wc.at <- read.csv("E:\\New Volume\\DataScience Yogesh\\R _Codes\\Simple Linear Regression\\wc-at.csv") # choose the wc-at.csv #data set
x <- read.csv("E:\\New Volume\\DataScience Yogesh\\R _Codes\\Simple Linear Regression\\x.csv")
dim(wc.at)
## [1] 109 2
View(wc.at)
#var(Waist)
attach(wc.at)
summary(wc.at)
## Waist AT
## Min. : 63.5 Min. : 11.44
## 1st Qu.: 80.0 1st Qu.: 50.88
## Median : 90.8 Median : 96.54
## Mean : 91.9 Mean :101.89
## 3rd Qu.:104.0 3rd Qu.:137.00
## Max. :121.0 Max. :253.00
windows()
plot(AT,Waist)

#plot(x,y) # Syntax
# Correlation coefficient value for Waist and FAT Data
#cor(x,y) # Syntax
cor(AT,Waist)
## [1] 0.8185578
cor(Waist,AT)
## [1] 0.8185578
#dim(wc.at)
class(wc.at)
## [1] "data.frame"
colnames(wc.at)
## [1] "Waist" "AT"
str(wc.at)
## 'data.frame': 109 obs. of 2 variables:
## $ Waist: num 74.8 72.6 81.8 84 74.7 ...
## $ AT : num 25.7 25.9 42.6 42.8 29.8 ...
summary(wc.at)
## Waist AT
## Min. : 63.5 Min. : 11.44
## 1st Qu.: 80.0 1st Qu.: 50.88
## Median : 90.8 Median : 96.54
## Mean : 91.9 Mean :101.89
## 3rd Qu.:104.0 3rd Qu.:137.00
## Max. :121.0 Max. :253.00
sd(Waist)
## [1] 13.55912
# Implementation of Linear
m1 <- lm(AT ~ Waist,data = wc.at)
coef(m1)
## (Intercept) Waist
## -215.981488 3.458859
summary(m1)
##
## Call:
## lm(formula = AT ~ Waist, data = wc.at)
##
## Residuals:
## Min 1Q Median 3Q Max
## -107.288 -19.143 -2.939 16.376 90.342
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -215.9815 21.7963 -9.909 <2e-16 ***
## Waist 3.4589 0.2347 14.740 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 33.06 on 107 degrees of freedom
## Multiple R-squared: 0.67, Adjusted R-squared: 0.667
## F-statistic: 217.3 on 1 and 107 DF, p-value: < 2.2e-16
pv1 <- predict(m1,newdata = x)
pv1
## 1 2 3 4
## 40.31999 -19.86416 36.86113 9.88203
class(pv1)
## [1] "numeric"
pv <- as.data.frame(pv1)
final1 <- data.frame(x,pv1)