Chapter 11.2, Exercise 13(b), Page 424 (part of assigned homework)

Smith is in jail and has 1 dollar; he can get out on bail if he has 8 dollars.
A guard agrees to make a series of bets with him.

If Smith bets A dollars,

  • he wins A dollars with probability .4 ,
  • and loses A dollars with probability .6 .

Find the probability that he wins 8 dollars before losing all of his money if:

(b) bold strategy

  1. he bets, each time, as much as possible but not more than necessary to bring his fortune up to 8 dollars

Here are three different ways to obtain the answer:

(b1) only three plays

Under the Bold strategy, the prisoner bets his entire bankroll each time (as it’s not possible to reach any value in \(\{5,6,7\}\) when starting from 1 dollar.)

Thus, to win the game, he must win three times:

  • Bet 1: 1 dollar increases to 2 dollars
  • Bet 2: 2 dollars increases to 4 dollars
  • Bet 3: 4 dollars increases to 8 dollars

A loss on any of the above bets will “wipe out” his bankroll, forcing him to stop playing.

Because his chance of winning on each bet is 0.4, his chance of winning three times is \((0.4)^3 = 0.064\) .

Thus, his probability of winning under this strategy is 6.4 percent.

(b2) Absorbing Markov Chains:

##   1   2 3   4 5   6 7   0   8
## 1 0 0.4 0 0.0 0 0.0 0 0.6 0.0
## 2 0 0.0 0 0.4 0 0.0 0 0.6 0.0
## 3 0 0.0 0 0.0 0 0.4 0 0.6 0.0
## 4 0 0.0 0 0.0 0 0.0 0 0.6 0.4
## 5 0 0.6 0 0.0 0 0.0 0 0.0 0.4
## 6 0 0.0 0 0.6 0 0.0 0 0.0 0.4
## 7 0 0.0 0 0.0 0 0.6 0 0.0 0.4
## 0 0 0.0 0 0.0 0 0.0 0 1.0 0.0
## 8 0 0.0 0 0.0 0 0.0 0 0.0 1.0
##   1   2 3   4 5   6 7
## 1 0 0.4 0 0.0 0 0.0 0
## 2 0 0.0 0 0.4 0 0.0 0
## 3 0 0.0 0 0.0 0 0.4 0
## 4 0 0.0 0 0.0 0 0.0 0
## 5 0 0.6 0 0.0 0 0.0 0
## 6 0 0.0 0 0.6 0 0.0 0
## 7 0 0.0 0 0.0 0 0.6 0
##     0   8
## 1 0.6 0.0
## 2 0.6 0.0
## 3 0.6 0.0
## 4 0.6 0.4
## 5 0.0 0.4
## 6 0.0 0.4
## 7 0.0 0.4
##      [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,]    1    0    0    0    0    0    0
## [2,]    0    1    0    0    0    0    0
## [3,]    0    0    1    0    0    0    0
## [4,]    0    0    0    1    0    0    0
## [5,]    0    0    0    0    1    0    0
## [6,]    0    0    0    0    0    1    0
## [7,]    0    0    0    0    0    0    1
##   1    2 3    4 5    6 7
## 1 1 -0.4 0  0.0 0  0.0 0
## 2 0  1.0 0 -0.4 0  0.0 0
## 3 0  0.0 1  0.0 0 -0.4 0
## 4 0  0.0 0  1.0 0  0.0 0
## 5 0 -0.6 0  0.0 1  0.0 0
## 6 0  0.0 0 -0.6 0  1.0 0
## 7 0  0.0 0  0.0 0 -0.6 1
##   1   2 3    4 5   6 7
## 1 1 0.4 0 0.16 0 0.0 0
## 2 0 1.0 0 0.40 0 0.0 0
## 3 0 0.0 1 0.24 0 0.4 0
## 4 0 0.0 0 1.00 0 0.0 0
## 5 0 0.6 0 0.24 1 0.0 0
## 6 0 0.0 0 0.60 0 1.0 0
## 7 0 0.0 0 0.36 0 0.6 1
##   [,1]
## 1 1.56
## 2 1.40
## 3 1.64
## 4 1.00
## 5 1.84
## 6 1.60
## 7 1.96
##       0     8
## 1 0.936 0.064
## 2 0.840 0.160
## 3 0.744 0.256
## 4 0.600 0.400
## 5 0.504 0.496
## 6 0.360 0.640
## 7 0.216 0.784
## [1] 0.064

Again, the probability is 0.064 .

(b3) Repeated matrix multiplications:

##     0 1   2 3   4 5   6 7   8
## 0 1.0 0 0.0 0 0.0 0 0.0 0 0.0
## 1 0.6 0 0.4 0 0.0 0 0.0 0 0.0
## 2 0.6 0 0.0 0 0.4 0 0.0 0 0.0
## 3 0.6 0 0.0 0 0.0 0 0.4 0 0.0
## 4 0.6 0 0.0 0 0.0 0 0.0 0 0.4
## 5 0.0 0 0.6 0 0.0 0 0.0 0 0.4
## 6 0.0 0 0.0 0 0.6 0 0.0 0 0.4
## 7 0.0 0 0.0 0 0.0 0 0.6 0 0.4
## 8 0.0 0 0.0 0 0.0 0 0.0 0 1.0
##     0 1   2 3   4 5   6 7   8
## 0 1.0 0 0.0 0 0.0 0 0.0 0 0.0
## 1 0.6 0 0.4 0 0.0 0 0.0 0 0.0
## 2 0.6 0 0.0 0 0.4 0 0.0 0 0.0
## 3 0.6 0 0.0 0 0.0 0 0.4 0 0.0
## 4 0.6 0 0.0 0 0.0 0 0.0 0 0.4
## 5 0.0 0 0.6 0 0.0 0 0.0 0 0.4
## 6 0.0 0 0.0 0 0.6 0 0.0 0 0.4
## 7 0.0 0 0.0 0 0.0 0 0.6 0 0.4
## 8 0.0 0 0.0 0 0.0 0 0.0 0 1.0
## [1] "i:  1"
##     0 1   2 3   4 5   6 7   8
## 0 1.0 0 0.0 0 0.0 0 0.0 0 0.0
## 1 0.6 0 0.4 0 0.0 0 0.0 0 0.0
## 2 0.6 0 0.0 0 0.4 0 0.0 0 0.0
## 3 0.6 0 0.0 0 0.0 0 0.4 0 0.0
## 4 0.6 0 0.0 0 0.0 0 0.0 0 0.4
## 5 0.0 0 0.6 0 0.0 0 0.0 0 0.4
## 6 0.0 0 0.0 0 0.6 0 0.0 0 0.4
## 7 0.0 0 0.0 0 0.0 0 0.6 0 0.4
## 8 0.0 0 0.0 0 0.0 0 0.0 0 1.0
## [1] "1 3 0 999"
## [1] "i:  2"
##      0 1 2 3    4 5 6 7    8
## 0 1.00 0 0 0 0.00 0 0 0 0.00
## 1 0.84 0 0 0 0.16 0 0 0 0.00
## 2 0.84 0 0 0 0.00 0 0 0 0.16
## 3 0.60 0 0 0 0.24 0 0 0 0.16
## 4 0.60 0 0 0 0.00 0 0 0 0.40
## 5 0.36 0 0 0 0.24 0 0 0 0.40
## 6 0.36 0 0 0 0.00 0 0 0 0.64
## 7 0.00 0 0 0 0.36 0 0 0 0.64
## 8 0.00 0 0 0 0.00 0 0 0 1.00
## [1] "2 1 0 0"
## [1] "i:  3"
##       0 1 2 3 4 5 6 7     8
## 0 1.000 0 0 0 0 0 0 0 0.000
## 1 0.936 0 0 0 0 0 0 0 0.064
## 2 0.840 0 0 0 0 0 0 0 0.160
## 3 0.744 0 0 0 0 0 0 0 0.256
## 4 0.600 0 0 0 0 0 0 0 0.400
## 5 0.504 0 0 0 0 0 0 0 0.496
## 6 0.360 0 0 0 0 0 0 0 0.640
## 7 0.216 0 0 0 0 0 0 0 0.784
## 8 0.000 0 0 0 0 0 0 0 1.000
## [1] "3 0 0.064 0.064"
## [1] "Absorbed at power  3"
##       0 1 2 3 4 5 6 7     8
## 0 1.000 0 0 0 0 0 0 0 0.000
## 1 0.936 0 0 0 0 0 0 0 0.064
## 2 0.840 0 0 0 0 0 0 0 0.160
## 3 0.744 0 0 0 0 0 0 0 0.256
## 4 0.600 0 0 0 0 0 0 0 0.400
## 5 0.504 0 0 0 0 0 0 0 0.496
## 6 0.360 0 0 0 0 0 0 0 0.640
## 7 0.216 0 0 0 0 0 0 0 0.784
## 8 0.000 0 0 0 0 0 0 0 1.000
## [1] "Column sums: "
##   0   1   2   3   4   5   6   7   8 
## 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8
## [1] "bold result:  0.064"

The probability of winning with the bold strategy is 0.064 .


Chapter 11.2, Exercise 14, Page 424

With the situation in Exercise 13, consider the strategy such that

  • for \(i < 4\), Smith bets \(min(i, 4-i)\), and
  • for \(i \ge 4\), he bets according to the bold strategy, where \(i\) is his current fortune.

Find the probability that he gets out of jail using this strategy.

(a) Absorbing Markov Chains (section 11.2):

##     0 1   2 3   4 5   6 7   8
## 0 1.0 0 0.0 0 0.0 0 0.0 0 0.0
## 1 0.6 0 0.4 0 0.0 0 0.0 0 0.0
## 2 0.6 0 0.0 0 0.4 0 0.0 0 0.0
## 3 0.0 0 0.6 0 0.4 0 0.0 0 0.0
## 4 0.6 0 0.0 0 0.0 0 0.0 0 0.4
## 5 0.0 0 0.6 0 0.0 0 0.0 0 0.4
## 6 0.0 0 0.0 0 0.6 0 0.0 0 0.4
## 7 0.0 0 0.0 0 0.0 0 0.6 0 0.4
## 8 0.0 0 0.0 0 0.0 0 0.0 0 1.0
##   1   2 3   4 5   6 7   0   8
## 1 0 0.4 0 0.0 0 0.0 0 0.6 0.0
## 2 0 0.0 0 0.4 0 0.0 0 0.6 0.0
## 3 0 0.6 0 0.4 0 0.0 0 0.0 0.0
## 4 0 0.0 0 0.0 0 0.0 0 0.6 0.4
## 5 0 0.6 0 0.0 0 0.0 0 0.0 0.4
## 6 0 0.0 0 0.6 0 0.0 0 0.0 0.4
## 7 0 0.0 0 0.0 0 0.6 0 0.0 0.4
## 0 0 0.0 0 0.0 0 0.0 0 1.0 0.0
## 8 0 0.0 0 0.0 0 0.0 0 0.0 1.0
##   1   2 3   4 5   6 7
## 1 0 0.4 0 0.0 0 0.0 0
## 2 0 0.0 0 0.4 0 0.0 0
## 3 0 0.6 0 0.4 0 0.0 0
## 4 0 0.0 0 0.0 0 0.0 0
## 5 0 0.6 0 0.0 0 0.0 0
## 6 0 0.0 0 0.6 0 0.0 0
## 7 0 0.0 0 0.0 0 0.6 0
##     0   8
## 1 0.6 0.0
## 2 0.6 0.0
## 3 0.0 0.0
## 4 0.6 0.4
## 5 0.0 0.4
## 6 0.0 0.4
## 7 0.0 0.4
##      [,1] [,2] [,3] [,4] [,5] [,6] [,7]
## [1,]    1    0    0    0    0    0    0
## [2,]    0    1    0    0    0    0    0
## [3,]    0    0    1    0    0    0    0
## [4,]    0    0    0    1    0    0    0
## [5,]    0    0    0    0    1    0    0
## [6,]    0    0    0    0    0    1    0
## [7,]    0    0    0    0    0    0    1
##   1    2 3    4 5    6 7
## 1 1 -0.4 0  0.0 0  0.0 0
## 2 0  1.0 0 -0.4 0  0.0 0
## 3 0 -0.6 1 -0.4 0  0.0 0
## 4 0  0.0 0  1.0 0  0.0 0
## 5 0 -0.6 0  0.0 1  0.0 0
## 6 0  0.0 0 -0.6 0  1.0 0
## 7 0  0.0 0  0.0 0 -0.6 1
##   1   2 3    4 5   6 7
## 1 1 0.4 0 0.16 0 0.0 0
## 2 0 1.0 0 0.40 0 0.0 0
## 3 0 0.6 1 0.64 0 0.0 0
## 4 0 0.0 0 1.00 0 0.0 0
## 5 0 0.6 0 0.24 1 0.0 0
## 6 0 0.0 0 0.60 0 1.0 0
## 7 0 0.0 0 0.36 0 0.6 1
##   [,1]
## 1 1.56
## 2 1.40
## 3 2.24
## 4 1.00
## 5 1.84
## 6 1.60
## 7 1.96
##       0     8
## 1 0.936 0.064
## 2 0.840 0.160
## 3 0.744 0.256
## 4 0.600 0.400
## 5 0.504 0.496
## 6 0.360 0.640
## 7 0.216 0.784
## [1] 0.064

(b) Repeated matrix multiplications:

##     0 1   2 3   4 5   6 7   8
## 0 1.0 0 0.0 0 0.0 0 0.0 0 0.0
## 1 0.6 0 0.4 0 0.0 0 0.0 0 0.0
## 2 0.6 0 0.0 0 0.4 0 0.0 0 0.0
## 3 0.0 0 0.6 0 0.4 0 0.0 0 0.0
## 4 0.6 0 0.0 0 0.0 0 0.0 0 0.4
## 5 0.0 0 0.6 0 0.0 0 0.0 0 0.4
## 6 0.0 0 0.0 0 0.6 0 0.0 0 0.4
## 7 0.0 0 0.0 0 0.0 0 0.6 0 0.4
## 8 0.0 0 0.0 0 0.0 0 0.0 0 1.0
## [1] "i:  1"
##     0 1   2 3   4 5   6 7   8
## 0 1.0 0 0.0 0 0.0 0 0.0 0 0.0
## 1 0.6 0 0.4 0 0.0 0 0.0 0 0.0
## 2 0.6 0 0.0 0 0.4 0 0.0 0 0.0
## 3 0.0 0 0.6 0 0.4 0 0.0 0 0.0
## 4 0.6 0 0.0 0 0.0 0 0.0 0 0.4
## 5 0.0 0 0.6 0 0.0 0 0.0 0 0.4
## 6 0.0 0 0.0 0 0.6 0 0.0 0 0.4
## 7 0.0 0 0.0 0 0.0 0 0.6 0 0.4
## 8 0.0 0 0.0 0 0.0 0 0.0 0 1.0
## [1] "1 3.6 0 999"
## [1] "i:  2"
##      0 1 2 3    4 5 6 7    8
## 0 1.00 0 0 0 0.00 0 0 0 0.00
## 1 0.84 0 0 0 0.16 0 0 0 0.00
## 2 0.84 0 0 0 0.00 0 0 0 0.16
## 3 0.60 0 0 0 0.24 0 0 0 0.16
## 4 0.60 0 0 0 0.00 0 0 0 0.40
## 5 0.36 0 0 0 0.24 0 0 0 0.40
## 6 0.36 0 0 0 0.00 0 0 0 0.64
## 7 0.00 0 0 0 0.36 0 0 0 0.64
## 8 0.00 0 0 0 0.00 0 0 0 1.00
## [1] "2 1 0 0"
## [1] "i:  3"
##       0 1 2 3 4 5 6 7     8
## 0 1.000 0 0 0 0 0 0 0 0.000
## 1 0.936 0 0 0 0 0 0 0 0.064
## 2 0.840 0 0 0 0 0 0 0 0.160
## 3 0.744 0 0 0 0 0 0 0 0.256
## 4 0.600 0 0 0 0 0 0 0 0.400
## 5 0.504 0 0 0 0 0 0 0 0.496
## 6 0.360 0 0 0 0 0 0 0 0.640
## 7 0.216 0 0 0 0 0 0 0 0.784
## 8 0.000 0 0 0 0 0 0 0 1.000
## [1] "3 0 0.064 0.064"
## [1] "Absorbed at power  3"
##       0 1 2 3 4 5 6 7     8
## 0 1.000 0 0 0 0 0 0 0 0.000
## 1 0.936 0 0 0 0 0 0 0 0.064
## 2 0.840 0 0 0 0 0 0 0 0.160
## 3 0.744 0 0 0 0 0 0 0 0.256
## 4 0.600 0 0 0 0 0 0 0 0.400
## 5 0.504 0 0 0 0 0 0 0 0.496
## 6 0.360 0 0 0 0 0 0 0 0.640
## 7 0.216 0 0 0 0 0 0 0 0.784
## 8 0.000 0 0 0 0 0 0 0 1.000
## [1] "Column sums: "
##   0   1   2   3   4   5   6   7   8 
## 5.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.8
## [1] "mixed result:  0.064"

For this strategy, the probability of winning is 0.064 .

How does this probability compare with that obtained for the bold strategy?

The result is the same - for both strategies, the probability of success is 6.4% .

The only difference between the two strategies occurs if the prisoner starts with three dollars:

  • In the bold strategy, you would bet 3 dollars when you have 3 dollars
  • In the mixed strategy, you would bet 1 dollar when you have 3 dollars

In all other cases, the betting is unchanged.

It is not possible to enter state 3 unless you start there, so for this specific case, it becomes moot.
But, even if you did start from that state, the probability results of both strategies are the same - no matter which state you start from.

There can be no more than 3 plays, no matter which state you start from.