This is in response to work by Mohamed Thasleem and Kalikul Zaman.
Another way to think about the steady state vector \(w\) of \(P\) is to solve for the eigenvector associated with eigenvalue 1 of \(P^T\)
(P = matrix(c( 0.5 , 0.5, 0.25, 0.75), nrow=2, ncol=2, byrow=TRUE))
## [,1] [,2]
## [1,] 0.50 0.50
## [2,] 0.25 0.75
(EIG = eigen(t(P)))
## eigen() decomposition
## $values
## [1] 1.00 0.25
##
## $vectors
## [,1] [,2]
## [1,] -0.4472136 -0.7071068
## [2,] -0.8944272 0.7071068
(ee1 = EIG$vectors[,1])
## [1] -0.4472136 -0.8944272
The eigenvector \(ee1\) represents the eigenvector associated with \(\lambda =1\). A rescaled version of \(ee1\) will represent the vector \(w\) which is the fixed probability vector.
(w = ee1/sum(ee1))
## [1] 0.3333333 0.6666667
(w %*% P)
## [,1] [,2]
## [1,] 0.3333333 0.6666667
Note that the following condition holds:
\[w P = w\]
Thus, the fundamental limit theorem states that \(P^n\) will converge to \(W\) where each row is the same as \(w\).
\[W = \left[\begin{array}{rr} 1/3 & 2/3 \\ 1/3 & 2/3 \\ \end{array} \right] \] Finally, we know \[ W y = \left[\begin{array}{rr} 1/3 & 2/3 \\ 1/3 & 2/3 \\ \end{array} \right] \left[ \begin{array}{r} 1 \\ 0 \\ \end{array} \right] = \left[ \begin{array}{r} 1/3 \\ 1/3 \\ \end{array} \right] \]
This also proves the result.