58.3%)

29 (52.7%)

45 (57.0%)

49 (63.6%)

2

7 (3.3%)

3 (5.5%)

2 (2.5%)

2 (2.6%)

Treatment

Curative

83 (39.7%)

25 (45.5%)

27 (34.6%)

31 (40.8%)

V=0.14 (p=0.439)

Transplant

8 (3.8%)

0

3 (3.8%)

5 (6.6%)

Loco-regional

46 (22.0%)

12 (21.8%)

16 (20.5%)

18 (23.7%)

Systemic

39 (18.7%)

12 (21.8%)

16 (20.5%)

11 (14.5%)

No treatment

33 (15.8%)

6 (10.9%)

16 (20.5%)

11 (14.5%)

μ ±DS = Mean (standard deviation); M (min:max) = Median (min:max); MW = Mann-WhitneyTest; OR/RR = odds-ratio / risc-ratio [95% CI] and p value from Fisher test); V = Cramer V (p value from Chi² test);

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                Treatment=Curative 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     65       4    0.944  0.0270        0.893        0.999
   36     26      20    0.608  0.0633        0.496        0.746
   60     10       7    0.388  0.0794        0.260        0.580

                Treatment=Transplant 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      7       2     0.75   0.153        0.503            1
   36      2       2     0.45   0.188        0.198            1
   60      2       0     0.45   0.188        0.198            1

                Treatment=Loco-regional 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     38       2   0.9540  0.0318       0.8937        1.000
   36     10      23   0.3158  0.0781       0.1945        0.513
   60      3       7   0.0947  0.0514       0.0327        0.274

                Treatment=Systemic 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     12      20    0.417  0.0873       0.2766        0.628
   36      5       2    0.334  0.0875       0.1994        0.558
   60      2       3    0.133  0.0810       0.0406        0.439

                Treatment=No treatment 
        time       n.risk      n.event     survival      std.err 
     12.0000       3.0000      21.0000       0.1698       0.0767 
lower 95% CI upper 95% CI 
      0.0701       0.4114 
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
Treatment=Curative 80 80 80 35 48.99 3.78 50 29 82
Treatment=Transplant 8 8 8 4 46.38 12.54 23 23 NA
Treatment=Loco-regional 45 45 45 33 33.37 3.21 29 24 38
Treatment=Systemic 38 38 38 26 23.10 4.46 10 7 52
Treatment=No treatment 28 28 28 24 6.79 1.74 3 2 8


    Pairwise comparisons using Log-Rank test 

data:  db and Treatment 

              Curative             Transplant Loco-regional 
Transplant    0.943                -          -             
Loco-regional 0.007                0.395      -             
Systemic      0.000001150703       0.069      0.036         
No treatment  < 0.0000000000000002 0.001      0.000000000003
              Systemic      
Transplant    -             
Loco-regional -             
Systemic      -             
No treatment  0.000818611500

P value adjustment method: BH 

    Pairwise comparisons using Log-Rank test 

data:  db2 and Treatment 

              Curative             Loco-regional  Systemic      
Loco-regional 0.005                -              -             
Systemic      0.000000690422       0.025          -             
No treatment  < 0.0000000000000002 0.000000000002 0.000491166900

P value adjustment method: BH 

0.1.1 DG == “ASH”

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                Treatment=Curative 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     21       2    0.913  0.0588        0.805        1.000
   36      6       7    0.523  0.1176        0.336        0.812
   60      3       1    0.418  0.1327        0.225        0.779

                Treatment=Transplant 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      3       0        1       0            1            1
   36      2       0        1       0            1            1
   60      2       0        1       0            1            1

                Treatment=Loco-regional 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     13       0    1.000   0.000       1.0000        1.000
   36      4       7    0.417   0.142       0.2133        0.814
   60      1       3    0.104   0.097       0.0168        0.646

                Treatment=Systemic 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      8       7    0.521   0.132       0.3166        0.857
   36      5       1    0.434   0.136       0.2351        0.801
   60      2       3    0.174   0.110       0.0504        0.598

                Treatment=No treatment 
     time n.risk n.event survival std.err lower 95% CI upper 95% CI
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
Treatment=Curative 27 27 27 11 46.09 6.539 39.0 28 NA
Treatment=Transplant 3 3 3 0 76.00 0.000 NA NA NA
Treatment=Loco-regional 16 16 16 10 38.48 4.823 33.0 27 NA
Treatment=Systemic 16 16 16 12 28.49 6.742 13.0 7 NA
Treatment=No treatment 13 13 13 11 3.33 0.584 2.5 2 NA


    Pairwise comparisons using Log-Rank test 

data:  db and Treatment 

              Curative      Transplant Loco-regional Systemic     
Transplant    0.20          -          -             -            
Loco-regional 0.53          0.07       -             -            
Systemic      0.05          0.04       0.48          -            
No treatment  0.00000000005 0.01       0.00000011027 0.00008204834

P value adjustment method: BH 

    Pairwise comparisons using Log-Rank test 

data:  db2 and Treatment 

              Curative      Loco-regional Systemic     
Loco-regional 0.53          -             -            
Systemic      0.04          0.52          -            
No treatment  0.00000000003 0.00000006616 0.00004922900

P value adjustment method: BH 

0.1.2 DG == “NASH”

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                Treatment=Curative 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     18       1    0.955  0.0444        0.871        1.000
   36      9       6    0.607  0.1174        0.415        0.887
   60      4       4    0.308  0.1227        0.141        0.673

                Treatment=Loco-regional 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      8       2    0.818   0.116       0.6192        1.000
   36      1       5    0.184   0.153       0.0359        0.944

                Treatment=Systemic 
        time       n.risk      n.event     survival      std.err 
      12.000        1.000        6.000        0.333        0.175 
lower 95% CI upper 95% CI 
       0.119        0.932 

                Treatment=No treatment 
        time       n.risk      n.event     survival      std.err 
      12.000        2.000        2.000        0.625        0.213 
lower 95% CI upper 95% CI 
       0.320        1.000 
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
Treatment=Curative 25 25 25 11 29.7 2.32 50.0 23 NA
Treatment=Loco-regional 11 11 11 8 21.2 3.54 17.0 14 NA
Treatment=Systemic 12 12 12 6 17.3 5.04 10.5 8 NA
Treatment=No treatment 6 6 6 4 12.8 4.09 16.0 3 NA


    Pairwise comparisons using Log-Rank test 

data:  db and Treatment 

              Curative Loco-regional Systemic
Loco-regional 0.02     -             -       
Systemic      0.01     0.35          -       
No treatment  0.01     0.35          0.88    

P value adjustment method: BH 

    Pairwise comparisons using Log-Rank test 

data:  db2 and Treatment 

              Curative Loco-regional Systemic
Loco-regional 0.02     -             -       
Systemic      0.01     0.35          -       
No treatment  0.01     0.35          0.88    

P value adjustment method: BH 

0.1.3 DG == “VIRAL”

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                Treatment=Curative 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     21       2    0.913  0.0588        0.805        1.000
   36      6       7    0.523  0.1176        0.336        0.812
   60      3       1    0.418  0.1327        0.225        0.779

                Treatment=Transplant 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      3       0        1       0            1            1
   36      2       0        1       0            1            1
   60      2       0        1       0            1            1

                Treatment=Loco-regional 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     13       0    1.000   0.000       1.0000        1.000
   36      4       7    0.417   0.142       0.2133        0.814
   60      1       3    0.104   0.097       0.0168        0.646

                Treatment=Systemic 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      8       7    0.521   0.132       0.3166        0.857
   36      5       1    0.434   0.136       0.2351        0.801
   60      2       3    0.174   0.110       0.0504        0.598

                Treatment=No treatment 
     time n.risk n.event survival std.err lower 95% CI upper 95% CI
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
Treatment=Curative 27 27 27 11 46.09 6.539 39.0 28 NA
Treatment=Transplant 3 3 3 0 76.00 0.000 NA NA NA
Treatment=Loco-regional 16 16 16 10 38.48 4.823 33.0 27 NA
Treatment=Systemic 16 16 16 12 28.49 6.742 13.0 7 NA
Treatment=No treatment 13 13 13 11 3.33 0.584 2.5 2 NA


    Pairwise comparisons using Log-Rank test 

data:  db and Treatment 

              Curative      Transplant Loco-regional Systemic     
Transplant    0.20          -          -             -            
Loco-regional 0.53          0.07       -             -            
Systemic      0.05          0.04       0.48          -            
No treatment  0.00000000005 0.01       0.00000011027 0.00008204834

P value adjustment method: BH 

    Pairwise comparisons using Log-Rank test 

data:  db2 and Treatment 

              Curative      Loco-regional Systemic     
Loco-regional 0.53          -             -            
Systemic      0.04          0.52          -            
No treatment  0.00000000003 0.00000006616 0.00004922900

P value adjustment method: BH 

0.2 DG x Treatment

Factor

Detalis

Total

Curative

Transplant

Loco-regional

Systemic

No treatment

Statistics

Treatment

209

83 (39.7%)

8 (3.8%)

46 (22.0%)

39 (18.7%)

33 (15.8%)

Survival

μ ±DS

23.67 ±22.6

31.23 ±24.5

33.12 ±28.9

27.98 ±19.2

14.68 ±17.8

5.46 ±7.35

Kruskal-Wallis: p<0.001

M (min:max)

17 (0:114)

24.5 (1:114)

23 (5:83)

24 (4:93)

8 (1:66)

2.5 (0:32)

Status

0

80 (38.3%)

44 (53.0%)

4 (50.0%)

11 (23.9%)

13 (33.3%)

8 (24.2%)

V=0.21 (p=0.018)

1

122 (58.4%)

35 (42.2%)

4 (50.0%)

33 (71.7%)

26 (66.7%)

24 (72.7%)

2

7 (3.3%)

4 (4.8%)

0

2 (4.3%)

0

1 (3.0%)

Diagnosis

NASH

55 (26.3%)

25 (30.1%)

0

12 (26.1%)

12 (30.8%)

6 (18.2%)

V=0.14 (p=0.439)

ASH

78 (37.3%)

27 (32.5%)

3 (37.5%)

16 (34.8%)

16 (41.0%)

16 (48.5%)

VIRAL

76 (36.4%)

31 (37.3%)

5 (62.5%)

18 (39.1%)

11 (28.2%)

11 (33.3%)

μ ±DS = Mean (standard deviation); M (min:max) = Median (min:max); MW = Mann-WhitneyTest; OR/RR = odds-ratio / risc-ratio [95% CI] and p value from Fisher test); V = Cramer V (p value from Chi² test);

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                DG=NASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     29      11    0.772  0.0609       0.6617        0.901
   36     10      13    0.388  0.0826       0.2560        0.589
   60      4       5    0.175  0.0744       0.0759        0.403

                DG=ASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     45      20    0.708  0.0555        0.607        0.825
   36     17      15    0.412  0.0674        0.299        0.568
   60      8       7    0.224  0.0643        0.128        0.393

                DG=VIRAL 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     51      18    0.741  0.0526        0.644        0.851
   36     16      22    0.367  0.0632        0.262        0.514
   60      5       5    0.205  0.0664        0.109        0.387
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
DG=NASH 54 54 54 29 38.7 6.43 23 17 50
DG=ASH 75 75 75 44 41.0 5.32 28 24 40
DG=VIRAL 70 70 70 49 33.9 3.92 23 19 46


    Pairwise comparisons using Log-Rank test 

data:  db and DG 

      NASH ASH
ASH   0.9  -  
VIRAL 0.9  0.9

P value adjustment method: BH 
[1] " Exclude: Transplant >>> "

    Pairwise comparisons using Log-Rank test 

data:  db2 and DG 

      NASH ASH
ASH   1    -  
VIRAL 1    1  

P value adjustment method: BH 

0.2.1 Treatment == “Curative”

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                DG=NASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     18       1    0.955  0.0444        0.871        1.000
   36      9       6    0.607  0.1174        0.415        0.887
   60      4       4    0.308  0.1227        0.141        0.673

                DG=ASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     21       2    0.913  0.0588        0.805        1.000
   36      6       7    0.523  0.1176        0.336        0.812
   60      3       1    0.418  0.1327        0.225        0.779

                DG=VIRAL 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     26       1    0.963  0.0363        0.894        1.000
   36     11       7    0.680  0.0941        0.518        0.891
   60      3       2    0.496  0.1314        0.295        0.833
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
DG=NASH 25 25 25 11 56.3 9.72 50 23 NA
DG=ASH 27 27 27 11 60.3 10.95 39 28 NA
DG=VIRAL 28 28 28 13 50.4 5.50 53 48 NA


    Pairwise comparisons using Log-Rank test 

data:  db and DG 

      NASH ASH
ASH   1    -  
VIRAL 1    1  

P value adjustment method: BH 

0.2.2 Treatment == “Transplant”

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                DG=ASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      3       0        1       0            1            1
   36      2       0        1       0            1            1
   60      2       0        1       0            1            1

                DG=VIRAL 
        time       n.risk      n.event     survival      std.err 
      12.000        4.000        2.000        0.600        0.219 
lower 95% CI upper 95% CI 
       0.293        1.000 
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
DG=ASH 3 3 3 0 53.0 0.00 NA NA NA
DG=VIRAL 5 5 5 4 17.2 3.33 23 12 NA


    Pairwise comparisons using Log-Rank test 

data:  db and DG 

      ASH 
VIRAL 0.03

P value adjustment method: BH 

0.2.3 Treatment == “Loco-regional”

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                DG=NASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      8       2    0.818   0.116       0.6192        1.000
   36      1       5    0.184   0.153       0.0359        0.944

                DG=ASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     13       0    1.000   0.000       1.0000        1.000
   36      4       7    0.417   0.142       0.2133        0.814
   60      1       3    0.104   0.097       0.0168        0.646

                DG=VIRAL 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12     17       0    1.000  0.0000       1.0000        1.000
   36      5      11    0.317  0.1167       0.1539        0.652
   60      2       3    0.127  0.0836       0.0347        0.462
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
DG=NASH 11 11 11 8 22.2 4.08 17 14 NA
DG=ASH 16 16 16 10 38.5 4.82 33 27 NA
DG=VIRAL 18 18 18 15 34.4 4.73 29 22 59


    Pairwise comparisons using Log-Rank test 

data:  db and DG 

      NASH ASH 
ASH   0.05 -   
VIRAL 0.11 0.57

P value adjustment method: BH 

0.2.4 Treatment == “Systemic”

Call: survfit(formula = as.formula("Surv(time = `Survival`, event = `Dead`) ~ " %+% 
    by))

                DG=NASH 
        time       n.risk      n.event     survival      std.err 
      12.000        1.000        6.000        0.333        0.175 
lower 95% CI upper 95% CI 
       0.119        0.932 

                DG=ASH 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI
   12      8       7    0.521   0.132       0.3166        0.857
   36      5       1    0.434   0.136       0.2351        0.801
   60      2       3    0.174   0.110       0.0504        0.598

                DG=VIRAL 
        time       n.risk      n.event     survival      std.err 
      12.000        3.000        7.000        0.300        0.145 
lower 95% CI upper 95% CI 
       0.116        0.773 
records n.max n.start events *rmean *se(rmean) median 0.95LCL 0.95UCL
DG=NASH 12 12 12 6 16.3 4.53 10.5 8 NA
DG=ASH 16 16 16 12 19.1 3.57 13.0 7 NA
DG=VIRAL 10 10 10 8 10.7 3.85 4.5 3 NA


    Pairwise comparisons using Log-Rank test 

data:  db and DG 

      NASH ASH
ASH   0.6  -  
VIRAL 0.4  0.3

P value adjustment method: BH 

1 References

  1. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.