wfat<-read.csv("C:\\Users\\prakruthi\\Desktop\\datascience assignments\\basic stats1\\wc-at.csv")
x<-read.csv("C:\\Users\\prakruthi\\Desktop\\x.csv")
View(wfat)
attach(wfat)
summary(wfat)
## Waist AT
## Min. : 63.5 Min. : 11.44
## 1st Qu.: 80.0 1st Qu.: 50.88
## Median : 90.8 Median : 96.54
## Mean : 91.9 Mean :101.89
## 3rd Qu.:104.0 3rd Qu.:137.00
## Max. :121.0 Max. :253.00
plot(AT,Waist)
str(wfat)
## 'data.frame': 109 obs. of 2 variables:
## $ Waist: num 74.8 72.6 81.8 84 74.7 ...
## $ AT : num 25.7 25.9 42.6 42.8 29.8 ...
class(wfat)
## [1] "data.frame"
cor(AT,Waist)
## [1] 0.8185578
#implementing linear regression model
model<-lm(formula = AT ~ Waist,data = wfat)
coef(model)
## (Intercept) Waist
## -215.981488 3.458859
summary(model)
##
## Call:
## lm(formula = AT ~ Waist, data = wfat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -107.288 -19.143 -2.939 16.376 90.342
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -215.9815 21.7963 -9.909 <2e-16 ***
## Waist 3.4589 0.2347 14.740 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 33.06 on 107 degrees of freedom
## Multiple R-squared: 0.67, Adjusted R-squared: 0.667
## F-statistic: 217.3 on 1 and 107 DF, p-value: < 2.2e-16
pv <- predict(model,data=wfat)
pv1 <- predict(model,newdata=x)
View(pv1)
class(pv)
## [1] "numeric"
View(pv)
class(pv)
## [1] "numeric"
pv <- as.data.frame(pv)
final<-cbind(wfat,pv) #or data.frame()
View(final)