Introducción

Metodología

Diseño y metodología de campo

Procesamiento de los datos

Análisis de los datos

Cargar datos a data frame

# con datos csv usando paquete readr
library(readr)
melodata <- read_csv("melocactus2016.csv")
melodata
## # A tibble: 113 x 5
##    Xtran Ytran altura inflor Status
##    <dbl> <dbl>  <dbl>  <dbl> <chr> 
##  1  99.1  105.     45     17 S     
##  2  99.1  105.     42     17 S     
##  3  99.0  106.     40     18 X     
##  4  97.7  104.     29      0 S     
##  5  93.5  107.     26      0 E     
##  6  93.4  107.     43     12 S     
##  7  89.8  110.     25      0 X     
##  8  89.0  111.     27      8 S     
##  9  86.4  112.     64      0 E     
## 10  86.7  113.      9      0 S     
## # … with 103 more rows
dim(melodata)
## [1] 113   5

Visualización de los datos

# leer solo coordenadas
xy <- melodata[,1:2]
head(xy)
## # A tibble: 6 x 2
##   Xtran Ytran
##   <dbl> <dbl>
## 1  99.1  105.
## 2  99.1  105.
## 3  99.0  106.
## 4  97.7  104.
## 5  93.5  107.
## 6  93.4  107.
plot(xy$Xtran, xy$Ytran, type = "p", asp=1)

Crear matriz de distancias

library(spam)
NNmatrix <- nearest.dist(xy, y=NULL, method = "euclidean", upper = TRUE)
dim(NNmatrix)
## [1] 113 113
class(NNmatrix)
## [1] "spam"
## attr(,"package")
## [1] "spam"
NNmatrix
## Matrix of dimension 113x113 with (row-wise) nonzero elements:
## 
##   [1] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
##   [7] 0.55578773 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
##  [13] 0.49040799 0.63639610 0.00000000 0.43185646 0.80056230 0.00000000
##  [19] 0.45254834 0.00000000 0.00000000 0.00000000 0.00000000 0.86683332
##  [25] 0.86683332 0.86683332 0.87361319 0.89844310 0.89844310 0.00000000
##  [31] 0.00000000 0.00000000 0.51865210 0.51400389 0.51400389 0.00000000
##  [37] 0.00000000 0.51865210 0.51400389 0.51400389 0.00000000 0.51865210
##  [43] 0.51400389 0.51400389 0.00000000 0.02828427 0.02828427 0.00000000
##  [49] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
##  [55] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.42801869
##  [61] 0.00000000 0.00000000 0.00000000 0.35171011 0.32140317 0.32695565
##  [67] 0.87091905 0.42011903 0.47853944 0.48259714 0.00000000 0.00000000
##  [73] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
##  [79] 0.36496575 0.00000000 0.00000000 0.00000000 0.84970583 0.00000000
##  [85] 0.97493590 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
##  [91] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
##  [97] 0.00000000 0.00000000 0.00000000 0.00000000 0.20099751 0.36345564
## [103] 0.78746428 0.95005263 0.81006173 0.00000000 0.16278821 0.69318107
## [109] 0.98843310 0.85146932 0.00000000 0.66708320 0.92849340 0.00000000
## [115] 0.61032778 0.54230987 0.00000000 0.14000000 0.95131488 0.00000000
## [121] 0.00000000 0.00000000 0.62369865 0.97616597 0.60539243 0.55081757
## [127] 0.00000000 0.35510562 0.19416488 0.51923020 0.00000000 0.46690470
## [133] 0.80156098 0.00000000 0.34132096 0.00000000 0.00000000 0.52630789
## [139] 0.27513633 0.00000000 0.25317978 0.00000000 0.00000000 0.00000000
## [145] 0.54424259 0.00000000 0.00000000 0.80752709 0.78771822 0.96176920
## [151] 0.00000000 0.02000000 0.30016662 0.73783467 0.73437048 0.79120162
## [157] 0.00000000 0.31064449 0.74886581 0.73246160 0.78587531 0.00000000
## [163] 0.91482239 0.00000000 0.49244289 0.63560994 0.00000000 0.14317821
## [169] 0.00000000 0.00000000 0.27730849 0.80622577 0.00000000 0.59236813
## [175] 0.00000000 0.00000000 0.03605551 0.00000000 0.00000000 0.00000000
## [181] 0.00000000 0.00000000 0.00000000 0.53037722 0.00000000 0.00000000
## [187] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
## [193] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.34985711
## [199] 0.00000000 0.00000000 0.00000000 0.12165525 0.22360680 0.54571055
## [205] 0.12806248 0.13000000 0.18973666 0.00000000 0.10198039 0.55009090
## [211] 0.10198039 0.19209373 0.31048349 0.00000000 0.57706152 0.16970563
## [217] 0.27802878 0.41231056 0.00000000 0.45099889 0.42059482 0.56302753
## [223] 0.00000000 0.11180340 0.28071338 0.00000000 0.19313208 0.00000000
## Class 'spam' (32-bit)
NNmat <- matrix(NNmatrix)
dim(NNmat)
## [1] 228   1
NNmat
##              [,1]
##   [1,] 0.00000000
##   [2,] 0.00000000
##   [3,] 0.00000000
##   [4,] 0.00000000
##   [5,] 0.00000000
##   [6,] 0.00000000
##   [7,] 0.55578773
##   [8,] 0.00000000
##   [9,] 0.00000000
##  [10,] 0.00000000
##  [11,] 0.00000000
##  [12,] 0.00000000
##  [13,] 0.49040799
##  [14,] 0.63639610
##  [15,] 0.00000000
##  [16,] 0.43185646
##  [17,] 0.80056230
##  [18,] 0.00000000
##  [19,] 0.45254834
##  [20,] 0.00000000
##  [21,] 0.00000000
##  [22,] 0.00000000
##  [23,] 0.00000000
##  [24,] 0.86683332
##  [25,] 0.86683332
##  [26,] 0.86683332
##  [27,] 0.87361319
##  [28,] 0.89844310
##  [29,] 0.89844310
##  [30,] 0.00000000
##  [31,] 0.00000000
##  [32,] 0.00000000
##  [33,] 0.51865210
##  [34,] 0.51400389
##  [35,] 0.51400389
##  [36,] 0.00000000
##  [37,] 0.00000000
##  [38,] 0.51865210
##  [39,] 0.51400389
##  [40,] 0.51400389
##  [41,] 0.00000000
##  [42,] 0.51865210
##  [43,] 0.51400389
##  [44,] 0.51400389
##  [45,] 0.00000000
##  [46,] 0.02828427
##  [47,] 0.02828427
##  [48,] 0.00000000
##  [49,] 0.00000000
##  [50,] 0.00000000
##  [51,] 0.00000000
##  [52,] 0.00000000
##  [53,] 0.00000000
##  [54,] 0.00000000
##  [55,] 0.00000000
##  [56,] 0.00000000
##  [57,] 0.00000000
##  [58,] 0.00000000
##  [59,] 0.00000000
##  [60,] 0.42801869
##  [61,] 0.00000000
##  [62,] 0.00000000
##  [63,] 0.00000000
##  [64,] 0.35171011
##  [65,] 0.32140317
##  [66,] 0.32695565
##  [67,] 0.87091905
##  [68,] 0.42011903
##  [69,] 0.47853944
##  [70,] 0.48259714
##  [71,] 0.00000000
##  [72,] 0.00000000
##  [73,] 0.00000000
##  [74,] 0.00000000
##  [75,] 0.00000000
##  [76,] 0.00000000
##  [77,] 0.00000000
##  [78,] 0.00000000
##  [79,] 0.36496575
##  [80,] 0.00000000
##  [81,] 0.00000000
##  [82,] 0.00000000
##  [83,] 0.84970583
##  [84,] 0.00000000
##  [85,] 0.97493590
##  [86,] 0.00000000
##  [87,] 0.00000000
##  [88,] 0.00000000
##  [89,] 0.00000000
##  [90,] 0.00000000
##  [91,] 0.00000000
##  [92,] 0.00000000
##  [93,] 0.00000000
##  [94,] 0.00000000
##  [95,] 0.00000000
##  [96,] 0.00000000
##  [97,] 0.00000000
##  [98,] 0.00000000
##  [99,] 0.00000000
## [100,] 0.00000000
## [101,] 0.20099751
## [102,] 0.36345564
## [103,] 0.78746428
## [104,] 0.95005263
## [105,] 0.81006173
## [106,] 0.00000000
## [107,] 0.16278821
## [108,] 0.69318107
## [109,] 0.98843310
## [110,] 0.85146932
## [111,] 0.00000000
## [112,] 0.66708320
## [113,] 0.92849340
## [114,] 0.00000000
## [115,] 0.61032778
## [116,] 0.54230987
## [117,] 0.00000000
## [118,] 0.14000000
## [119,] 0.95131488
## [120,] 0.00000000
## [121,] 0.00000000
## [122,] 0.00000000
## [123,] 0.62369865
## [124,] 0.97616597
## [125,] 0.60539243
## [126,] 0.55081757
## [127,] 0.00000000
## [128,] 0.35510562
## [129,] 0.19416488
## [130,] 0.51923020
## [131,] 0.00000000
## [132,] 0.46690470
## [133,] 0.80156098
## [134,] 0.00000000
## [135,] 0.34132096
## [136,] 0.00000000
## [137,] 0.00000000
## [138,] 0.52630789
## [139,] 0.27513633
## [140,] 0.00000000
## [141,] 0.25317978
## [142,] 0.00000000
## [143,] 0.00000000
## [144,] 0.00000000
## [145,] 0.54424259
## [146,] 0.00000000
## [147,] 0.00000000
## [148,] 0.80752709
## [149,] 0.78771822
## [150,] 0.96176920
## [151,] 0.00000000
## [152,] 0.02000000
## [153,] 0.30016662
## [154,] 0.73783467
## [155,] 0.73437048
## [156,] 0.79120162
## [157,] 0.00000000
## [158,] 0.31064449
## [159,] 0.74886581
## [160,] 0.73246160
## [161,] 0.78587531
## [162,] 0.00000000
## [163,] 0.91482239
## [164,] 0.00000000
## [165,] 0.49244289
## [166,] 0.63560994
## [167,] 0.00000000
## [168,] 0.14317821
## [169,] 0.00000000
## [170,] 0.00000000
## [171,] 0.27730849
## [172,] 0.80622577
## [173,] 0.00000000
## [174,] 0.59236813
## [175,] 0.00000000
## [176,] 0.00000000
## [177,] 0.03605551
## [178,] 0.00000000
## [179,] 0.00000000
## [180,] 0.00000000
## [181,] 0.00000000
## [182,] 0.00000000
## [183,] 0.00000000
## [184,] 0.53037722
## [185,] 0.00000000
## [186,] 0.00000000
## [187,] 0.00000000
## [188,] 0.00000000
## [189,] 0.00000000
## [190,] 0.00000000
## [191,] 0.00000000
## [192,] 0.00000000
## [193,] 0.00000000
## [194,] 0.00000000
## [195,] 0.00000000
## [196,] 0.00000000
## [197,] 0.00000000
## [198,] 0.34985711
## [199,] 0.00000000
## [200,] 0.00000000
## [201,] 0.00000000
## [202,] 0.12165525
## [203,] 0.22360680
## [204,] 0.54571055
## [205,] 0.12806248
## [206,] 0.13000000
## [207,] 0.18973666
## [208,] 0.00000000
## [209,] 0.10198039
## [210,] 0.55009090
## [211,] 0.10198039
## [212,] 0.19209373
## [213,] 0.31048349
## [214,] 0.00000000
## [215,] 0.57706152
## [216,] 0.16970563
## [217,] 0.27802878
## [218,] 0.41231056
## [219,] 0.00000000
## [220,] 0.45099889
## [221,] 0.42059482
## [222,] 0.56302753
## [223,] 0.00000000
## [224,] 0.11180340
## [225,] 0.28071338
## [226,] 0.00000000
## [227,] 0.19313208
## [228,] 0.00000000
NNo <- NNmat > 0
NNo
##         [,1]
##   [1,] FALSE
##   [2,] FALSE
##   [3,] FALSE
##   [4,] FALSE
##   [5,] FALSE
##   [6,] FALSE
##   [7,]  TRUE
##   [8,] FALSE
##   [9,] FALSE
##  [10,] FALSE
##  [11,] FALSE
##  [12,] FALSE
##  [13,]  TRUE
##  [14,]  TRUE
##  [15,] FALSE
##  [16,]  TRUE
##  [17,]  TRUE
##  [18,] FALSE
##  [19,]  TRUE
##  [20,] FALSE
##  [21,] FALSE
##  [22,] FALSE
##  [23,] FALSE
##  [24,]  TRUE
##  [25,]  TRUE
##  [26,]  TRUE
##  [27,]  TRUE
##  [28,]  TRUE
##  [29,]  TRUE
##  [30,] FALSE
##  [31,] FALSE
##  [32,] FALSE
##  [33,]  TRUE
##  [34,]  TRUE
##  [35,]  TRUE
##  [36,] FALSE
##  [37,] FALSE
##  [38,]  TRUE
##  [39,]  TRUE
##  [40,]  TRUE
##  [41,] FALSE
##  [42,]  TRUE
##  [43,]  TRUE
##  [44,]  TRUE
##  [45,] FALSE
##  [46,]  TRUE
##  [47,]  TRUE
##  [48,] FALSE
##  [49,] FALSE
##  [50,] FALSE
##  [51,] FALSE
##  [52,] FALSE
##  [53,] FALSE
##  [54,] FALSE
##  [55,] FALSE
##  [56,] FALSE
##  [57,] FALSE
##  [58,] FALSE
##  [59,] FALSE
##  [60,]  TRUE
##  [61,] FALSE
##  [62,] FALSE
##  [63,] FALSE
##  [64,]  TRUE
##  [65,]  TRUE
##  [66,]  TRUE
##  [67,]  TRUE
##  [68,]  TRUE
##  [69,]  TRUE
##  [70,]  TRUE
##  [71,] FALSE
##  [72,] FALSE
##  [73,] FALSE
##  [74,] FALSE
##  [75,] FALSE
##  [76,] FALSE
##  [77,] FALSE
##  [78,] FALSE
##  [79,]  TRUE
##  [80,] FALSE
##  [81,] FALSE
##  [82,] FALSE
##  [83,]  TRUE
##  [84,] FALSE
##  [85,]  TRUE
##  [86,] FALSE
##  [87,] FALSE
##  [88,] FALSE
##  [89,] FALSE
##  [90,] FALSE
##  [91,] FALSE
##  [92,] FALSE
##  [93,] FALSE
##  [94,] FALSE
##  [95,] FALSE
##  [96,] FALSE
##  [97,] FALSE
##  [98,] FALSE
##  [99,] FALSE
## [100,] FALSE
## [101,]  TRUE
## [102,]  TRUE
## [103,]  TRUE
## [104,]  TRUE
## [105,]  TRUE
## [106,] FALSE
## [107,]  TRUE
## [108,]  TRUE
## [109,]  TRUE
## [110,]  TRUE
## [111,] FALSE
## [112,]  TRUE
## [113,]  TRUE
## [114,] FALSE
## [115,]  TRUE
## [116,]  TRUE
## [117,] FALSE
## [118,]  TRUE
## [119,]  TRUE
## [120,] FALSE
## [121,] FALSE
## [122,] FALSE
## [123,]  TRUE
## [124,]  TRUE
## [125,]  TRUE
## [126,]  TRUE
## [127,] FALSE
## [128,]  TRUE
## [129,]  TRUE
## [130,]  TRUE
## [131,] FALSE
## [132,]  TRUE
## [133,]  TRUE
## [134,] FALSE
## [135,]  TRUE
## [136,] FALSE
## [137,] FALSE
## [138,]  TRUE
## [139,]  TRUE
## [140,] FALSE
## [141,]  TRUE
## [142,] FALSE
## [143,] FALSE
## [144,] FALSE
## [145,]  TRUE
## [146,] FALSE
## [147,] FALSE
## [148,]  TRUE
## [149,]  TRUE
## [150,]  TRUE
## [151,] FALSE
## [152,]  TRUE
## [153,]  TRUE
## [154,]  TRUE
## [155,]  TRUE
## [156,]  TRUE
## [157,] FALSE
## [158,]  TRUE
## [159,]  TRUE
## [160,]  TRUE
## [161,]  TRUE
## [162,] FALSE
## [163,]  TRUE
## [164,] FALSE
## [165,]  TRUE
## [166,]  TRUE
## [167,] FALSE
## [168,]  TRUE
## [169,] FALSE
## [170,] FALSE
## [171,]  TRUE
## [172,]  TRUE
## [173,] FALSE
## [174,]  TRUE
## [175,] FALSE
## [176,] FALSE
## [177,]  TRUE
## [178,] FALSE
## [179,] FALSE
## [180,] FALSE
## [181,] FALSE
## [182,] FALSE
## [183,] FALSE
## [184,]  TRUE
## [185,] FALSE
## [186,] FALSE
## [187,] FALSE
## [188,] FALSE
## [189,] FALSE
## [190,] FALSE
## [191,] FALSE
## [192,] FALSE
## [193,] FALSE
## [194,] FALSE
## [195,] FALSE
## [196,] FALSE
## [197,] FALSE
## [198,]  TRUE
## [199,] FALSE
## [200,] FALSE
## [201,] FALSE
## [202,]  TRUE
## [203,]  TRUE
## [204,]  TRUE
## [205,]  TRUE
## [206,]  TRUE
## [207,]  TRUE
## [208,] FALSE
## [209,]  TRUE
## [210,]  TRUE
## [211,]  TRUE
## [212,]  TRUE
## [213,]  TRUE
## [214,] FALSE
## [215,]  TRUE
## [216,]  TRUE
## [217,]  TRUE
## [218,]  TRUE
## [219,] FALSE
## [220,]  TRUE
## [221,]  TRUE
## [222,]  TRUE
## [223,] FALSE
## [224,]  TRUE
## [225,]  TRUE
## [226,] FALSE
## [227,]  TRUE
## [228,] FALSE
NN <- NNmat[NNo]
NN
##   [1] 0.55578773 0.49040799 0.63639610 0.43185646 0.80056230 0.45254834
##   [7] 0.86683332 0.86683332 0.86683332 0.87361319 0.89844310 0.89844310
##  [13] 0.51865210 0.51400389 0.51400389 0.51865210 0.51400389 0.51400389
##  [19] 0.51865210 0.51400389 0.51400389 0.02828427 0.02828427 0.42801869
##  [25] 0.35171011 0.32140317 0.32695565 0.87091905 0.42011903 0.47853944
##  [31] 0.48259714 0.36496575 0.84970583 0.97493590 0.20099751 0.36345564
##  [37] 0.78746428 0.95005263 0.81006173 0.16278821 0.69318107 0.98843310
##  [43] 0.85146932 0.66708320 0.92849340 0.61032778 0.54230987 0.14000000
##  [49] 0.95131488 0.62369865 0.97616597 0.60539243 0.55081757 0.35510562
##  [55] 0.19416488 0.51923020 0.46690470 0.80156098 0.34132096 0.52630789
##  [61] 0.27513633 0.25317978 0.54424259 0.80752709 0.78771822 0.96176920
##  [67] 0.02000000 0.30016662 0.73783467 0.73437048 0.79120162 0.31064449
##  [73] 0.74886581 0.73246160 0.78587531 0.91482239 0.49244289 0.63560994
##  [79] 0.14317821 0.27730849 0.80622577 0.59236813 0.03605551 0.53037722
##  [85] 0.34985711 0.12165525 0.22360680 0.54571055 0.12806248 0.13000000
##  [91] 0.18973666 0.10198039 0.55009090 0.10198039 0.19209373 0.31048349
##  [97] 0.57706152 0.16970563 0.27802878 0.41231056 0.45099889 0.42059482
## [103] 0.56302753 0.11180340 0.28071338 0.19313208

Aplicar método del vecino más cercano

#sumatoria distancias NN
sd <- sum(NN)
sprintf("Sumatoria de distancias: %.2f m", sd)
## [1] "Sumatoria de distancias: 54.44 m"
#número de distancias NN
n <- length(NN)
sprintf("Número de distancias: %1.f",n)
## [1] "Número de distancias: 106"
#distancia media NN: rA
rA <- sd/n
sprintf("Distancia media: %.2f m",rA)
## [1] "Distancia media: 0.51 m"
#densidad real
#Ra: radio del circulo
Ra <- 25
N <- ncol(NNmatrix)
d <- N/(pi*Ra^2)
sprintf("Densidad real: %.3f individuos/m^2",d)
## [1] "Densidad real: 0.058 individuos/m^2"
#distancia nn esperada: rE
rE <- 1/(2*sqrt(d))
sprintf("Distancia esperada: %.2f m",rE)
## [1] "Distancia esperada: 2.08 m"
# R: indice de agregación
R <- rA/rE
sprintf("Indice de agregación: %.3f",R)
## [1] "Indice de agregación: 0.246"
#prueba de significancia Ho:random
#sr: error estandar de rE
sr <- 0.26136/sqrt(N*d)
sprintf("Error estándar de la distancia esperada: %.3f m",sr)
## [1] "Error estándar de la distancia esperada: 0.102 m"
z <- abs((rA - rE)/sr)
sprintf("Estadístico Z: %.3f",z)
## [1] "Estadístico Z: 15.326"
vc <- abs(qnorm(0.05))
sprintf("Valor crítico distribución normal (p=0.05): %.3f",vc)
## [1] "Valor crítico distribución normal (p=0.05): 1.645"

Referencias

Nearest Neighbor Index [WWW Document], n.d. . IB Geography. URL http://www.GeoIB.com/nearest-neighbor-index.html (accessed 12.15.17).