## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric

Part A

Descriptive Analysis

1) Define your event variable - The event variable is the transition of being a non-United States citizen to becoming a naturalized United States citizen between wave 3 and wave 4.

2) Define a duration or time variable - If the age at becoming a naturalized United States citizen is censored, then the age of an individual at the date of interview is the censored age. If becoming a naturalized United States citizen is not censored, the actual age of an individual when citizenship is gained is the time variable.

3) Define a censoring indicator - If someone has experienced the event the are assigned a “0”, if they experience an event they are assigned a “1”.

## Loading required package: ggplot2
## Registered S3 methods overwritten by 'ggplot2':
##   method         from 
##   [.quosures     rlang
##   c.quosures     rlang
##   print.quosures rlang
## Loading required package: ggpubr
## Loading required package: magrittr

4) Estimate the following functions of survival time for that variable and plot them:

a. Survival

## Call: survfit(formula = Surv(time = age_transition1, event = transition1) ~ 
##     1, data = addhealth)
## 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##    19   3939       3    0.999 0.000440        0.998        1.000
##    20   3936       6    0.998 0.000761        0.996        0.999
##    21   3930       6    0.996 0.000981        0.994        0.998
##    22   3924      24    0.990 0.001578        0.987        0.993
##    23   3900      33    0.982 0.002134        0.978        0.986
##    24   3867      43    0.971 0.002682        0.966        0.976
##    25   3823      10    0.968 0.002793        0.963        0.974
##    26   3799       6    0.967 0.002858        0.961        0.972

### b. Hazard

## $time
## [1] 19.5 20.5 21.5 22.5 23.5 24.5 25.5
## 
## $haz
## [1] 0.001525553 0.001527884 0.006134989 0.008497541 0.011182154 0.002623578
## [7] 0.001705111
## 
## $var
## [1] 3.878856e-07 3.890718e-07 1.568258e-06 2.188140e-06 2.907951e-06
## [6] 6.883184e-07 4.848200e-07

### c. Cumulative Hazard

##   time         haz          var
## 1 19.5 0.001525553 3.878856e-07
## 2 20.5 0.001527884 3.890718e-07
## 3 21.5 0.006134989 1.568258e-06
## 4 22.5 0.008497541 2.188140e-06
## 5 23.5 0.011182154 2.907951e-06
## 6 24.5 0.002623578 6.883184e-07
## 7 25.5 0.001705111 4.848200e-07

5) Carry out the following analysis

a. Kaplan-Meier survival analysis of the outcome

## Call: survfit(formula = Surv(age_transition1, transition1) ~ 1, data = addhealth)
## 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##    19   3939       3    0.999 0.000440        0.998        1.000
##    20   3936       6    0.998 0.000761        0.996        0.999
##    21   3930       6    0.996 0.000981        0.994        0.998
##    22   3924      24    0.990 0.001578        0.987        0.993
##    23   3900      33    0.982 0.002134        0.978        0.986
##    24   3867      43    0.971 0.002682        0.966        0.976
##    25   3823      10    0.968 0.002793        0.963        0.974
##    26   3799       6    0.967 0.002858        0.961        0.972

b. Define a grouping variable, this can be dichotomous or categorical.

The grouping variabe is sexual orientation. It is categorial: heterosexual, bisexual, homosexual

c. Do you have a research hypothesis about the survival patterns for the levels of the categorical variable? State it.

Research Question: How does resilience influence the outcome of gaining United States citizenship through naturalization for LGB immigrants who reside in the United States? When considering the intersectional nature of LGB immigrant identity.

Proposed Hypothesis: Certian conditions create resilience in some LGB individuals which results in a high likelihood for specific LGB immigrants with intersectional identities to gain U.S. citizenship through naturalization.

d. Comparison of Kaplan-Meier survival across grouping variable in your data. Interpret your results. It would appear across all groups that the age at greatest number of events is at 24 years of age (43 events, 3864 at risk) The age with the lowest number of events is 19.

Citizenship transition based on sexual orienation

## Call: survfit(formula = Surv(age_transition1, transition1) ~ sexorient, 
##     data = addhealth)
## 
##                 sexorient=a_straight 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##    19   3840       3    0.999 0.000451        0.998        1.000
##    20   3837       6    0.998 0.000780        0.996        0.999
##    21   3831       6    0.996 0.001007        0.994        0.998
##    22   3825      24    0.990 0.001618        0.987        0.993
##    23   3801      31    0.982 0.002159        0.978        0.986
##    24   3770      43    0.971 0.002727        0.965        0.976
##    25   3726      10    0.968 0.002842        0.962        0.974
##    26   3703       6    0.966 0.002908        0.961        0.972
## 
##                 sexorient=b_bisexual 
##         time       n.risk      n.event     survival      std.err 
##       23.000       62.000        1.000        0.984        0.016 
## lower 95% CI upper 95% CI 
##        0.953        1.000 
## 
##                 sexorient=c_LGB 
##         time       n.risk      n.event     survival      std.err 
##      23.0000      37.0000       1.0000       0.9730       0.0267 
## lower 95% CI upper 95% CI 
##       0.9221       1.0000

It appears that 37 LGB individuals are at risk with one event occuring.

##            observed   expected        o-e
## a_straight      129 127.691886  1.3081143
## b_bisexual        1   2.077664 -1.0776637
## c_LGB             1   1.230451 -0.2304506
## Call: survfit(formula = Surv(time = age_transition1, event = transition1) ~ 
##     sexorient + sex, data = addhealth)
## 
##                 sexorient=a_straight, sex=a_male   
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##    19   1704       2    0.999 0.000829        0.997        1.000
##    20   1702       1    0.998 0.001016        0.996        1.000
##    21   1701       3    0.996 0.001435        0.994        0.999
##    22   1698      10    0.991 0.002336        0.986        0.995
##    23   1688       8    0.986 0.002855        0.980        0.992
##    24   1680      14    0.978 0.003577        0.971        0.985
##    25   1666       5    0.975 0.003799        0.967        0.982
##    26   1659       5    0.972 0.004009        0.964        0.980
## 
##                 sexorient=a_straight, sex=b_female 
##  time n.risk n.event survival  std.err lower 95% CI upper 95% CI
##    19   2136       1    1.000 0.000468        0.999        1.000
##    20   2135       5    0.997 0.001145        0.995        0.999
##    21   2130       3    0.996 0.001402        0.993        0.999
##    22   2127      14    0.989 0.002233        0.985        0.994
##    23   2113      23    0.978 0.003141        0.972        0.985
##    24   2090      29    0.965 0.003983        0.957        0.973
##    25   2060       5    0.963 0.004108        0.955        0.971
##    26   2044       1    0.962 0.004133        0.954        0.970
## 
##                 sexorient=b_bisexual, sex=a_male   
##         time       n.risk      n.event     survival      std.err 
##       23.000        7.000        1.000        0.857        0.132 
## lower 95% CI upper 95% CI 
##        0.633        1.000 
## 
##                 sexorient=b_bisexual, sex=b_female 
##      time n.risk n.event survival std.err lower 95% CI upper 95% CI
## 
##                 sexorient=c_LGB, sex=a_male   
##         time       n.risk      n.event     survival      std.err 
##      23.0000      23.0000       1.0000       0.9565       0.0425 
## lower 95% CI upper 95% CI 
##       0.8767       1.0000 
## 
##                 sexorient=c_LGB, sex=b_female 
##      time n.risk n.event survival std.err lower 95% CI upper 95% CI

e. Plot the hazard function for the analysis for each level of the group variable (continued assignment from part d)

# Part B ## Parametric models

1) Carry out the following analysis: Define your outcome as in part A. Also consider what covariates are hypothesized to affect the outcome variable. Define these and construct a parametric model for your outcome. Fit the parametric model of your choosing to the data.

The outcome is becoming a naturalized United States citizen between wave 3 and wave 4.

Hypothesis: Certian conditions create resilience in some LGB individuals which results in a high likelihood for specific LGB immigrants with intersectional identities to gain U.S. citizenship through naturalization.

a. Did you choose an AFT or PH model and why? I chose a Cox Proportional Hazard Model after looking at the results of exponential, Weibull, and piecewise exponential models. The Weibull had the lowest AIC score and fit somewhat, but the Cox model is a better fit.

b. Justify what parametric distribution you choose. The Cox Model is good for survival analysis and analysing the relationship of the covariates and survival time, or obtaining US citizenship via naturalization.

c. Carry out model fit diagnostics for the model

d. Include all main effects in the model

e. Test for an interaction between at least two of the predictors

## Loading required package: grid
## Loading required package: Matrix
## 
## Attaching package: 'survey'
## The following object is masked from 'package:graphics':
## 
##     dotchart
## Stratified 1 - level Cluster Sampling design (with replacement)
## With (131) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4, 
##     data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~ 
##     sex + sexorient, design = des2)
## 
##   n= 3939, number of events= 131 
## 
##                        coef exp(coef) se(coef)      z Pr(>|z|)
## sexb_female          0.2479    1.2813   0.3120  0.795    0.427
## sexorientb_bisexual -0.7927    0.4526   1.0598 -0.748    0.454
## sexorientc_LGB       0.9911    2.6943   1.0189  0.973    0.331
## 
##                     exp(coef) exp(-coef) lower .95 upper .95
## sexb_female            1.2813     0.7805   0.69520     2.362
## sexorientb_bisexual    0.4526     2.2093   0.05671     3.613
## sexorientc_LGB         2.6943     0.3712   0.36572    19.850
## 
## Concordance= 0.547  (se = 0.035 )
## Likelihood ratio test= NA  on 3 df,   p=NA
## Wald test            = 2.13  on 3 df,   p=0.5
## Score (logrank) test = NA  on 3 df,   p=NA

###model with demographic variables: sex, race/ethnicity, sexual orientation

## Stratified 1 - level Cluster Sampling design (with replacement)
## With (131) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4, 
##     data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~ 
##     sex + racethnic + sexorient, design = des2)
## 
##   n= 3939, number of events= 131 
## 
##                                coef exp(coef) se(coef)      z Pr(>|z|)    
## sexb_female                 0.33663   1.40022  0.27919  1.206   0.2279    
## racethnicb-nhblack         -1.16020   0.31342  0.76873 -1.509   0.1312    
## racethnicc-hispanic         3.19780  24.47862  0.40446  7.906 2.65e-15 ***
## racethnicd-asian            4.36620  78.74394  0.40474 10.788  < 2e-16 ***
## racethnice-native_american  2.44679  11.55126  1.21614  2.012   0.0442 *  
## racethnicf-other            3.04037  20.91297  0.71533  4.250 2.13e-05 ***
## sexorientb_bisexual         0.03357   1.03414  1.08482  0.031   0.9753    
## sexorientc_LGB              0.39040   1.47757  0.85949  0.454   0.6497    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                            exp(coef) exp(-coef) lower .95 upper .95
## sexb_female                   1.4002    0.71417   0.81012     2.420
## racethnicb-nhblack            0.3134    3.19058   0.06947     1.414
## racethnicc-hispanic          24.4786    0.04085  11.07928    54.083
## racethnicd-asian             78.7439    0.01270  35.62089   174.072
## racethnice-native_american   11.5513    0.08657   1.06524   125.260
## racethnicf-other             20.9130    0.04782   5.14666    84.978
## sexorientb_bisexual           1.0341    0.96699   0.12336     8.669
## sexorientc_LGB                1.4776    0.67679   0.27413     7.964
## 
## Concordance= 0.89  (se = 0.023 )
## Likelihood ratio test= NA  on 8 df,   p=NA
## Wald test            = 183.9  on 8 df,   p=<2e-16
## Score (logrank) test = NA  on 8 df,   p=NA

model with demographic variables (sex, race/ethnicity, sexual orientation) plus demographic variables: education, marriage, income

## Stratified 1 - level Cluster Sampling design (with replacement)
## With (131) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4, 
##     data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~ 
##     sex + racethnic + sexorient + educ + +marriedW4a + incomeW4, 
##     design = des2)
## 
##   n= 3939, number of events= 131 
## 
##                                coef exp(coef) se(coef)      z Pr(>|z|)    
## sexb_female                 0.31923   1.37607  0.26607  1.200    0.230    
## racethnicb-nhblack         -0.98884   0.37201  0.74458 -1.328    0.184    
## racethnicc-hispanic         3.33446  28.06331  0.40172  8.300  < 2e-16 ***
## racethnicd-asian            4.33261  76.14248  0.39883 10.863  < 2e-16 ***
## racethnice-native_american  2.63428  13.93322  1.19866  2.198    0.028 *  
## racethnicf-other            3.06283  21.38809  0.69933  4.380 1.19e-05 ***
## sexorientb_bisexual         0.39289   1.48125  1.08240  0.363    0.717    
## sexorientc_LGB              0.65317   1.92162  0.87766  0.744    0.457    
## educb_highschool_grad      -0.06876   0.93355  0.67821 -0.101    0.919    
## educc_college_bach          0.38075   1.46338  0.72257  0.527    0.598    
## educd_college+              0.58944   1.80299  0.69851  0.844    0.399    
## marriedW4ab_married        -0.41631   0.65947  0.31353 -1.328    0.184    
## incomeW4b_$25,000>$50,000  -0.77411   0.46112  0.53796 -1.439    0.150    
## incomeW4c_$50,000>$100,000 -0.21178   0.80914  0.45443 -0.466    0.641    
## incomeW4e_$100,000+         0.08549   1.08925  0.42406  0.202    0.840    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                            exp(coef) exp(-coef) lower .95 upper .95
## sexb_female                   1.3761    0.72671   0.81689     2.318
## racethnicb-nhblack            0.3720    2.68810   0.08645     1.601
## racethnicc-hispanic          28.0633    0.03563  12.77012    61.671
## racethnicd-asian             76.1425    0.01313  34.84497   166.385
## racethnice-native_american   13.9332    0.07177   1.32969   146.000
## racethnicf-other             21.3881    0.04675   5.43126    84.226
## sexorientb_bisexual           1.4812    0.67511   0.17754    12.359
## sexorientc_LGB                1.9216    0.52039   0.34403    10.733
## educb_highschool_grad         0.9335    1.07118   0.24708     3.527
## educc_college_bach            1.4634    0.68335   0.35506     6.031
## educd_college+                1.8030    0.55464   0.45859     7.089
## marriedW4ab_married           0.6595    1.51636   0.35671     1.219
## incomeW4b_$25,000>$50,000     0.4611    2.16865   0.16066     1.323
## incomeW4c_$50,000>$100,000    0.8091    1.23587   0.33206     1.972
## incomeW4e_$100,000+           1.0893    0.91806   0.47443     2.501
## 
## Concordance= 0.899  (se = 0.023 )
## Likelihood ratio test= NA  on 15 df,   p=NA
## Wald test            = 266.7  on 15 df,   p=<2e-16
## Score (logrank) test = NA  on 15 df,   p=NA

model with demographic variables (sex, race/ethnicity, sexual orientation, education, marriage, income) plus social/parental support: language used with close friends/family, parents care, abusive parent/caretaker, friendships, mentor

## Stratified 1 - level Cluster Sampling design (with replacement)
## With (131) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4, 
##     data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~ 
##     sex + racethnic + sexorient + educ + +marriedW4a + incomeW4 + 
##         lang_used.most + parents_care + verbalabuse_bycaretakerW4 + 
##         friendships + mentor, design = des2)
## 
##   n= 3939, number of events= 131 
## 
##                                  coef exp(coef) se(coef)      z Pr(>|z|)
## sexb_female                    0.4467    1.5632   0.2640  1.692 0.090635
## racethnicb-nhblack            -0.7851    0.4561   0.7346 -1.069 0.285208
## racethnicc-hispanic            1.2358    3.4413   0.5548  2.227 0.025923
## racethnicd-asian               4.1295   62.1494   0.7776  5.311 1.09e-07
## racethnice-native_american     2.7845   16.1924   1.2489  2.230 0.025772
## racethnicf-other               2.9281   18.6919   0.8391  3.490 0.000484
## sexorientb_bisexual            0.8430    2.3234   1.0723  0.786 0.431739
## sexorientc_LGB                 1.2551    3.5081   0.9313  1.348 0.177789
## educb_highschool_grad         -0.1303    0.8779   0.6098 -0.214 0.830855
## educc_college_bach             0.2531    1.2880   0.7364  0.344 0.731053
## educd_college+                 0.5517    1.7362   0.6503  0.848 0.396203
## marriedW4ab_married           -0.1807    0.8347   0.2895 -0.624 0.532496
## incomeW4b_$25,000>$50,000     -0.4712    0.6243   0.5052 -0.933 0.351030
## incomeW4c_$50,000>$100,000     0.1394    1.1496   0.3670  0.380 0.704019
## incomeW4e_$100,000+            0.3697    1.4474   0.3942  0.938 0.348217
## lang_used.mostb_spanish        3.2411   25.5608   0.5994  5.407 6.39e-08
## lang_used.mostc_other          0.9136    2.4933   0.8213  1.112 0.265959
## parents_careb_very_much       -0.4414    0.6432   0.3098 -1.425 0.154197
## verbalabuse_bycaretakerW4c_no -0.4879    0.6139   0.2574 -1.895 0.058044
## friendshipsb_1to5             -1.4495    0.2347   0.6375 -2.274 0.022987
## friendshipsc_6+               -1.1047    0.3313   0.6185 -1.786 0.074053
## mentorb_yes                   -0.4337    0.6481   0.3746 -1.158 0.247029
##                                  
## sexb_female                   .  
## racethnicb-nhblack               
## racethnicc-hispanic           *  
## racethnicd-asian              ***
## racethnice-native_american    *  
## racethnicf-other              ***
## sexorientb_bisexual              
## sexorientc_LGB                   
## educb_highschool_grad            
## educc_college_bach               
## educd_college+                   
## marriedW4ab_married              
## incomeW4b_$25,000>$50,000        
## incomeW4c_$50,000>$100,000       
## incomeW4e_$100,000+              
## lang_used.mostb_spanish       ***
## lang_used.mostc_other            
## parents_careb_very_much          
## verbalabuse_bycaretakerW4c_no .  
## friendshipsb_1to5             *  
## friendshipsc_6+               .  
## mentorb_yes                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                               exp(coef) exp(-coef) lower .95 upper .95
## sexb_female                      1.5632    0.63973   0.93171    2.6226
## racethnicb-nhblack               0.4561    2.19260   0.10808    1.9247
## racethnicc-hispanic              3.4413    0.29059   1.15994   10.2094
## racethnicd-asian                62.1494    0.01609  13.53834  285.3046
## racethnice-native_american      16.1924    0.06176   1.40044  187.2230
## racethnicf-other                18.6919    0.05350   3.60913   96.8069
## sexorientb_bisexual              2.3234    0.43040   0.28406   19.0040
## sexorientc_LGB                   3.5081    0.28505   0.56534   21.7690
## educb_highschool_grad            0.8779    1.13912   0.26570    2.9005
## educc_college_bach               1.2880    0.77637   0.30415    5.4548
## educd_college+                   1.7362    0.57597   0.48539    6.2104
## marriedW4ab_married              0.8347    1.19808   0.47323    1.4722
## incomeW4b_$25,000>$50,000        0.6243    1.60189   0.23190    1.6805
## incomeW4c_$50,000>$100,000       1.1496    0.86986   0.55995    2.3602
## incomeW4e_$100,000+              1.4474    0.69092   0.66845    3.1339
## lang_used.mostb_spanish         25.5608    0.03912   7.89574   82.7475
## lang_used.mostc_other            2.4933    0.40107   0.49853   12.4701
## parents_careb_very_much          0.6432    1.55484   0.35046    1.1803
## verbalabuse_bycaretakerW4c_no    0.6139    1.62886   0.37069    1.0168
## friendshipsb_1to5                0.2347    4.26087   0.06727    0.8187
## friendshipsc_6+                  0.3313    3.01843   0.09858    1.1134
## mentorb_yes                      0.6481    1.54289   0.31102    1.3506
## 
## Concordance= 0.958  (se = 0.007 )
## Likelihood ratio test= NA  on 22 df,   p=NA
## Wald test            = 619.7  on 22 df,   p=<2e-16
## Score (logrank) test = NA  on 22 df,   p=NA

model with demographic variables (sex, race/ethnicity, sexual orientation, education, marriage, income) plus social support variables (language used with family/friends, parents care, friendships, mentor) plus health/recilancy variables: insurance status, general health, depression, ability to change life circumstances, many solutions to a problem

## Stratified 1 - level Cluster Sampling design (with replacement)
## With (131) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4, 
##     data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~ 
##     sex + racethnic + sexorient + educ + marriedW4a + incomeW4 + 
##         lang_used.most + parents_care + verbalabuse_bycaretakerW4 + 
##         friendships + mentor + insurance_status + general_health + 
##         depressionW4 + able.change.life + many.solutions.prob + 
##         risk.behavior, design = des2)
## 
##   n= 3939, number of events= 131 
## 
##                                      coef exp(coef) se(coef)      z
## sexb_female                       0.53635   1.70976  0.25346  2.116
## racethnicb-nhblack               -0.82252   0.43932  0.76217 -1.079
## racethnicc-hispanic               1.42078   4.14033  0.49149  2.891
## racethnicd-asian                  4.20431  66.97447  0.72183  5.824
## racethnice-native_american        3.04443  20.99797  1.12482  2.707
## racethnicf-other                  2.91639  18.47455  0.87511  3.333
## sexorientb_bisexual               0.93766   2.55401  0.98220  0.955
## sexorientc_LGB                    1.64918   5.20269  0.76871  2.145
## educb_highschool_grad            -0.51365   0.59831  0.57912 -0.887
## educc_college_bach               -0.26926   0.76395  0.68610 -0.392
## educd_college+                    0.12898   1.13766  0.59664  0.216
## marriedW4ab_married              -0.08392   0.91950  0.31295 -0.268
## incomeW4b_$25,000>$50,000        -0.53724   0.58436  0.55691 -0.965
## incomeW4c_$50,000>$100,000        0.20351   1.22570  0.34328  0.593
## incomeW4e_$100,000+               0.37564   1.45592  0.52092  0.721
## lang_used.mostb_spanish           3.12312  22.71717  0.50494  6.185
## lang_used.mostc_other             0.92015   2.50966  0.84537  1.088
## parents_careb_very_much          -0.57679   0.56170  0.32416 -1.779
## verbalabuse_bycaretakerW4c_no    -0.48964   0.61285  0.30762 -1.592
## friendshipsb_1to5                -1.22350   0.29420  0.74805 -1.636
## friendshipsc_6+                  -0.90553   0.40433  0.71686 -1.263
## mentorb_yes                      -0.49113   0.61194  0.36547 -1.344
## insurance_statusb_yes_insurance  -0.05732   0.94430  0.46504 -0.123
## general_healthb_fair             -1.42920   0.23950  1.09439 -1.306
## general_healthc_excellent        -1.14300   0.31886  1.07395 -1.064
## depressionW4b_yes                -1.12694   0.32402  0.55304 -2.038
## able.change.lifeb_neutral        -0.49023   0.61249  0.82108 -0.597
## able.change.lifec_agree           0.36393   1.43897  0.57840  0.629
## many.solutions.probb_neutral     -0.41098   0.66300  0.33716 -1.219
## many.solutions.probc_disagree    -0.09708   0.90748  0.55526 -0.175
## risk.behaviorb_dislikes_to.party  0.04236   1.04327  0.24404  0.174
##                                  Pr(>|z|)    
## sexb_female                       0.03434 *  
## racethnicb-nhblack                0.28051    
## racethnicc-hispanic               0.00384 ** 
## racethnicd-asian                 5.73e-09 ***
## racethnice-native_american        0.00680 ** 
## racethnicf-other                  0.00086 ***
## sexorientb_bisexual               0.33975    
## sexorientc_LGB                    0.03192 *  
## educb_highschool_grad             0.37511    
## educc_college_bach                0.69473    
## educd_college+                    0.82885    
## marriedW4ab_married               0.78858    
## incomeW4b_$25,000>$50,000         0.33470    
## incomeW4c_$50,000>$100,000        0.55329    
## incomeW4e_$100,000+               0.47085    
## lang_used.mostb_spanish          6.20e-10 ***
## lang_used.mostc_other             0.27640    
## parents_careb_very_much           0.07518 .  
## verbalabuse_bycaretakerW4c_no     0.11145    
## friendshipsb_1to5                 0.10193    
## friendshipsc_6+                   0.20653    
## mentorb_yes                       0.17901    
## insurance_statusb_yes_insurance   0.90191    
## general_healthb_fair              0.19158    
## general_healthc_excellent         0.28720    
## depressionW4b_yes                 0.04158 *  
## able.change.lifeb_neutral         0.55047    
## able.change.lifec_agree           0.52922    
## many.solutions.probb_neutral      0.22286    
## many.solutions.probc_disagree     0.86120    
## risk.behaviorb_dislikes_to.party  0.86221    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                                  exp(coef) exp(-coef) lower .95 upper .95
## sexb_female                         1.7098    0.58488   1.04037    2.8099
## racethnicb-nhblack                  0.4393    2.27624   0.09863    1.9568
## racethnicc-hispanic                 4.1403    0.24153   1.58009   10.8490
## racethnicd-asian                   66.9745    0.01493  16.27363  275.6349
## racethnice-native_american         20.9980    0.04762   2.31595  190.3819
## racethnicf-other                   18.4746    0.05413   3.32415  102.6756
## sexorientb_bisexual                 2.5540    0.39154   0.37254   17.5093
## sexorientc_LGB                      5.2027    0.19221   1.15318   23.4725
## educb_highschool_grad               0.5983    1.67137   0.19230    1.8616
## educc_college_bach                  0.7639    1.30899   0.19909    2.9314
## educd_college+                      1.1377    0.87900   0.35331    3.6633
## marriedW4ab_married                 0.9195    1.08754   0.49793    1.6980
## incomeW4b_$25,000>$50,000           0.5844    1.71128   0.19617    1.7407
## incomeW4c_$50,000>$100,000          1.2257    0.81586   0.62543    2.4021
## incomeW4e_$100,000+                 1.4559    0.68685   0.52448    4.0415
## lang_used.mostb_spanish            22.7172    0.04402   8.44403   61.1165
## lang_used.mostc_other               2.5097    0.39846   0.47867   13.1581
## parents_careb_very_much             0.5617    1.78032   0.29756    1.0603
## verbalabuse_bycaretakerW4c_no       0.6128    1.63173   0.33535    1.1200
## friendshipsb_1to5                   0.2942    3.39905   0.06791    1.2746
## friendshipsc_6+                     0.4043    2.47323   0.09921    1.6479
## mentorb_yes                         0.6119    1.63416   0.29896    1.2526
## insurance_statusb_yes_insurance     0.9443    1.05899   0.37955    2.3494
## general_healthb_fair                0.2395    4.17535   0.02804    2.0458
## general_healthc_excellent           0.3189    3.13615   0.03886    2.6167
## depressionW4b_yes                   0.3240    3.08619   0.10960    0.9579
## able.change.lifeb_neutral           0.6125    1.63269   0.12252    3.0619
## able.change.lifec_agree             1.4390    0.69494   0.46315    4.4708
## many.solutions.probb_neutral        0.6630    1.50829   0.34239    1.2838
## many.solutions.probc_disagree       0.9075    1.10195   0.30563    2.6945
## risk.behaviorb_dislikes_to.party    1.0433    0.95853   0.64665    1.6831
## 
## Concordance= 0.961  (se = 0.006 )
## Likelihood ratio test= NA  on 31 df,   p=NA
## Wald test            = 1181  on 31 df,   p=<2e-16
## Score (logrank) test = NA  on 31 df,   p=NA

schoenfeld residuals

## Response sexb_female :
## 
## Call:
## lm(formula = sexb_female ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.6664 -0.6108  0.3655  0.3827  0.4514 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                     -0.34984
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.01719
##                                                                 Std. Error
## (Intercept)                                                        0.67193
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02901
##                                                                 t value
## (Intercept)                                                      -0.521
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.593
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.604
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.554
## 
## Residual standard error: 0.49 on 129 degrees of freedom
## Multiple R-squared:  0.002716,   Adjusted R-squared:  -0.005015 
## F-statistic: 0.3513 on 1 and 129 DF,  p-value: 0.5544
## 
## 
## Response racethnicb-nhblack :
## 
## Call:
## lm(formula = `racethnicb-nhblack` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.15458 -0.07781 -0.05414 -0.03099  1.01573 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.59141
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.02371
##                                                                 Std. Error
## (Intercept)                                                        0.30704
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01326
##                                                                 t value
## (Intercept)                                                       1.926
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -1.788
##                                                                 Pr(>|t|)  
## (Intercept)                                                       0.0563 .
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.0761 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2239 on 129 degrees of freedom
## Multiple R-squared:  0.02419,    Adjusted R-squared:  0.01663 
## F-statistic: 3.198 on 1 and 129 DF,  p-value: 0.07608
## 
## 
## Response racethnicc-hispanic :
## 
## Call:
## lm(formula = `racethnicc-hispanic` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.32832 -0.23532 -0.19973 -0.09828  0.90483 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                     -0.88835
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.03559
##                                                                 Std. Error
## (Intercept)                                                        0.55488
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02396
##                                                                 t value
## (Intercept)                                                      -1.601
## des2$variables$age_transition1[des2$variables$transition1 == 1]   1.486
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.112
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.140
## 
## Residual standard error: 0.4046 on 129 degrees of freedom
## Multiple R-squared:  0.01683,    Adjusted R-squared:  0.009204 
## F-statistic: 2.208 on 1 and 129 DF,  p-value: 0.1398
## 
## 
## Response racethnicd-asian :
## 
## Call:
## lm(formula = `racethnicd-asian` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5826 -0.5061  0.4211  0.4957  0.6123 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.33799
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01529
##                                                                 Std. Error
## (Intercept)                                                        0.69649
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.03007
##                                                                 t value
## (Intercept)                                                       0.485
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.508
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.628
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.612
## 
## Residual standard error: 0.5079 on 129 degrees of freedom
## Multiple R-squared:  0.001999,   Adjusted R-squared:  -0.005737 
## F-statistic: 0.2584 on 1 and 129 DF,  p-value: 0.6121
## 
## 
## Response racethnice-native_american :
## 
## Call:
## lm(formula = `racethnice-native_american` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.01876 -0.01050 -0.00733 -0.00417  0.98994 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.073089
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.003165
##                                                                 Std. Error
## (Intercept)                                                       0.120149
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.005187
##                                                                 t value
## (Intercept)                                                      -0.608
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.610
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.544
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.543
## 
## Residual standard error: 0.08762 on 129 degrees of freedom
## Multiple R-squared:  0.002878,   Adjusted R-squared:  -0.004852 
## F-statistic: 0.3723 on 1 and 129 DF,  p-value: 0.5428
## 
## 
## Response racethnicf-other :
## 
## Call:
## lm(formula = `racethnicf-other` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.04850 -0.04008 -0.03797 -0.03596  0.96319 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                      0.058222
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.002104
##                                                                 Std. Error
## (Intercept)                                                       0.264522
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.011421
##                                                                 t value
## (Intercept)                                                       0.220
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.184
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.826
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.854
## 
## Residual standard error: 0.1929 on 129 degrees of freedom
## Multiple R-squared:  0.0002631,  Adjusted R-squared:  -0.007487 
## F-statistic: 0.03396 on 1 and 129 DF,  p-value: 0.8541
## 
## 
## Response sexorientb_bisexual :
## 
## Call:
## lm(formula = sexorientb_bisexual ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.01876 -0.01050 -0.00733 -0.00417  0.98994 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.073089
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.003165
##                                                                 Std. Error
## (Intercept)                                                       0.120149
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.005187
##                                                                 t value
## (Intercept)                                                      -0.608
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.610
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.544
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.543
## 
## Residual standard error: 0.08762 on 129 degrees of freedom
## Multiple R-squared:  0.002878,   Adjusted R-squared:  -0.004852 
## F-statistic: 0.3723 on 1 and 129 DF,  p-value: 0.5428
## 
## 
## Response sexorientc_LGB :
## 
## Call:
## lm(formula = sexorientc_LGB ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.02955 -0.01273 -0.00713 -0.00126  0.98649 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                      0.082356
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.004204
##                                                                 Std. Error
## (Intercept)                                                       0.120122
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.005186
##                                                                 t value
## (Intercept)                                                       0.686
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.811
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.494
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.419
## 
## Residual standard error: 0.0876 on 129 degrees of freedom
## Multiple R-squared:  0.005067,   Adjusted R-squared:  -0.002645 
## F-statistic: 0.657 on 1 and 129 DF,  p-value: 0.4191
## 
## 
## Response educb_highschool_grad :
## 
## Call:
## lm(formula = educb_highschool_grad ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5462 -0.4843 -0.4361  0.5157  0.5756 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                     -0.22913
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.01175
##                                                                 Std. Error
## (Intercept)                                                        0.68824
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02971
##                                                                 t value
## (Intercept)                                                      -0.333
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.396
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.740
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.693
## 
## Residual standard error: 0.5019 on 129 degrees of freedom
## Multiple R-squared:  0.001212,   Adjusted R-squared:  -0.006531 
## F-statistic: 0.1565 on 1 and 129 DF,  p-value: 0.6931
## 
## 
## Response educc_college_bach :
## 
## Call:
## lm(formula = educc_college_bach ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.3254 -0.3145 -0.3043  0.6820  0.7390 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.089969
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.003142
##                                                                 Std. Error
## (Intercept)                                                       0.633784
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.027364
##                                                                 t value
## (Intercept)                                                      -0.142
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.115
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.887
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.909
## 
## Residual standard error: 0.4622 on 129 degrees of freedom
## Multiple R-squared:  0.0001022,  Adjusted R-squared:  -0.007649 
## F-statistic: 0.01319 on 1 and 129 DF,  p-value: 0.9088
## 
## 
## Response educd_college+ :
## 
## Call:
## lm(formula = `educd_college+` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.2367 -0.1933 -0.1772 -0.1605  0.8501 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.25514
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01065
##                                                                 Std. Error
## (Intercept)                                                        0.53425
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02307
##                                                                 t value
## (Intercept)                                                       0.478
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.462
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.634
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.645
## 
## Residual standard error: 0.3896 on 129 degrees of freedom
## Multiple R-squared:  0.00165,    Adjusted R-squared:  -0.006089 
## F-statistic: 0.2132 on 1 and 129 DF,  p-value: 0.645
## 
## 
## Response marriedW4ab_married :
## 
## Call:
## lm(formula = marriedW4ab_married ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5347 -0.4314 -0.4007  0.5783  0.6090 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                      0.261341
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.009729
##                                                                 Std. Error
## (Intercept)                                                       0.689343
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.029762
##                                                                 t value
## (Intercept)                                                       0.379
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.327
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.705
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.744
## 
## Residual standard error: 0.5027 on 129 degrees of freedom
## Multiple R-squared:  0.0008276,  Adjusted R-squared:  -0.006918 
## F-statistic: 0.1069 on 1 and 129 DF,  p-value: 0.7443
## 
## 
## Response incomeW4b_$25,000>$50,000 :
## 
## Call:
## lm(formula = `incomeW4b_$25,000>$50,000` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.25721 -0.14650 -0.11392 -0.08575  0.94365 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.68011
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.02990
##                                                                 Std. Error
## (Intercept)                                                        0.45915
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01982
##                                                                 t value
## (Intercept)                                                       1.481
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -1.508
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.141
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.134
## 
## Residual standard error: 0.3348 on 129 degrees of freedom
## Multiple R-squared:  0.01733,    Adjusted R-squared:  0.009708 
## F-statistic: 2.274 on 1 and 129 DF,  p-value: 0.134
## 
## 
## Response incomeW4c_$50,000>$100,000 :
## 
## Call:
## lm(formula = `incomeW4c_$50,000>$100,000` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5886 -0.4423 -0.3155  0.5542  0.7308 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                     -1.08542
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.04636
##                                                                 Std. Error
## (Intercept)                                                        0.67492
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02914
##                                                                 t value
## (Intercept)                                                      -1.608
## des2$variables$age_transition1[des2$variables$transition1 == 1]   1.591
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.110
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.114
## 
## Residual standard error: 0.4922 on 129 degrees of freedom
## Multiple R-squared:  0.01924,    Adjusted R-squared:  0.01164 
## F-statistic: 2.531 on 1 and 129 DF,  p-value: 0.1141
## 
## 
## Response incomeW4e_$100,000+ :
## 
## Call:
## lm(formula = `incomeW4e_$100,000+` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5055 -0.3988 -0.3434  0.5948  0.6985 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.81651
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.03242
##                                                                 Std. Error
## (Intercept)                                                        0.66887
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02888
##                                                                 t value
## (Intercept)                                                       1.221
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -1.123
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.224
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.264
## 
## Residual standard error: 0.4878 on 129 degrees of freedom
## Multiple R-squared:  0.009675,   Adjusted R-squared:  0.001998 
## F-statistic:  1.26 on 1 and 129 DF,  p-value: 0.2637
## 
## 
## Response lang_used.mostb_spanish :
## 
## Call:
## lm(formula = lang_used.mostb_spanish ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.3763 -0.3260 -0.3010  0.6692  0.7534 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                     -0.36862
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.01589
##                                                                 Std. Error
## (Intercept)                                                        0.64044
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02765
##                                                                 t value
## (Intercept)                                                      -0.576
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.575
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.566
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.567
## 
## Residual standard error: 0.467 on 129 degrees of freedom
## Multiple R-squared:  0.002554,   Adjusted R-squared:  -0.005178 
## F-statistic: 0.3303 on 1 and 129 DF,  p-value: 0.5665
## 
## 
## Response lang_used.mostc_other :
## 
## Call:
## lm(formula = lang_used.mostc_other ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.4296 -0.3151 -0.2668  0.6566  0.8520 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.60397
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.02863
##                                                                 Std. Error
## (Intercept)                                                        0.63342
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02735
##                                                                 t value
## (Intercept)                                                       0.954
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -1.047
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.342
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.297
## 
## Residual standard error: 0.4619 on 129 degrees of freedom
## Multiple R-squared:  0.008426,   Adjusted R-squared:  0.0007397 
## F-statistic: 1.096 on 1 and 129 DF,  p-value: 0.2971
## 
## 
## Response parents_careb_very_much :
## 
## Call:
## lm(formula = parents_careb_very_much ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9222  0.1275  0.1950  0.2247  0.3058 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.71925
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.02974
##                                                                 Std. Error
## (Intercept)                                                        0.55980
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02417
##                                                                 t value
## (Intercept)                                                       1.285
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -1.230
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.201
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.221
## 
## Residual standard error: 0.4082 on 129 degrees of freedom
## Multiple R-squared:  0.0116, Adjusted R-squared:  0.003937 
## F-statistic: 1.514 on 1 and 129 DF,  p-value: 0.2208
## 
## 
## Response verbalabuse_bycaretakerW4c_no :
## 
## Call:
## lm(formula = verbalabuse_bycaretakerW4c_no ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5678 -0.4476 -0.4069  0.5524  0.6186 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.48472
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01779
##                                                                 Std. Error
## (Intercept)                                                        0.68756
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02969
##                                                                 t value
## (Intercept)                                                       0.705
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.599
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.482
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.550
## 
## Residual standard error: 0.5014 on 129 degrees of freedom
## Multiple R-squared:  0.002777,   Adjusted R-squared:  -0.004954 
## F-statistic: 0.3592 on 1 and 129 DF,  p-value: 0.55
## 
## 
## Response friendshipsb_1to5 :
## 
## Call:
## lm(formula = friendshipsb_1to5 ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7410 -0.5492  0.3376  0.4278  0.5457 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.93454
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.03931
##                                                                 Std. Error
## (Intercept)                                                        0.67590
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02918
##                                                                 t value
## (Intercept)                                                       1.383
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -1.347
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.169
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.180
## 
## Residual standard error: 0.4929 on 129 degrees of freedom
## Multiple R-squared:  0.01387,    Adjusted R-squared:  0.006225 
## F-statistic: 1.814 on 1 and 129 DF,  p-value: 0.1804
## 
## 
## Response friendshipsc_6+ :
## 
## Call:
## lm(formula = `friendshipsc_6+` ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.4836 -0.3900 -0.3447  0.5798  0.7349 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                     -0.72882
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.03121
##                                                                 Std. Error
## (Intercept)                                                        0.67142
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02899
##                                                                 t value
## (Intercept)                                                      -1.085
## des2$variables$age_transition1[des2$variables$transition1 == 1]   1.077
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.280
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.284
## 
## Residual standard error: 0.4896 on 129 degrees of freedom
## Multiple R-squared:  0.008906,   Adjusted R-squared:  0.001224 
## F-statistic: 1.159 on 1 and 129 DF,  p-value: 0.2836
## 
## 
## Response mentorb_yes :
## 
## Call:
## lm(formula = mentorb_yes ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.6613 -0.6383  0.3455  0.3587  0.4041 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.059539
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.003376
##                                                                 Std. Error
## (Intercept)                                                       0.661778
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.028572
##                                                                 t value
## (Intercept)                                                      -0.090
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.118
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.928
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.906
## 
## Residual standard error: 0.4826 on 129 degrees of freedom
## Multiple R-squared:  0.0001082,  Adjusted R-squared:  -0.007643 
## F-statistic: 0.01396 on 1 and 129 DF,  p-value: 0.9061
## 
## 
## Response insurance_statusb_yes_insurance :
## 
## Call:
## lm(formula = insurance_statusb_yes_insurance ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8414  0.1692  0.1803  0.1897  0.2096 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.134939
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.005861
##                                                                 Std. Error
## (Intercept)                                                       0.534668
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.023084
##                                                                 t value
## (Intercept)                                                      -0.252
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.254
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.801
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.800
## 
## Residual standard error: 0.3899 on 129 degrees of freedom
## Multiple R-squared:  0.0004994,  Adjusted R-squared:  -0.007249 
## F-statistic: 0.06445 on 1 and 129 DF,  p-value: 0.8
## 
## 
## Response general_healthb_fair :
## 
## Call:
## lm(formula = general_healthb_fair ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.3964 -0.3704 -0.3578  0.6297  0.6528 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                     -0.161524
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.005304
##                                                                 Std. Error
## (Intercept)                                                       0.666681
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.028784
##                                                                 t value
## (Intercept)                                                      -0.242
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.184
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.809
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.854
## 
## Residual standard error: 0.4862 on 129 degrees of freedom
## Multiple R-squared:  0.0002631,  Adjusted R-squared:  -0.007487 
## F-statistic: 0.03395 on 1 and 129 DF,  p-value: 0.8541
## 
## 
## Response general_healthc_excellent :
## 
## Call:
## lm(formula = general_healthc_excellent ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.6347 -0.6157  0.3704  0.3843  0.4168 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                      0.158726
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.004743
##                                                                 Std. Error
## (Intercept)                                                       0.671859
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.029007
##                                                                 t value
## (Intercept)                                                       0.236
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.164
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.814
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.870
## 
## Residual standard error: 0.4899 on 129 degrees of freedom
## Multiple R-squared:  0.0002072,  Adjusted R-squared:  -0.007543 
## F-statistic: 0.02674 on 1 and 129 DF,  p-value: 0.8704
## 
## 
## Response depressionW4b_yes :
## 
## Call:
## lm(formula = depressionW4b_yes ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.11049 -0.08213 -0.07461 -0.06709  0.94494 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                      0.206851
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.007517
##                                                                 Std. Error
## (Intercept)                                                       0.366270
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.015814
##                                                                 t value
## (Intercept)                                                       0.565
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.475
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.573
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.635
## 
## Residual standard error: 0.2671 on 129 degrees of freedom
## Multiple R-squared:  0.001748,   Adjusted R-squared:  -0.00599 
## F-statistic: 0.2259 on 1 and 129 DF,  p-value: 0.6354
## 
## 
## Response able.change.lifeb_neutral :
## 
## Call:
## lm(formula = able.change.lifeb_neutral ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.20910 -0.10988 -0.07636 -0.05974  0.96545 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.59856
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.02519
##                                                                 Std. Error
## (Intercept)                                                        0.39353
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.01699
##                                                                 t value
## (Intercept)                                                       1.521
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -1.483
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.131
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.141
## 
## Residual standard error: 0.287 on 129 degrees of freedom
## Multiple R-squared:  0.01675,    Adjusted R-squared:  0.009132 
## F-statistic: 2.198 on 1 and 129 DF,  p-value: 0.1406
## 
## 
## Response able.change.lifec_agree :
## 
## Call:
## lm(formula = able.change.lifec_agree ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.9381  0.0865  0.1141  0.1530  0.2782 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                     -0.81092
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.03470
##                                                                 Std. Error
## (Intercept)                                                        0.46812
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02021
##                                                                 t value
## (Intercept)                                                      -1.732
## des2$variables$age_transition1[des2$variables$transition1 == 1]   1.717
##                                                                 Pr(>|t|)  
## (Intercept)                                                       0.0856 .
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.0884 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3414 on 129 degrees of freedom
## Multiple R-squared:  0.02235,    Adjusted R-squared:  0.01477 
## F-statistic: 2.948 on 1 and 129 DF,  p-value: 0.08836
## 
## 
## Response many.solutions.probb_neutral :
## 
## Call:
## lm(formula = many.solutions.probb_neutral ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.2209 -0.1405 -0.1228 -0.1061  0.8933 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                      0.41799
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.01649
##                                                                 Std. Error
## (Intercept)                                                        0.46542
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02009
##                                                                 t value
## (Intercept)                                                       0.898
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.821
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.371
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.413
## 
## Residual standard error: 0.3394 on 129 degrees of freedom
## Multiple R-squared:  0.005192,   Adjusted R-squared:  -0.00252 
## F-statistic: 0.6733 on 1 and 129 DF,  p-value: 0.4134
## 
## 
## Response many.solutions.probc_disagree :
## 
## Call:
## lm(formula = many.solutions.probc_disagree ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.07990 -0.04401 -0.03502 -0.02576  0.97500 
## 
## Coefficients:
##                                                                  Estimate
## (Intercept)                                                      0.193417
## des2$variables$age_transition1[des2$variables$transition1 == 1] -0.008994
##                                                                 Std. Error
## (Intercept)                                                       0.264001
## des2$variables$age_transition1[des2$variables$transition1 == 1]   0.011398
##                                                                 t value
## (Intercept)                                                       0.733
## des2$variables$age_transition1[des2$variables$transition1 == 1]  -0.789
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.465
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.432
## 
## Residual standard error: 0.1925 on 129 degrees of freedom
## Multiple R-squared:  0.004803,   Adjusted R-squared:  -0.002911 
## F-statistic: 0.6226 on 1 and 129 DF,  p-value: 0.4315
## 
## 
## Response risk.behaviorb_dislikes_to.party :
## 
## Call:
## lm(formula = risk.behaviorb_dislikes_to.party ~ des2$variables$age_transition1[des2$variables$transition1 == 
##     1])
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7970 -0.6262  0.2778  0.3191  0.4325 
## 
## Coefficients:
##                                                                 Estimate
## (Intercept)                                                     -0.88433
## des2$variables$age_transition1[des2$variables$transition1 == 1]  0.03736
##                                                                 Std. Error
## (Intercept)                                                        0.63629
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.02747
##                                                                 t value
## (Intercept)                                                       -1.39
## des2$variables$age_transition1[des2$variables$transition1 == 1]    1.36
##                                                                 Pr(>|t|)
## (Intercept)                                                        0.167
## des2$variables$age_transition1[des2$variables$transition1 == 1]    0.176
## 
## Residual standard error: 0.464 on 129 degrees of freedom
## Multiple R-squared:  0.01413,    Adjusted R-squared:  0.006492 
## F-statistic:  1.85 on 1 and 129 DF,  p-value: 0.1762

Grambsch and Therneau test

##                                       rho    chisq        p
## sexb_female                      -0.01240   0.1011 7.51e-01
## racethnicb-nhblack                0.07889  23.0492 1.58e-06
## racethnicc-hispanic              -0.09396  11.2602 7.92e-04
## racethnicd-asian                  0.13420  76.1593 2.62e-18
## racethnice-native_american        0.08989   5.2790 2.16e-02
## racethnicf-other                  0.10034  36.8405 1.28e-09
## sexorientb_bisexual               0.01283   0.0862 7.69e-01
## sexorientc_LGB                    0.00807   0.0534 8.17e-01
## educb_highschool_grad            -0.02420   0.8550 3.55e-01
## educc_college_bach               -0.03843   2.3926 1.22e-01
## educd_college+                    0.02777   1.1244 2.89e-01
## marriedW4ab_married              -0.26708  82.8837 8.70e-20
## incomeW4b_$25,000>$50,000         0.07334   5.7825 1.62e-02
## incomeW4c_$50,000>$100,000        0.02226   0.2073 6.49e-01
## incomeW4e_$100,000+               0.09603  27.5960 1.49e-07
## lang_used.mostb_spanish           0.20744  42.2937 7.85e-11
## lang_used.mostc_other            -0.09789  49.2779 2.22e-12
## parents_careb_very_much          -0.12363  16.3177 5.36e-05
## verbalabuse_bycaretakerW4c_no    -0.06757   5.7374 1.66e-02
## friendshipsb_1to5                -0.03390   1.3371 2.48e-01
## friendshipsc_6+                  -0.06444   5.3454 2.08e-02
## mentorb_yes                      -0.11131  30.4529 3.42e-08
## insurance_statusb_yes_insurance  -0.09799  14.1763 1.66e-04
## general_healthb_fair              0.15108  18.4418 1.75e-05
## general_healthc_excellent         0.08861   6.3384 1.18e-02
## depressionW4b_yes                 0.03472   0.9131 3.39e-01
## able.change.lifeb_neutral         0.12995  23.2065 1.46e-06
## able.change.lifec_agree           0.06087   2.3488 1.25e-01
## many.solutions.probb_neutral     -0.22501  15.6103 7.78e-05
## many.solutions.probc_disagree     0.20334  50.8978 9.73e-13
## risk.behaviorb_dislikes_to.party  0.09320   4.9993 2.54e-02
## GLOBAL                                 NA 195.0219 1.09e-25

Plot of residuals

###Martingale residuals

## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401

## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : pseudoinverse used at 0.99
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : neighborhood radius 2.01
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : reciprocal condition number 0
## Warning in simpleLoess(y, x, w, span, degree = degree, parametric =
## FALSE, : There are other near singularities as well. 4.0401

stratify by sexual orientation

## Stratified 1 - level Cluster Sampling design (with replacement)
## With (131) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4, 
##     data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~ 
##     strata(sexorient) + sex + racethnic + educ + +marriedW4a + 
##         incomeW4 + friendships + mentor + insurance_status + 
##         general_health + depressionW4 + able.change.life, design = des2)
## 
##   n= 3939, number of events= 131 
## 
##                                     coef exp(coef) se(coef)      z
## sexb_female                      0.44471   1.56004  0.27802  1.600
## racethnicb-nhblack              -1.04336   0.35227  0.74215 -1.406
## racethnicc-hispanic              3.22762  25.21957  0.37225  8.671
## racethnicd-asian                 4.35106  77.56047  0.38400 11.331
## racethnice-native_american       2.67860  14.56470  1.15815  2.313
## racethnicf-other                 3.09735  22.13911  0.68852  4.499
## educb_highschool_grad           -0.10257   0.90252  0.62868 -0.163
## educc_college_bach               0.26300   1.30082  0.63827  0.412
## educd_college+                   0.55497   1.74189  0.63697  0.871
## marriedW4ab_married             -0.35715   0.69967  0.36475 -0.979
## incomeW4b_$25,000>$50,000       -0.48461   0.61594  0.53914 -0.899
## incomeW4c_$50,000>$100,000       0.17892   1.19593  0.41496  0.431
## incomeW4e_$100,000+              0.46643   1.59429  0.45851  1.017
## friendshipsb_1to5               -1.19362   0.30312  0.58326 -2.046
## friendshipsc_6+                 -1.11151   0.32906  0.57755 -1.925
## mentorb_yes                     -0.56305   0.56947  0.29116 -1.934
## insurance_statusb_yes_insurance -0.28175   0.75447  0.37997 -0.741
## general_healthb_fair            -1.46459   0.23117  0.97545 -1.501
## general_healthc_excellent       -1.09726   0.33378  0.96007 -1.143
## depressionW4b_yes               -1.08978   0.33629  0.61730 -1.765
## able.change.lifeb_neutral       -0.09545   0.90896  0.80111 -0.119
## able.change.lifec_agree          0.46411   1.59060  0.63596  0.730
##                                 Pr(>|z|)    
## sexb_female                       0.1097    
## racethnicb-nhblack                0.1598    
## racethnicc-hispanic              < 2e-16 ***
## racethnicd-asian                 < 2e-16 ***
## racethnice-native_american        0.0207 *  
## racethnicf-other                6.84e-06 ***
## educb_highschool_grad             0.8704    
## educc_college_bach                0.6803    
## educd_college+                    0.3836    
## marriedW4ab_married               0.3275    
## incomeW4b_$25,000>$50,000         0.3687    
## incomeW4c_$50,000>$100,000        0.6663    
## incomeW4e_$100,000+               0.3090    
## friendshipsb_1to5                 0.0407 *  
## friendshipsc_6+                   0.0543 .  
## mentorb_yes                       0.0531 .  
## insurance_statusb_yes_insurance   0.4584    
## general_healthb_fair              0.1332    
## general_healthc_excellent         0.2531    
## depressionW4b_yes                 0.0775 .  
## able.change.lifeb_neutral         0.9052    
## able.change.lifec_agree           0.4655    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                                 exp(coef) exp(-coef) lower .95 upper .95
## sexb_female                        1.5600    0.64101   0.90465    2.6902
## racethnicb-nhblack                 0.3523    2.83875   0.08225    1.5087
## racethnicc-hispanic               25.2196    0.03965  12.15850   52.3113
## racethnicd-asian                  77.5605    0.01289  36.54120  164.6259
## racethnice-native_american        14.5647    0.06866   1.50482  140.9670
## racethnicf-other                  22.1391    0.04517   5.74240   85.3546
## educb_highschool_grad              0.9025    1.10801   0.26322    3.0945
## educc_college_bach                 1.3008    0.76874   0.37232    4.5448
## educd_college+                     1.7419    0.57409   0.49985    6.0703
## marriedW4ab_married                0.6997    1.42924   0.34231    1.4301
## incomeW4b_$25,000>$50,000          0.6159    1.62355   0.21410    1.7719
## incomeW4c_$50,000>$100,000         1.1959    0.83617   0.53027    2.6972
## incomeW4e_$100,000+                1.5943    0.62724   0.64906    3.9160
## friendshipsb_1to5                  0.3031    3.29900   0.09664    0.9508
## friendshipsc_6+                    0.3291    3.03894   0.10609    1.0207
## mentorb_yes                        0.5695    1.75602   0.32183    1.0077
## insurance_statusb_yes_insurance    0.7545    1.32544   0.35827    1.5888
## general_healthb_fair               0.2312    4.32577   0.03417    1.5640
## general_healthc_excellent          0.3338    2.99596   0.05085    2.1912
## depressionW4b_yes                  0.3363    2.97361   0.10029    1.1276
## able.change.lifeb_neutral          0.9090    1.10016   0.18908    4.3697
## able.change.lifec_agree            1.5906    0.62869   0.45733    5.5321
## 
## Concordance= 0.924  (se = 0.015 )
## Likelihood ratio test= NA  on 22 df,   p=NA
## Wald test            = 548.9  on 22 df,   p=<2e-16
## Score (logrank) test = NA  on 22 df,   p=NA

stratify by sex

## Stratified 1 - level Cluster Sampling design (with replacement)
## With (131) clusters.
## svydesign(ids = ~psuscid, strata = ~region, weights = ~GSWGT4, 
##     data = addhealth, nest = T)
## Call:
## svycoxph(formula = Surv(time = age_transition1, event = transition1) ~ 
##     strata(sex) + racethnic + sexorient + educ + +marriedW4a + 
##         incomeW4 + friendships + mentor + insurance_status + 
##         general_health + depressionW4 + able.change.life, design = des2)
## 
##   n= 3939, number of events= 131 
## 
##                                     coef exp(coef) se(coef)      z
## racethnicb-nhblack              -1.06055   0.34627  0.74234 -1.429
## racethnicc-hispanic              3.21702  24.95354  0.36917  8.714
## racethnicd-asian                 4.35801  78.10122  0.38412 11.345
## racethnice-native_american       2.69932  14.86964  1.23150  2.192
## racethnicf-other                 3.08702  21.91171  0.68358  4.516
## sexorientb_bisexual              0.29946   1.34913  1.10776  0.270
## sexorientc_LGB                   1.09772   2.99733  0.77827  1.410
## educb_highschool_grad           -0.08264   0.92068  0.62531 -0.132
## educc_college_bach               0.28450   1.32910  0.63606  0.447
## educd_college+                   0.55204   1.73679  0.63925  0.864
## marriedW4ab_married             -0.35416   0.70176  0.36573 -0.968
## incomeW4b_$25,000>$50,000       -0.54227   0.58143  0.54922 -0.987
## incomeW4c_$50,000>$100,000       0.12958   1.13835  0.42374  0.306
## incomeW4e_$100,000+              0.42064   1.52293  0.46608  0.903
## friendshipsb_1to5               -1.18946   0.30439  0.57494 -2.069
## friendshipsc_6+                 -1.12250   0.32547  0.57296 -1.959
## mentorb_yes                     -0.58053   0.55960  0.29307 -1.981
## insurance_statusb_yes_insurance -0.27868   0.75678  0.37731 -0.739
## general_healthb_fair            -1.46284   0.23158  0.96777 -1.512
## general_healthc_excellent       -1.10204   0.33219  0.95425 -1.155
## depressionW4b_yes               -1.11825   0.32685  0.61842 -1.808
## able.change.lifeb_neutral       -0.08619   0.91742  0.80678 -0.107
## able.change.lifec_agree          0.46968   1.59948  0.64086  0.733
##                                 Pr(>|z|)    
## racethnicb-nhblack                0.1531    
## racethnicc-hispanic              < 2e-16 ***
## racethnicd-asian                 < 2e-16 ***
## racethnice-native_american        0.0284 *  
## racethnicf-other                 6.3e-06 ***
## sexorientb_bisexual               0.7869    
## sexorientc_LGB                    0.1584    
## educb_highschool_grad             0.8949    
## educc_college_bach                0.6547    
## educd_college+                    0.3878    
## marriedW4ab_married               0.3329    
## incomeW4b_$25,000>$50,000         0.3235    
## incomeW4c_$50,000>$100,000        0.7598    
## incomeW4e_$100,000+               0.3668    
## friendshipsb_1to5                 0.0386 *  
## friendshipsc_6+                   0.0501 .  
## mentorb_yes                       0.0476 *  
## insurance_statusb_yes_insurance   0.4601    
## general_healthb_fair              0.1306    
## general_healthc_excellent         0.2481    
## depressionW4b_yes                 0.0706 .  
## able.change.lifeb_neutral         0.9149    
## able.change.lifec_agree           0.4636    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##                                 exp(coef) exp(-coef) lower .95 upper .95
## racethnicb-nhblack                 0.3463    2.88795   0.08082    1.4835
## racethnicc-hispanic               24.9535    0.04007  12.10302   51.4482
## racethnicd-asian                  78.1012    0.01280  36.78668  165.8154
## racethnice-native_american        14.8696    0.06725   1.33060  166.1703
## racethnicf-other                  21.9117    0.04564   5.73871   83.6640
## sexorientb_bisexual                1.3491    0.74122   0.15386   11.8299
## sexorientc_LGB                     2.9973    0.33363   0.65204   13.7783
## educb_highschool_grad              0.9207    1.08615   0.27030    3.1360
## educc_college_bach                 1.3291    0.75239   0.38207    4.6236
## educd_college+                     1.7368    0.57577   0.49616    6.0796
## marriedW4ab_married                0.7018    1.42498   0.34267    1.4372
## incomeW4b_$25,000>$50,000          0.5814    1.71991   0.19815    1.7061
## incomeW4c_$50,000>$100,000         1.1384    0.87846   0.49612    2.6120
## incomeW4e_$100,000+                1.5229    0.65663   0.61088    3.7967
## friendshipsb_1to5                  0.3044    3.28531   0.09864    0.9393
## friendshipsc_6+                    0.3255    3.07251   0.10588    1.0005
## mentorb_yes                        0.5596    1.78699   0.31508    0.9939
## insurance_statusb_yes_insurance    0.7568    1.32139   0.36125    1.5854
## general_healthb_fair               0.2316    4.31821   0.03475    1.5434
## general_healthc_excellent          0.3322    3.01030   0.05118    2.1560
## depressionW4b_yes                  0.3269    3.05948   0.09726    1.0984
## able.change.lifeb_neutral          0.9174    1.09001   0.18873    4.4597
## able.change.lifec_agree            1.5995    0.62520   0.45549    5.6167
## 
## Concordance= 0.925  (se = 0.015 )
## Likelihood ratio test= NA  on 23 df,   p=NA
## Wald test            = 585.4  on 23 df,   p=<2e-16
## Score (logrank) test = NA  on 23 df,   p=NA

f. Interpret your results and write them up

Females have a higher risk to gain U.S. citizenship through naturalization then men.

Hispanics have a higher risk to gain U.S. citizenship through naturalization then nhwhites.

Asians have a higher risk to gain U.S. citizenship through naturalization then nhwhites.

Native Americans have a higher risk to gain U.S. citizenship through naturalization then nhwhites.

Other races/ethnicities have a higher risk to gain U.S. citizenship through naturalization then nhwhites.

LGB have a higher risk to gain U.S. citizenship through naturalization then straight individuals.

Immigrants who speak a native language with family and close friends have a higher risk to gain U.S. citizenship through naturalization then those who do not.

People who are not depressed are at a higher risk to gain U.S. citizenship through naturalization then people who are depressed.

For this analysis the National Longitudinal Study of Adolescent to Adult Health (ADD Health) was used to determine if certian conditions create resilience in some LGB individuals which results in a high likelihood for specific LGB immigrants with intersectional identities to gain U.S. citizenship through naturalization.. ADD Health is a nationally representative longitudinal study of adolescents in the United States who are between 7 and 12 years old. The survey was conducted in 1994 with follow up surveys in 1996, 2008, and 2016. A Cox Proportional Hazards Model was utilized to analyze the data.

For LGB individuals, the intersection of multiple identities can influence both mental and physical functioning (Juster, 2019). It is necessary to understand how the challenge of adversity can manifest different results across multiple identities. In the process of growth and identity formation, sexual minorities feel connected to family and friends but also feel a disconnect and a sense of otherness. LGB individuals adapt to how they identify with the “social categories to which they belong” (p.211) in response to a change in a social context. It is the incongruity in the assimilation of multiple stigmatized identities that can force introspection and the development of resilience as a coping mechanism (Gray, Mendelsohn, & Omoto, 2015). People who show resilience have unique neural substrates and behavioral performance and develop “regulatory control over the HPA axis” (Liu, Zhang, Ji, & Yang, 2018, p. 5), which can be observed in superior allostatic load scores for LGB white males over straight white males (Juster, 2019).

The theoretical framework that can help explain resilience in LGB immigrants is the Health Equity Promotion Model (HEPM). Within this model are four theories: The Stress Process Model, Minority Stress Theory; the Psychological Mediation Framework; and Life Course Theory. The HEPM expands on these theories by focusing on the lived experience of LGB immigrants to include social positions (SES, age, race/ethnicity), individual and structural environmental context (social exclusion, discrimination, victimization), and health-adverse and health-promoting pathways (behavioral, social, psychological, biological processes) along the course of an immigrant’s life (Fredriksen-Goldsen et al., 2014).

Research on immigrant status has established that social and family networks provide systems of support that prevent depression and foster coping mechanisms for LGB immigrants. Fredriksen-Goldsen et al. state that sexual minorities who cultivate social relationships through their life course provide the resilience to mitigate the influence of discrimination and social exclusion (2015). Specific promoters of reliance for immigrant LGB individuals are community connectedness and speaking a native language with family and close friends (Gray, Mendelsohn, & Omoto, 2015). Aspects of religion can provide social and community support and is an integral part of acculturation (Harley, 2016). For LGB youth, a mentor is shown to facilitate self-awareness and is instrumental in establishing a positive sense of self by helping navigate multiple identities. The social support of a role model can further help LGB youth understand the role of identity and how to develop into a “complete person” (Mulcahy, Dalton, Kolbert, & Crothers, 2016, p. 409).

Psychological and cognitive pathways that involve resilience include processes that mediate the relationship between stress and psychological health, such as active coping and the ability to find solutions to complex problems (Fredriksen-Goldsen et al., 2015). Resilience mechanisms also include the use of optimism while reframing a stressful event (Gray et al., 2015). Fredriksen-Goldsen et al. state that the observed biological component is the physiological ability of the body to regulate the HPI axis. Over time, resilience can help physiological regulation, which can help prevent chronic disease (Fredriksen-Goldsen et al.). ###Lastly, the intersection of privilege and oppression can lead to widely different outcomes. Some of these outcomes produce resilience as a mechanism for positive outcomes, (Colpitts & Gahagan, 2016) which guides this research question:

How does resilience influence the outcome of gaining United States citizenship through naturalization for LGB immigrants who reside in the United States? When considering the intersectional nature of LGB immigrant identity, this a proposed hypothesis:

The relationship between resilience and intersectionality creates conditions that favor unique identity combinations, which result in a high likelihood for specific individuals to gain U.S. citizenship through naturalization.

The results from this study can lead to suggestions for an immigration policy that can focus on individuals who are most likely to immigrate. The results can also help guide recommendations for policies that are designed to foster desired outcomes for potential immigration streams.