Load the nc data set into our workspace.
download.file("http://www.openintro.org/stat/data/nc.RData", destfile = "nc.RData")
load("nc.RData")
What are the cases in this data set? How many cases are there in our sample?
The cases are newborn babies. There are 1000 cases in the sample.
As a first step in the analysis, we should consider summaries of the data. This can be done using the summary command:
summary(nc)
## fage mage mature weeks
## Min. :14.00 Min. :13 mature mom :133 Min. :20.00
## 1st Qu.:25.00 1st Qu.:22 younger mom:867 1st Qu.:37.00
## Median :30.00 Median :27 Median :39.00
## Mean :30.26 Mean :27 Mean :38.33
## 3rd Qu.:35.00 3rd Qu.:32 3rd Qu.:40.00
## Max. :55.00 Max. :50 Max. :45.00
## NA's :171 NA's :2
## premie visits marital gained
## full term:846 Min. : 0.0 married :386 Min. : 0.00
## premie :152 1st Qu.:10.0 not married:613 1st Qu.:20.00
## NA's : 2 Median :12.0 NA's : 1 Median :30.00
## Mean :12.1 Mean :30.33
## 3rd Qu.:15.0 3rd Qu.:38.00
## Max. :30.0 Max. :85.00
## NA's :9 NA's :27
## weight lowbirthweight gender habit
## Min. : 1.000 low :111 female:503 nonsmoker:873
## 1st Qu.: 6.380 not low:889 male :497 smoker :126
## Median : 7.310 NA's : 1
## Mean : 7.101
## 3rd Qu.: 8.060
## Max. :11.750
##
## whitemom
## not white:284
## white :714
## NA's : 2
##
##
##
##
Make a side-by-side boxplot of habit and weight. What does the plot highlight about the relationship between these two variables?
boxplot(nc$weight ~ nc$habit, main= "Weight of the Babies by Smoking Habits of the Mothers",
xlab = "Weight of the Babies", ylab = "Smoking Habits of the Mothers",
horizontal = TRUE)
The boxplots show that the medians and interquartile range of the two distributions are very close, but the distribution for nonsmokers have more outliers and is more disperse.
The box plots show how the medians of the two distributions compare, but we can also compare the means of the distributions using the following function to split the weight variable into the habit groups, then take the mean of each using the mean function.
by(nc$weight, nc$habit, mean)
## nc$habit: nonsmoker
## [1] 7.144273
## --------------------------------------------------------
## nc$habit: smoker
## [1] 6.82873
There is an observed difference, but is this difference statistically significant? In order to answer this question we will conduct a hypothesis test.
Check if the conditions necessary for inference are satisfied. Note that you will need to obtain sample sizes to check the conditions. You can compute the group size using the same by command above but replacing mean with length.
by(nc$weight, nc$habit, length)
## nc$habit: nonsmoker
## [1] 873
## --------------------------------------------------------
## nc$habit: smoker
## [1] 126
Both sample sizes are bigger than 30, therefore the conditions for inference should be satisfied.
Write the hypotheses for testing if the average weights of babies born to smoking and non-smoking mothers are different.
Null Hypothesis: There is no difference in means of the average weights of babies born between the smoking and non-smoking mother groups.
Alternative Hypothesis: There is a difference in means of the average weights of babies born between the smoking and non-smoking mother groups.
Next, we introduce a new function, inference, that we will use for conducting hypothesis tests and constructing confidence intervals.
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## H0: mu_nonsmoker - mu_smoker = 0
## HA: mu_nonsmoker - mu_smoker != 0
## Standard error = 0.134
## Test statistic: Z = 2.359
## p-value = 0.0184
The first argument is y, which is the response variable that we are interested in: nc\(weight. The second argument is the explanatory variable, x, which is the variable that splits the data into two groups, smokers and non-smokers: nc\)habit. The third argument, est, is the parameter we’re interested in: “mean” (other options are “median”, or “proportion”.) Next we decide on the type of inference we want: a hypothesis test (“ht”) or a confidence interval (“ci”). When performing a hypothesis test, we also need to supply the null value, which in this case is 0, since the null hypothesis sets the two population means equal to each other. The alternative hypothesis can be “less”, “greater”, or “twosided”. Lastly, the method of inference can be “theoretical” or “simulation” based.
Change the type argument to “ci” to construct and record a confidence interval for the difference between the weights of babies born to smoking and non-smoking mothers.
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( 0.0534 , 0.5777 )
By default the function reports an interval for (μnonsmoker−μsmoker). We can easily change this order by using the order argument:
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical",
order = c("smoker","nonsmoker"))
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## Observed difference between means (smoker-nonsmoker) = -0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( -0.5777 , -0.0534 )
Answer:
inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")
## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 95 % Confidence interval = ( 38.1528 , 38.5165 )
Answer:
inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical",
conflevel = 0.90)
## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 90 % Confidence interval = ( 38.182 , 38.4873 )
Answer:
The p-value is 0.1686, therefore there is strong evidence to reject the null hypothesis. We have strong evidence that there is a difference in the means of the average weight gained between younger and mature mothers.
inference(nc$gained, nc$mature, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_mature mom = 129, mean_mature mom = 28.7907, sd_mature mom = 13.4824
## n_younger mom = 844, mean_younger mom = 30.5604, sd_younger mom = 14.3469
## Observed difference between means (mature mom-younger mom) = -1.7697
##
## H0: mu_mature mom - mu_younger mom = 0
## HA: mu_mature mom - mu_younger mom != 0
## Standard error = 1.286
## Test statistic: Z = -1.376
## p-value = 0.1686
Answer:
With the following method we can see the range of the ages of the mother divided between the mature and younger groups. The max value for younger moms is 34 years and the min value for mature moms is 35 years.
by (nc$mage, nc$mature, range)
## nc$mature: mature mom
## [1] 35 50
## --------------------------------------------------------
## nc$mature: younger mom
## [1] 13 34
Answer:
Research Question: Does the mother´s maturity have an effect on babies´average weight at birth?
Null Hypothesis:There is no difference in means of the average weights of babies born between the younger and mature mother groups.
Alternative Hypothesis: There is a difference in means of the average weights of babies born between the younger and mature mother groups.
inference(nc$weight, nc$mature, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_mature mom = 133, mean_mature mom = 7.1256, sd_mature mom = 1.6591
## n_younger mom = 867, mean_younger mom = 7.0972, sd_younger mom = 1.4855
## Observed difference between means (mature mom-younger mom) = 0.0283
##
## H0: mu_mature mom - mu_younger mom = 0
## HA: mu_mature mom - mu_younger mom != 0
## Standard error = 0.152
## Test statistic: Z = 0.186
## p-value = 0.8526
The p-value is 0.8526, therefore there is weak evidence to reject the null hypothesis. We have weak evidence that there is a difference in the means of the average weight of the baby at birth between younger and mature mothers.