##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: ggplot2
## Registered S3 methods overwritten by 'ggplot2':
## method from
## [.quosures rlang
## c.quosures rlang
## print.quosures rlang
## Loading required package: ggpubr
## Loading required package: magrittr
## Call: survfit(formula = Surv(time = age_transition1, event = transition1) ~
## 1, data = addhealth)
##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 3939 3 0.999 0.000440 0.998 1.000
## 20 3936 6 0.998 0.000761 0.996 0.999
## 21 3930 6 0.996 0.000981 0.994 0.998
## 22 3924 24 0.990 0.001578 0.987 0.993
## 23 3900 33 0.982 0.002134 0.978 0.986
## 24 3867 43 0.971 0.002682 0.966 0.976
## 25 3823 10 0.968 0.002793 0.963 0.974
## 26 3799 6 0.967 0.002858 0.961 0.972
### b. Hazard
## $time
## [1] 19.5 20.5 21.5 22.5 23.5 24.5 25.5
##
## $haz
## [1] 0.001525553 0.001527884 0.006134989 0.008497541 0.011182154 0.002623578
## [7] 0.001705111
##
## $var
## [1] 3.878856e-07 3.890718e-07 1.568258e-06 2.188140e-06 2.907951e-06
## [6] 6.883184e-07 4.848200e-07
### c. Cumulative Hazard
## time haz var
## 1 19.5 0.001525553 3.878856e-07
## 2 20.5 0.001527884 3.890718e-07
## 3 21.5 0.006134989 1.568258e-06
## 4 22.5 0.008497541 2.188140e-06
## 5 23.5 0.011182154 2.907951e-06
## 6 24.5 0.002623578 6.883184e-07
## 7 25.5 0.001705111 4.848200e-07
## Call: survfit(formula = Surv(age_transition1, transition1) ~ 1, data = addhealth)
##
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 3939 3 0.999 0.000440 0.998 1.000
## 20 3936 6 0.998 0.000761 0.996 0.999
## 21 3930 6 0.996 0.000981 0.994 0.998
## 22 3924 24 0.990 0.001578 0.987 0.993
## 23 3900 33 0.982 0.002134 0.978 0.986
## 24 3867 43 0.971 0.002682 0.966 0.976
## 25 3823 10 0.968 0.002793 0.963 0.974
## 26 3799 6 0.967 0.002858 0.961 0.972
## Call: survfit(formula = Surv(age_transition1, transition1) ~ sexorient,
## data = addhealth)
##
## sexorient=a_straight
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 3840 3 0.999 0.000451 0.998 1.000
## 20 3837 6 0.998 0.000780 0.996 0.999
## 21 3831 6 0.996 0.001007 0.994 0.998
## 22 3825 24 0.990 0.001618 0.987 0.993
## 23 3801 31 0.982 0.002159 0.978 0.986
## 24 3770 43 0.971 0.002727 0.965 0.976
## 25 3726 10 0.968 0.002842 0.962 0.974
## 26 3703 6 0.966 0.002908 0.961 0.972
##
## sexorient=b_bisexual
## time n.risk n.event survival std.err
## 23.000 62.000 1.000 0.984 0.016
## lower 95% CI upper 95% CI
## 0.953 1.000
##
## sexorient=c_LGB
## time n.risk n.event survival std.err
## 23.0000 37.0000 1.0000 0.9730 0.0267
## lower 95% CI upper 95% CI
## 0.9221 1.0000
## observed expected o-e
## a_straight 129 127.691886 1.3081143
## b_bisexual 1 2.077664 -1.0776637
## c_LGB 1 1.230451 -0.2304506
## Call: survfit(formula = Surv(time = age_transition1, event = transition1) ~
## sexorient + sex, data = addhealth)
##
## sexorient=a_straight, sex=a_male
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 1704 2 0.999 0.000829 0.997 1.000
## 20 1702 1 0.998 0.001016 0.996 1.000
## 21 1701 3 0.996 0.001435 0.994 0.999
## 22 1698 10 0.991 0.002336 0.986 0.995
## 23 1688 8 0.986 0.002855 0.980 0.992
## 24 1680 14 0.978 0.003577 0.971 0.985
## 25 1666 5 0.975 0.003799 0.967 0.982
## 26 1659 5 0.972 0.004009 0.964 0.980
##
## sexorient=a_straight, sex=b_female
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 19 2136 1 1.000 0.000468 0.999 1.000
## 20 2135 5 0.997 0.001145 0.995 0.999
## 21 2130 3 0.996 0.001402 0.993 0.999
## 22 2127 14 0.989 0.002233 0.985 0.994
## 23 2113 23 0.978 0.003141 0.972 0.985
## 24 2090 29 0.965 0.003983 0.957 0.973
## 25 2060 5 0.963 0.004108 0.955 0.971
## 26 2044 1 0.962 0.004133 0.954 0.970
##
## sexorient=b_bisexual, sex=a_male
## time n.risk n.event survival std.err
## 23.000 7.000 1.000 0.857 0.132
## lower 95% CI upper 95% CI
## 0.633 1.000
##
## sexorient=b_bisexual, sex=b_female
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
## sexorient=c_LGB, sex=a_male
## time n.risk n.event survival std.err
## 23.0000 23.0000 1.0000 0.9565 0.0425
## lower 95% CI upper 95% CI
## 0.8767 1.0000
##
## sexorient=c_LGB, sex=b_female
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
# Part B ## Parametric models
## Loading required package: grid
## Loading required package: Matrix
##
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
##
## dotchart
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (131) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~
## sex + sexorient, design = des2)
##
## n= 3939, number of events= 131
##
## coef exp(coef) se(coef) z Pr(>|z|)
## sexb_female 0.2479 1.2813 0.3120 0.795 0.427
## sexorientb_bisexual -0.7927 0.4526 1.0598 -0.748 0.454
## sexorientc_LGB 0.9911 2.6943 1.0189 0.973 0.331
##
## exp(coef) exp(-coef) lower .95 upper .95
## sexb_female 1.2813 0.7805 0.69520 2.362
## sexorientb_bisexual 0.4526 2.2093 0.05671 3.613
## sexorientc_LGB 2.6943 0.3712 0.36572 19.850
##
## Concordance= 0.547 (se = 0.035 )
## Likelihood ratio test= NA on 3 df, p=NA
## Wald test = 2.13 on 3 df, p=0.5
## Score (logrank) test = NA on 3 df, p=NA
###model with demographic variables: sex, race/ethnicity, sexual orientation
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (131) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~
## sex + racethnic + sexorient, design = des2)
##
## n= 3939, number of events= 131
##
## coef exp(coef) se(coef) z Pr(>|z|)
## sexb_female 0.33663 1.40022 0.27919 1.206 0.2279
## racethnicb-nhblack -1.16020 0.31342 0.76873 -1.509 0.1312
## racethnicc-hispanic 3.19780 24.47862 0.40446 7.906 2.65e-15 ***
## racethnicd-asian 4.36620 78.74394 0.40474 10.788 < 2e-16 ***
## racethnice-native_american 2.44679 11.55126 1.21614 2.012 0.0442 *
## racethnicf-other 3.04037 20.91297 0.71533 4.250 2.13e-05 ***
## sexorientb_bisexual 0.03357 1.03414 1.08482 0.031 0.9753
## sexorientc_LGB 0.39040 1.47757 0.85949 0.454 0.6497
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## sexb_female 1.4002 0.71417 0.81012 2.420
## racethnicb-nhblack 0.3134 3.19058 0.06947 1.414
## racethnicc-hispanic 24.4786 0.04085 11.07928 54.083
## racethnicd-asian 78.7439 0.01270 35.62089 174.072
## racethnice-native_american 11.5513 0.08657 1.06524 125.260
## racethnicf-other 20.9130 0.04782 5.14666 84.978
## sexorientb_bisexual 1.0341 0.96699 0.12336 8.669
## sexorientc_LGB 1.4776 0.67679 0.27413 7.964
##
## Concordance= 0.89 (se = 0.023 )
## Likelihood ratio test= NA on 8 df, p=NA
## Wald test = 183.9 on 8 df, p=<2e-16
## Score (logrank) test = NA on 8 df, p=NA
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (131) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~
## sex + racethnic + sexorient + educ + +marriedW4a + incomeW4,
## design = des2)
##
## n= 3939, number of events= 131
##
## coef exp(coef) se(coef) z Pr(>|z|)
## sexb_female 0.31923 1.37607 0.26607 1.200 0.230
## racethnicb-nhblack -0.98884 0.37201 0.74458 -1.328 0.184
## racethnicc-hispanic 3.33446 28.06331 0.40172 8.300 < 2e-16 ***
## racethnicd-asian 4.33261 76.14248 0.39883 10.863 < 2e-16 ***
## racethnice-native_american 2.63428 13.93322 1.19866 2.198 0.028 *
## racethnicf-other 3.06283 21.38809 0.69933 4.380 1.19e-05 ***
## sexorientb_bisexual 0.39289 1.48125 1.08240 0.363 0.717
## sexorientc_LGB 0.65317 1.92162 0.87766 0.744 0.457
## educb_highschool_grad -0.06876 0.93355 0.67821 -0.101 0.919
## educc_college_bach 0.38075 1.46338 0.72257 0.527 0.598
## educd_college+ 0.58944 1.80299 0.69851 0.844 0.399
## marriedW4ab_married -0.41631 0.65947 0.31353 -1.328 0.184
## incomeW4b_$25,000>$50,000 -0.77411 0.46112 0.53796 -1.439 0.150
## incomeW4c_$50,000>$100,000 -0.21178 0.80914 0.45443 -0.466 0.641
## incomeW4e_$100,000+ 0.08549 1.08925 0.42406 0.202 0.840
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## sexb_female 1.3761 0.72671 0.81689 2.318
## racethnicb-nhblack 0.3720 2.68810 0.08645 1.601
## racethnicc-hispanic 28.0633 0.03563 12.77012 61.671
## racethnicd-asian 76.1425 0.01313 34.84497 166.385
## racethnice-native_american 13.9332 0.07177 1.32969 146.000
## racethnicf-other 21.3881 0.04675 5.43126 84.226
## sexorientb_bisexual 1.4812 0.67511 0.17754 12.359
## sexorientc_LGB 1.9216 0.52039 0.34403 10.733
## educb_highschool_grad 0.9335 1.07118 0.24708 3.527
## educc_college_bach 1.4634 0.68335 0.35506 6.031
## educd_college+ 1.8030 0.55464 0.45859 7.089
## marriedW4ab_married 0.6595 1.51636 0.35671 1.219
## incomeW4b_$25,000>$50,000 0.4611 2.16865 0.16066 1.323
## incomeW4c_$50,000>$100,000 0.8091 1.23587 0.33206 1.972
## incomeW4e_$100,000+ 1.0893 0.91806 0.47443 2.501
##
## Concordance= 0.899 (se = 0.023 )
## Likelihood ratio test= NA on 15 df, p=NA
## Wald test = 266.7 on 15 df, p=<2e-16
## Score (logrank) test = NA on 15 df, p=NA
## Response sexb_female :
##
## Call:
## lm(formula = sexb_female ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6664 -0.6108 0.3655 0.3827 0.4514
##
## Coefficients:
## Estimate
## (Intercept) -0.34984
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01719
## Std. Error
## (Intercept) 0.67193
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02901
## t value
## (Intercept) -0.521
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.593
## Pr(>|t|)
## (Intercept) 0.604
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.554
##
## Residual standard error: 0.49 on 129 degrees of freedom
## Multiple R-squared: 0.002716, Adjusted R-squared: -0.005015
## F-statistic: 0.3513 on 1 and 129 DF, p-value: 0.5544
##
##
## Response racethnicb-nhblack :
##
## Call:
## lm(formula = `racethnicb-nhblack` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.15458 -0.07781 -0.05414 -0.03099 1.01573
##
## Coefficients:
## Estimate
## (Intercept) 0.59141
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.02371
## Std. Error
## (Intercept) 0.30704
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01326
## t value
## (Intercept) 1.926
## des2$variables$age_transition1[des2$variables$transition1 == 1] -1.788
## Pr(>|t|)
## (Intercept) 0.0563 .
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.0761 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2239 on 129 degrees of freedom
## Multiple R-squared: 0.02419, Adjusted R-squared: 0.01663
## F-statistic: 3.198 on 1 and 129 DF, p-value: 0.07608
##
##
## Response racethnicc-hispanic :
##
## Call:
## lm(formula = `racethnicc-hispanic` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.32832 -0.23532 -0.19973 -0.09828 0.90483
##
## Coefficients:
## Estimate
## (Intercept) -0.88835
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.03559
## Std. Error
## (Intercept) 0.55488
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02396
## t value
## (Intercept) -1.601
## des2$variables$age_transition1[des2$variables$transition1 == 1] 1.486
## Pr(>|t|)
## (Intercept) 0.112
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.140
##
## Residual standard error: 0.4046 on 129 degrees of freedom
## Multiple R-squared: 0.01683, Adjusted R-squared: 0.009204
## F-statistic: 2.208 on 1 and 129 DF, p-value: 0.1398
##
##
## Response racethnicd-asian :
##
## Call:
## lm(formula = `racethnicd-asian` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5826 -0.5061 0.4211 0.4957 0.6123
##
## Coefficients:
## Estimate
## (Intercept) 0.33799
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01529
## Std. Error
## (Intercept) 0.69649
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.03007
## t value
## (Intercept) 0.485
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.508
## Pr(>|t|)
## (Intercept) 0.628
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.612
##
## Residual standard error: 0.5079 on 129 degrees of freedom
## Multiple R-squared: 0.001999, Adjusted R-squared: -0.005737
## F-statistic: 0.2584 on 1 and 129 DF, p-value: 0.6121
##
##
## Response racethnice-native_american :
##
## Call:
## lm(formula = `racethnice-native_american` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.01876 -0.01050 -0.00733 -0.00417 0.98994
##
## Coefficients:
## Estimate
## (Intercept) -0.073089
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.003165
## Std. Error
## (Intercept) 0.120149
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.005187
## t value
## (Intercept) -0.608
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.610
## Pr(>|t|)
## (Intercept) 0.544
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.543
##
## Residual standard error: 0.08762 on 129 degrees of freedom
## Multiple R-squared: 0.002878, Adjusted R-squared: -0.004852
## F-statistic: 0.3723 on 1 and 129 DF, p-value: 0.5428
##
##
## Response racethnicf-other :
##
## Call:
## lm(formula = `racethnicf-other` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.04850 -0.04008 -0.03797 -0.03596 0.96319
##
## Coefficients:
## Estimate
## (Intercept) 0.058222
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.002104
## Std. Error
## (Intercept) 0.264522
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.011421
## t value
## (Intercept) 0.220
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.184
## Pr(>|t|)
## (Intercept) 0.826
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.854
##
## Residual standard error: 0.1929 on 129 degrees of freedom
## Multiple R-squared: 0.0002631, Adjusted R-squared: -0.007487
## F-statistic: 0.03396 on 1 and 129 DF, p-value: 0.8541
##
##
## Response sexorientb_bisexual :
##
## Call:
## lm(formula = sexorientb_bisexual ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.01876 -0.01050 -0.00733 -0.00417 0.98994
##
## Coefficients:
## Estimate
## (Intercept) -0.073089
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.003165
## Std. Error
## (Intercept) 0.120149
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.005187
## t value
## (Intercept) -0.608
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.610
## Pr(>|t|)
## (Intercept) 0.544
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.543
##
## Residual standard error: 0.08762 on 129 degrees of freedom
## Multiple R-squared: 0.002878, Adjusted R-squared: -0.004852
## F-statistic: 0.3723 on 1 and 129 DF, p-value: 0.5428
##
##
## Response sexorientc_LGB :
##
## Call:
## lm(formula = sexorientc_LGB ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.02955 -0.01273 -0.00713 -0.00126 0.98649
##
## Coefficients:
## Estimate
## (Intercept) 0.082356
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.004204
## Std. Error
## (Intercept) 0.120122
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.005186
## t value
## (Intercept) 0.686
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.811
## Pr(>|t|)
## (Intercept) 0.494
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.419
##
## Residual standard error: 0.0876 on 129 degrees of freedom
## Multiple R-squared: 0.005067, Adjusted R-squared: -0.002645
## F-statistic: 0.657 on 1 and 129 DF, p-value: 0.4191
##
##
## Response educb_highschool_grad :
##
## Call:
## lm(formula = educb_highschool_grad ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5462 -0.4843 -0.4361 0.5157 0.5756
##
## Coefficients:
## Estimate
## (Intercept) -0.22913
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01175
## Std. Error
## (Intercept) 0.68824
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02971
## t value
## (Intercept) -0.333
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.396
## Pr(>|t|)
## (Intercept) 0.740
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.693
##
## Residual standard error: 0.5019 on 129 degrees of freedom
## Multiple R-squared: 0.001212, Adjusted R-squared: -0.006531
## F-statistic: 0.1565 on 1 and 129 DF, p-value: 0.6931
##
##
## Response educc_college_bach :
##
## Call:
## lm(formula = educc_college_bach ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3254 -0.3145 -0.3043 0.6820 0.7390
##
## Coefficients:
## Estimate
## (Intercept) -0.089969
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.003142
## Std. Error
## (Intercept) 0.633784
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.027364
## t value
## (Intercept) -0.142
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.115
## Pr(>|t|)
## (Intercept) 0.887
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.909
##
## Residual standard error: 0.4622 on 129 degrees of freedom
## Multiple R-squared: 0.0001022, Adjusted R-squared: -0.007649
## F-statistic: 0.01319 on 1 and 129 DF, p-value: 0.9088
##
##
## Response educd_college+ :
##
## Call:
## lm(formula = `educd_college+` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2367 -0.1933 -0.1772 -0.1605 0.8501
##
## Coefficients:
## Estimate
## (Intercept) 0.25514
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01065
## Std. Error
## (Intercept) 0.53425
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02307
## t value
## (Intercept) 0.478
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.462
## Pr(>|t|)
## (Intercept) 0.634
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.645
##
## Residual standard error: 0.3896 on 129 degrees of freedom
## Multiple R-squared: 0.00165, Adjusted R-squared: -0.006089
## F-statistic: 0.2132 on 1 and 129 DF, p-value: 0.645
##
##
## Response marriedW4ab_married :
##
## Call:
## lm(formula = marriedW4ab_married ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5347 -0.4314 -0.4007 0.5783 0.6090
##
## Coefficients:
## Estimate
## (Intercept) 0.261341
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.009729
## Std. Error
## (Intercept) 0.689343
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.029762
## t value
## (Intercept) 0.379
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.327
## Pr(>|t|)
## (Intercept) 0.705
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.744
##
## Residual standard error: 0.5027 on 129 degrees of freedom
## Multiple R-squared: 0.0008276, Adjusted R-squared: -0.006918
## F-statistic: 0.1069 on 1 and 129 DF, p-value: 0.7443
##
##
## Response incomeW4b_$25,000>$50,000 :
##
## Call:
## lm(formula = `incomeW4b_$25,000>$50,000` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.25721 -0.14650 -0.11392 -0.08575 0.94365
##
## Coefficients:
## Estimate
## (Intercept) 0.68011
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.02990
## Std. Error
## (Intercept) 0.45915
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01982
## t value
## (Intercept) 1.481
## des2$variables$age_transition1[des2$variables$transition1 == 1] -1.508
## Pr(>|t|)
## (Intercept) 0.141
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.134
##
## Residual standard error: 0.3348 on 129 degrees of freedom
## Multiple R-squared: 0.01733, Adjusted R-squared: 0.009708
## F-statistic: 2.274 on 1 and 129 DF, p-value: 0.134
##
##
## Response incomeW4c_$50,000>$100,000 :
##
## Call:
## lm(formula = `incomeW4c_$50,000>$100,000` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5886 -0.4423 -0.3155 0.5542 0.7308
##
## Coefficients:
## Estimate
## (Intercept) -1.08542
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.04636
## Std. Error
## (Intercept) 0.67492
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02914
## t value
## (Intercept) -1.608
## des2$variables$age_transition1[des2$variables$transition1 == 1] 1.591
## Pr(>|t|)
## (Intercept) 0.110
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.114
##
## Residual standard error: 0.4922 on 129 degrees of freedom
## Multiple R-squared: 0.01924, Adjusted R-squared: 0.01164
## F-statistic: 2.531 on 1 and 129 DF, p-value: 0.1141
##
##
## Response incomeW4e_$100,000+ :
##
## Call:
## lm(formula = `incomeW4e_$100,000+` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5055 -0.3988 -0.3434 0.5948 0.6985
##
## Coefficients:
## Estimate
## (Intercept) 0.81651
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.03242
## Std. Error
## (Intercept) 0.66887
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02888
## t value
## (Intercept) 1.221
## des2$variables$age_transition1[des2$variables$transition1 == 1] -1.123
## Pr(>|t|)
## (Intercept) 0.224
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.264
##
## Residual standard error: 0.4878 on 129 degrees of freedom
## Multiple R-squared: 0.009675, Adjusted R-squared: 0.001998
## F-statistic: 1.26 on 1 and 129 DF, p-value: 0.2637
##
##
## Response lang_used.mostb_spanish :
##
## Call:
## lm(formula = lang_used.mostb_spanish ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3763 -0.3260 -0.3010 0.6692 0.7534
##
## Coefficients:
## Estimate
## (Intercept) -0.36862
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01589
## Std. Error
## (Intercept) 0.64044
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02765
## t value
## (Intercept) -0.576
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.575
## Pr(>|t|)
## (Intercept) 0.566
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.567
##
## Residual standard error: 0.467 on 129 degrees of freedom
## Multiple R-squared: 0.002554, Adjusted R-squared: -0.005178
## F-statistic: 0.3303 on 1 and 129 DF, p-value: 0.5665
##
##
## Response lang_used.mostc_other :
##
## Call:
## lm(formula = lang_used.mostc_other ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4296 -0.3151 -0.2668 0.6566 0.8520
##
## Coefficients:
## Estimate
## (Intercept) 0.60397
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.02863
## Std. Error
## (Intercept) 0.63342
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02735
## t value
## (Intercept) 0.954
## des2$variables$age_transition1[des2$variables$transition1 == 1] -1.047
## Pr(>|t|)
## (Intercept) 0.342
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.297
##
## Residual standard error: 0.4619 on 129 degrees of freedom
## Multiple R-squared: 0.008426, Adjusted R-squared: 0.0007397
## F-statistic: 1.096 on 1 and 129 DF, p-value: 0.2971
##
##
## Response parents_careb_very_much :
##
## Call:
## lm(formula = parents_careb_very_much ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9222 0.1275 0.1950 0.2247 0.3058
##
## Coefficients:
## Estimate
## (Intercept) 0.71925
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.02974
## Std. Error
## (Intercept) 0.55980
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02417
## t value
## (Intercept) 1.285
## des2$variables$age_transition1[des2$variables$transition1 == 1] -1.230
## Pr(>|t|)
## (Intercept) 0.201
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.221
##
## Residual standard error: 0.4082 on 129 degrees of freedom
## Multiple R-squared: 0.0116, Adjusted R-squared: 0.003937
## F-statistic: 1.514 on 1 and 129 DF, p-value: 0.2208
##
##
## Response verbalabuse_bycaretakerW4c_no :
##
## Call:
## lm(formula = verbalabuse_bycaretakerW4c_no ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5678 -0.4476 -0.4069 0.5524 0.6186
##
## Coefficients:
## Estimate
## (Intercept) 0.48472
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01779
## Std. Error
## (Intercept) 0.68756
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02969
## t value
## (Intercept) 0.705
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.599
## Pr(>|t|)
## (Intercept) 0.482
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.550
##
## Residual standard error: 0.5014 on 129 degrees of freedom
## Multiple R-squared: 0.002777, Adjusted R-squared: -0.004954
## F-statistic: 0.3592 on 1 and 129 DF, p-value: 0.55
##
##
## Response friendshipsb_1to5 :
##
## Call:
## lm(formula = friendshipsb_1to5 ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7410 -0.5492 0.3376 0.4278 0.5457
##
## Coefficients:
## Estimate
## (Intercept) 0.93454
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.03931
## Std. Error
## (Intercept) 0.67590
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02918
## t value
## (Intercept) 1.383
## des2$variables$age_transition1[des2$variables$transition1 == 1] -1.347
## Pr(>|t|)
## (Intercept) 0.169
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.180
##
## Residual standard error: 0.4929 on 129 degrees of freedom
## Multiple R-squared: 0.01387, Adjusted R-squared: 0.006225
## F-statistic: 1.814 on 1 and 129 DF, p-value: 0.1804
##
##
## Response friendshipsc_6+ :
##
## Call:
## lm(formula = `friendshipsc_6+` ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4836 -0.3900 -0.3447 0.5798 0.7349
##
## Coefficients:
## Estimate
## (Intercept) -0.72882
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.03121
## Std. Error
## (Intercept) 0.67142
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02899
## t value
## (Intercept) -1.085
## des2$variables$age_transition1[des2$variables$transition1 == 1] 1.077
## Pr(>|t|)
## (Intercept) 0.280
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.284
##
## Residual standard error: 0.4896 on 129 degrees of freedom
## Multiple R-squared: 0.008906, Adjusted R-squared: 0.001224
## F-statistic: 1.159 on 1 and 129 DF, p-value: 0.2836
##
##
## Response mentorb_yes :
##
## Call:
## lm(formula = mentorb_yes ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6613 -0.6383 0.3455 0.3587 0.4041
##
## Coefficients:
## Estimate
## (Intercept) -0.059539
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.003376
## Std. Error
## (Intercept) 0.661778
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.028572
## t value
## (Intercept) -0.090
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.118
## Pr(>|t|)
## (Intercept) 0.928
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.906
##
## Residual standard error: 0.4826 on 129 degrees of freedom
## Multiple R-squared: 0.0001082, Adjusted R-squared: -0.007643
## F-statistic: 0.01396 on 1 and 129 DF, p-value: 0.9061
##
##
## Response insurance_statusb_yes_insurance :
##
## Call:
## lm(formula = insurance_statusb_yes_insurance ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8414 0.1692 0.1803 0.1897 0.2096
##
## Coefficients:
## Estimate
## (Intercept) -0.134939
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.005861
## Std. Error
## (Intercept) 0.534668
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.023084
## t value
## (Intercept) -0.252
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.254
## Pr(>|t|)
## (Intercept) 0.801
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.800
##
## Residual standard error: 0.3899 on 129 degrees of freedom
## Multiple R-squared: 0.0004994, Adjusted R-squared: -0.007249
## F-statistic: 0.06445 on 1 and 129 DF, p-value: 0.8
##
##
## Response general_healthb_fair :
##
## Call:
## lm(formula = general_healthb_fair ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3964 -0.3704 -0.3578 0.6297 0.6528
##
## Coefficients:
## Estimate
## (Intercept) -0.161524
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.005304
## Std. Error
## (Intercept) 0.666681
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.028784
## t value
## (Intercept) -0.242
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.184
## Pr(>|t|)
## (Intercept) 0.809
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.854
##
## Residual standard error: 0.4862 on 129 degrees of freedom
## Multiple R-squared: 0.0002631, Adjusted R-squared: -0.007487
## F-statistic: 0.03395 on 1 and 129 DF, p-value: 0.8541
##
##
## Response general_healthc_excellent :
##
## Call:
## lm(formula = general_healthc_excellent ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6347 -0.6157 0.3704 0.3843 0.4168
##
## Coefficients:
## Estimate
## (Intercept) 0.158726
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.004743
## Std. Error
## (Intercept) 0.671859
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.029007
## t value
## (Intercept) 0.236
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.164
## Pr(>|t|)
## (Intercept) 0.814
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.870
##
## Residual standard error: 0.4899 on 129 degrees of freedom
## Multiple R-squared: 0.0002072, Adjusted R-squared: -0.007543
## F-statistic: 0.02674 on 1 and 129 DF, p-value: 0.8704
##
##
## Response depressionW4b_yes :
##
## Call:
## lm(formula = depressionW4b_yes ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.11049 -0.08213 -0.07461 -0.06709 0.94494
##
## Coefficients:
## Estimate
## (Intercept) 0.206851
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.007517
## Std. Error
## (Intercept) 0.366270
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.015814
## t value
## (Intercept) 0.565
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.475
## Pr(>|t|)
## (Intercept) 0.573
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.635
##
## Residual standard error: 0.2671 on 129 degrees of freedom
## Multiple R-squared: 0.001748, Adjusted R-squared: -0.00599
## F-statistic: 0.2259 on 1 and 129 DF, p-value: 0.6354
##
##
## Response able.change.lifeb_neutral :
##
## Call:
## lm(formula = able.change.lifeb_neutral ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.20910 -0.10988 -0.07636 -0.05974 0.96545
##
## Coefficients:
## Estimate
## (Intercept) 0.59856
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.02519
## Std. Error
## (Intercept) 0.39353
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.01699
## t value
## (Intercept) 1.521
## des2$variables$age_transition1[des2$variables$transition1 == 1] -1.483
## Pr(>|t|)
## (Intercept) 0.131
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.141
##
## Residual standard error: 0.287 on 129 degrees of freedom
## Multiple R-squared: 0.01675, Adjusted R-squared: 0.009132
## F-statistic: 2.198 on 1 and 129 DF, p-value: 0.1406
##
##
## Response able.change.lifec_agree :
##
## Call:
## lm(formula = able.change.lifec_agree ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.9381 0.0865 0.1141 0.1530 0.2782
##
## Coefficients:
## Estimate
## (Intercept) -0.81092
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.03470
## Std. Error
## (Intercept) 0.46812
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02021
## t value
## (Intercept) -1.732
## des2$variables$age_transition1[des2$variables$transition1 == 1] 1.717
## Pr(>|t|)
## (Intercept) 0.0856 .
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.0884 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3414 on 129 degrees of freedom
## Multiple R-squared: 0.02235, Adjusted R-squared: 0.01477
## F-statistic: 2.948 on 1 and 129 DF, p-value: 0.08836
##
##
## Response many.solutions.probb_neutral :
##
## Call:
## lm(formula = many.solutions.probb_neutral ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.2209 -0.1405 -0.1228 -0.1061 0.8933
##
## Coefficients:
## Estimate
## (Intercept) 0.41799
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01649
## Std. Error
## (Intercept) 0.46542
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02009
## t value
## (Intercept) 0.898
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.821
## Pr(>|t|)
## (Intercept) 0.371
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.413
##
## Residual standard error: 0.3394 on 129 degrees of freedom
## Multiple R-squared: 0.005192, Adjusted R-squared: -0.00252
## F-statistic: 0.6733 on 1 and 129 DF, p-value: 0.4134
##
##
## Response many.solutions.probc_disagree :
##
## Call:
## lm(formula = many.solutions.probc_disagree ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.07990 -0.04401 -0.03502 -0.02576 0.97500
##
## Coefficients:
## Estimate
## (Intercept) 0.193417
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.008994
## Std. Error
## (Intercept) 0.264001
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.011398
## t value
## (Intercept) 0.733
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.789
## Pr(>|t|)
## (Intercept) 0.465
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.432
##
## Residual standard error: 0.1925 on 129 degrees of freedom
## Multiple R-squared: 0.004803, Adjusted R-squared: -0.002911
## F-statistic: 0.6226 on 1 and 129 DF, p-value: 0.4315
##
##
## Response risk.behaviorb_dislikes_to.party :
##
## Call:
## lm(formula = risk.behaviorb_dislikes_to.party ~ des2$variables$age_transition1[des2$variables$transition1 ==
## 1])
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7970 -0.6262 0.2778 0.3191 0.4325
##
## Coefficients:
## Estimate
## (Intercept) -0.88433
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.03736
## Std. Error
## (Intercept) 0.63629
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.02747
## t value
## (Intercept) -1.39
## des2$variables$age_transition1[des2$variables$transition1 == 1] 1.36
## Pr(>|t|)
## (Intercept) 0.167
## des2$variables$age_transition1[des2$variables$transition1 == 1] 0.176
##
## Residual standard error: 0.464 on 129 degrees of freedom
## Multiple R-squared: 0.01413, Adjusted R-squared: 0.006492
## F-statistic: 1.85 on 1 and 129 DF, p-value: 0.1762
## rho chisq p
## sexb_female -0.01240 0.1011 7.51e-01
## racethnicb-nhblack 0.07889 23.0492 1.58e-06
## racethnicc-hispanic -0.09396 11.2602 7.92e-04
## racethnicd-asian 0.13420 76.1593 2.62e-18
## racethnice-native_american 0.08989 5.2790 2.16e-02
## racethnicf-other 0.10034 36.8405 1.28e-09
## sexorientb_bisexual 0.01283 0.0862 7.69e-01
## sexorientc_LGB 0.00807 0.0534 8.17e-01
## educb_highschool_grad -0.02420 0.8550 3.55e-01
## educc_college_bach -0.03843 2.3926 1.22e-01
## educd_college+ 0.02777 1.1244 2.89e-01
## marriedW4ab_married -0.26708 82.8837 8.70e-20
## incomeW4b_$25,000>$50,000 0.07334 5.7825 1.62e-02
## incomeW4c_$50,000>$100,000 0.02226 0.2073 6.49e-01
## incomeW4e_$100,000+ 0.09603 27.5960 1.49e-07
## lang_used.mostb_spanish 0.20744 42.2937 7.85e-11
## lang_used.mostc_other -0.09789 49.2779 2.22e-12
## parents_careb_very_much -0.12363 16.3177 5.36e-05
## verbalabuse_bycaretakerW4c_no -0.06757 5.7374 1.66e-02
## friendshipsb_1to5 -0.03390 1.3371 2.48e-01
## friendshipsc_6+ -0.06444 5.3454 2.08e-02
## mentorb_yes -0.11131 30.4529 3.42e-08
## insurance_statusb_yes_insurance -0.09799 14.1763 1.66e-04
## general_healthb_fair 0.15108 18.4418 1.75e-05
## general_healthc_excellent 0.08861 6.3384 1.18e-02
## depressionW4b_yes 0.03472 0.9131 3.39e-01
## able.change.lifeb_neutral 0.12995 23.2065 1.46e-06
## able.change.lifec_agree 0.06087 2.3488 1.25e-01
## many.solutions.probb_neutral -0.22501 15.6103 7.78e-05
## many.solutions.probc_disagree 0.20334 50.8978 9.73e-13
## risk.behaviorb_dislikes_to.party 0.09320 4.9993 2.54e-02
## GLOBAL NA 195.0219 1.09e-25
###Martingale residuals
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (131) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~
## strata(sexorient) + sex + racethnic + educ + +marriedW4a +
## incomeW4 + friendships + mentor + insurance_status +
## general_health + depressionW4 + able.change.life, design = des2)
##
## n= 3939, number of events= 131
##
## coef exp(coef) se(coef) z
## sexb_female 0.44471 1.56004 0.27802 1.600
## racethnicb-nhblack -1.04336 0.35227 0.74215 -1.406
## racethnicc-hispanic 3.22762 25.21957 0.37225 8.671
## racethnicd-asian 4.35106 77.56047 0.38400 11.331
## racethnice-native_american 2.67860 14.56470 1.15815 2.313
## racethnicf-other 3.09735 22.13911 0.68852 4.499
## educb_highschool_grad -0.10257 0.90252 0.62868 -0.163
## educc_college_bach 0.26300 1.30082 0.63827 0.412
## educd_college+ 0.55497 1.74189 0.63697 0.871
## marriedW4ab_married -0.35715 0.69967 0.36475 -0.979
## incomeW4b_$25,000>$50,000 -0.48461 0.61594 0.53914 -0.899
## incomeW4c_$50,000>$100,000 0.17892 1.19593 0.41496 0.431
## incomeW4e_$100,000+ 0.46643 1.59429 0.45851 1.017
## friendshipsb_1to5 -1.19362 0.30312 0.58326 -2.046
## friendshipsc_6+ -1.11151 0.32906 0.57755 -1.925
## mentorb_yes -0.56305 0.56947 0.29116 -1.934
## insurance_statusb_yes_insurance -0.28175 0.75447 0.37997 -0.741
## general_healthb_fair -1.46459 0.23117 0.97545 -1.501
## general_healthc_excellent -1.09726 0.33378 0.96007 -1.143
## depressionW4b_yes -1.08978 0.33629 0.61730 -1.765
## able.change.lifeb_neutral -0.09545 0.90896 0.80111 -0.119
## able.change.lifec_agree 0.46411 1.59060 0.63596 0.730
## Pr(>|z|)
## sexb_female 0.1097
## racethnicb-nhblack 0.1598
## racethnicc-hispanic < 2e-16 ***
## racethnicd-asian < 2e-16 ***
## racethnice-native_american 0.0207 *
## racethnicf-other 6.84e-06 ***
## educb_highschool_grad 0.8704
## educc_college_bach 0.6803
## educd_college+ 0.3836
## marriedW4ab_married 0.3275
## incomeW4b_$25,000>$50,000 0.3687
## incomeW4c_$50,000>$100,000 0.6663
## incomeW4e_$100,000+ 0.3090
## friendshipsb_1to5 0.0407 *
## friendshipsc_6+ 0.0543 .
## mentorb_yes 0.0531 .
## insurance_statusb_yes_insurance 0.4584
## general_healthb_fair 0.1332
## general_healthc_excellent 0.2531
## depressionW4b_yes 0.0775 .
## able.change.lifeb_neutral 0.9052
## able.change.lifec_agree 0.4655
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## sexb_female 1.5600 0.64101 0.90465 2.6902
## racethnicb-nhblack 0.3523 2.83875 0.08225 1.5087
## racethnicc-hispanic 25.2196 0.03965 12.15850 52.3113
## racethnicd-asian 77.5605 0.01289 36.54120 164.6259
## racethnice-native_american 14.5647 0.06866 1.50482 140.9670
## racethnicf-other 22.1391 0.04517 5.74240 85.3546
## educb_highschool_grad 0.9025 1.10801 0.26322 3.0945
## educc_college_bach 1.3008 0.76874 0.37232 4.5448
## educd_college+ 1.7419 0.57409 0.49985 6.0703
## marriedW4ab_married 0.6997 1.42924 0.34231 1.4301
## incomeW4b_$25,000>$50,000 0.6159 1.62355 0.21410 1.7719
## incomeW4c_$50,000>$100,000 1.1959 0.83617 0.53027 2.6972
## incomeW4e_$100,000+ 1.5943 0.62724 0.64906 3.9160
## friendshipsb_1to5 0.3031 3.29900 0.09664 0.9508
## friendshipsc_6+ 0.3291 3.03894 0.10609 1.0207
## mentorb_yes 0.5695 1.75602 0.32183 1.0077
## insurance_statusb_yes_insurance 0.7545 1.32544 0.35827 1.5888
## general_healthb_fair 0.2312 4.32577 0.03417 1.5640
## general_healthc_excellent 0.3338 2.99596 0.05085 2.1912
## depressionW4b_yes 0.3363 2.97361 0.10029 1.1276
## able.change.lifeb_neutral 0.9090 1.10016 0.18908 4.3697
## able.change.lifec_agree 1.5906 0.62869 0.45733 5.5321
##
## Concordance= 0.924 (se = 0.015 )
## Likelihood ratio test= NA on 22 df, p=NA
## Wald test = 548.9 on 22 df, p=<2e-16
## Score (logrank) test = NA on 22 df, p=NA
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (131) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4,
## data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~
## strata(sex) + racethnic + sexorient + educ + +marriedW4a +
## incomeW4 + friendships + mentor + insurance_status +
## general_health + depressionW4 + able.change.life, design = des2)
##
## n= 3939, number of events= 131
##
## coef exp(coef) se(coef) z
## racethnicb-nhblack -1.06055 0.34627 0.74234 -1.429
## racethnicc-hispanic 3.21702 24.95354 0.36917 8.714
## racethnicd-asian 4.35801 78.10122 0.38412 11.345
## racethnice-native_american 2.69932 14.86964 1.23150 2.192
## racethnicf-other 3.08702 21.91171 0.68358 4.516
## sexorientb_bisexual 0.29946 1.34913 1.10776 0.270
## sexorientc_LGB 1.09772 2.99733 0.77827 1.410
## educb_highschool_grad -0.08264 0.92068 0.62531 -0.132
## educc_college_bach 0.28450 1.32910 0.63606 0.447
## educd_college+ 0.55204 1.73679 0.63925 0.864
## marriedW4ab_married -0.35416 0.70176 0.36573 -0.968
## incomeW4b_$25,000>$50,000 -0.54227 0.58143 0.54922 -0.987
## incomeW4c_$50,000>$100,000 0.12958 1.13835 0.42374 0.306
## incomeW4e_$100,000+ 0.42064 1.52293 0.46608 0.903
## friendshipsb_1to5 -1.18946 0.30439 0.57494 -2.069
## friendshipsc_6+ -1.12250 0.32547 0.57296 -1.959
## mentorb_yes -0.58053 0.55960 0.29307 -1.981
## insurance_statusb_yes_insurance -0.27868 0.75678 0.37731 -0.739
## general_healthb_fair -1.46284 0.23158 0.96777 -1.512
## general_healthc_excellent -1.10204 0.33219 0.95425 -1.155
## depressionW4b_yes -1.11825 0.32685 0.61842 -1.808
## able.change.lifeb_neutral -0.08619 0.91742 0.80678 -0.107
## able.change.lifec_agree 0.46968 1.59948 0.64086 0.733
## Pr(>|z|)
## racethnicb-nhblack 0.1531
## racethnicc-hispanic < 2e-16 ***
## racethnicd-asian < 2e-16 ***
## racethnice-native_american 0.0284 *
## racethnicf-other 6.3e-06 ***
## sexorientb_bisexual 0.7869
## sexorientc_LGB 0.1584
## educb_highschool_grad 0.8949
## educc_college_bach 0.6547
## educd_college+ 0.3878
## marriedW4ab_married 0.3329
## incomeW4b_$25,000>$50,000 0.3235
## incomeW4c_$50,000>$100,000 0.7598
## incomeW4e_$100,000+ 0.3668
## friendshipsb_1to5 0.0386 *
## friendshipsc_6+ 0.0501 .
## mentorb_yes 0.0476 *
## insurance_statusb_yes_insurance 0.4601
## general_healthb_fair 0.1306
## general_healthc_excellent 0.2481
## depressionW4b_yes 0.0706 .
## able.change.lifeb_neutral 0.9149
## able.change.lifec_agree 0.4636
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## exp(coef) exp(-coef) lower .95 upper .95
## racethnicb-nhblack 0.3463 2.88795 0.08082 1.4835
## racethnicc-hispanic 24.9535 0.04007 12.10302 51.4482
## racethnicd-asian 78.1012 0.01280 36.78668 165.8154
## racethnice-native_american 14.8696 0.06725 1.33060 166.1703
## racethnicf-other 21.9117 0.04564 5.73871 83.6640
## sexorientb_bisexual 1.3491 0.74122 0.15386 11.8299
## sexorientc_LGB 2.9973 0.33363 0.65204 13.7783
## educb_highschool_grad 0.9207 1.08615 0.27030 3.1360
## educc_college_bach 1.3291 0.75239 0.38207 4.6236
## educd_college+ 1.7368 0.57577 0.49616 6.0796
## marriedW4ab_married 0.7018 1.42498 0.34267 1.4372
## incomeW4b_$25,000>$50,000 0.5814 1.71991 0.19815 1.7061
## incomeW4c_$50,000>$100,000 1.1384 0.87846 0.49612 2.6120
## incomeW4e_$100,000+ 1.5229 0.65663 0.61088 3.7967
## friendshipsb_1to5 0.3044 3.28531 0.09864 0.9393
## friendshipsc_6+ 0.3255 3.07251 0.10588 1.0005
## mentorb_yes 0.5596 1.78699 0.31508 0.9939
## insurance_statusb_yes_insurance 0.7568 1.32139 0.36125 1.5854
## general_healthb_fair 0.2316 4.31821 0.03475 1.5434
## general_healthc_excellent 0.3322 3.01030 0.05118 2.1560
## depressionW4b_yes 0.3269 3.05948 0.09726 1.0984
## able.change.lifeb_neutral 0.9174 1.09001 0.18873 4.4597
## able.change.lifec_agree 1.5995 0.62520 0.45549 5.6167
##
## Concordance= 0.925 (se = 0.015 )
## Likelihood ratio test= NA on 23 df, p=NA
## Wald test = 585.4 on 23 df, p=<2e-16
## Score (logrank) test = NA on 23 df, p=NA