In 2004, the state of North Carolina released a large data set containing information on births recorded in this state. This data set is useful to researchers studying the relation between habits and practices of expectant mothers and the birth of their children. We will work with a random sample of observations from this data set.
Load the nc data set into our workspace.
## Please visit openintro.org for free statistics materials
##
## Attaching package: 'openintro'
## The following objects are masked from 'package:datasets':
##
## cars, trees
We have observations on 13 different variables, some categorical and some numerical. The meaning of each variable is as follows.
| variable | description |
|---|---|
fage |
father’s age in years. |
mage |
mother’s age in years. |
mature |
maturity status of mother. |
weeks |
length of pregnancy in weeks. |
premie |
whether the birth was classified as premature (premie) or full-term. |
visits |
number of hospital visits during pregnancy. |
marital |
whether mother is married or not married at birth. |
gained |
weight gained by mother during pregnancy in pounds. |
weight |
weight of the baby at birth in pounds. |
lowbirthweight |
whether baby was classified as low birthweight (low) or not (not low). |
gender |
gender of the baby, female or male. |
habit |
status of the mother as a nonsmoker or a smoker. |
whitemom |
whether mom is white or not white. |
## 'data.frame': 1000 obs. of 13 variables:
## $ fage : int NA NA 19 21 NA NA 18 17 NA 20 ...
## $ mage : int 13 14 15 15 15 15 15 15 16 16 ...
## $ mature : Factor w/ 2 levels "mature mom","younger mom": 2 2 2 2 2 2 2 2 2 2 ...
## $ weeks : int 39 42 37 41 39 38 37 35 38 37 ...
## $ premie : Factor w/ 2 levels "full term","premie": 1 1 1 1 1 1 1 2 1 1 ...
## $ visits : int 10 15 11 6 9 19 12 5 9 13 ...
## $ marital : Factor w/ 2 levels "married","not married": 1 1 1 1 1 1 1 1 1 1 ...
## $ gained : int 38 20 38 34 27 22 76 15 NA 52 ...
## $ weight : num 7.63 7.88 6.63 8 6.38 5.38 8.44 4.69 8.81 6.94 ...
## $ lowbirthweight: Factor w/ 2 levels "low","not low": 2 2 2 2 2 1 2 1 2 2 ...
## $ gender : Factor w/ 2 levels "female","male": 2 2 1 2 1 2 2 2 2 1 ...
## $ habit : Factor w/ 2 levels "nonsmoker","smoker": 1 1 1 1 1 1 1 1 1 1 ...
## $ whitemom : Factor w/ 2 levels "not white","white": 1 1 2 2 1 1 1 1 2 2 ...
As a first step in the analysis, we should consider summaries of the data. This can be done using the summary command:
## fage mage mature weeks
## Min. :14.00 Min. :13 mature mom :133 Min. :20.00
## 1st Qu.:25.00 1st Qu.:22 younger mom:867 1st Qu.:37.00
## Median :30.00 Median :27 Median :39.00
## Mean :30.26 Mean :27 Mean :38.33
## 3rd Qu.:35.00 3rd Qu.:32 3rd Qu.:40.00
## Max. :55.00 Max. :50 Max. :45.00
## NA's :171 NA's :2
## premie visits marital gained
## full term:846 Min. : 0.0 married :386 Min. : 0.00
## premie :152 1st Qu.:10.0 not married:613 1st Qu.:20.00
## NA's : 2 Median :12.0 NA's : 1 Median :30.00
## Mean :12.1 Mean :30.33
## 3rd Qu.:15.0 3rd Qu.:38.00
## Max. :30.0 Max. :85.00
## NA's :9 NA's :27
## weight lowbirthweight gender habit
## Min. : 1.000 low :111 female:503 nonsmoker:873
## 1st Qu.: 6.380 not low:889 male :497 smoker :126
## Median : 7.310 NA's : 1
## Mean : 7.101
## 3rd Qu.: 8.060
## Max. :11.750
##
## whitemom
## not white:284
## white :714
## NA's : 2
##
##
##
##
As you review the variable summaries, consider which variables are categorical and which are numerical. For numerical variables, are there outliers? If you aren’t sure or want to take a closer look at the data, make a graph.
Categorical variables(mature, premie, marital,lowbirthweight, gender, habit, whitemom) Numerical variables(fage, mage, weeks, visits, gained, weight)
var = c("fage", "mage", "weeks", "visits", "gained", "weight")
par(mfrow = c(2,3))
boxPlot(nc$fage, xlab = var[1])
boxPlot(nc$mage, xlab = var[2])
boxPlot(nc$weeks, xlab = var[3])
boxPlot(nc$visits, xlab = var[4])
boxPlot(nc$gained, xlab = var[5])
boxPlot(nc$weight, xlab = var[6])The length of pregnancy in weeks and weight of the baby at birth have multiple outliers below the median. The distributions are skewed to the left. The weight gained during the pregnancy by the mother and number of visites during the pregnancy have multiple outliers on top of the median. The distributions are little right skewed.
Consider the possible relationship between a mother’s smoking habit and the weight of her baby. Plotting the data is a useful first step because it helps us quickly visualize trends, identify strong associations, and develop research questions.
habit and weight. What does the plot highlight about the relationship between these two variables?Babies with higher weight are found more in non-smoker women than in smoker women. The box plots show how the medians of the two distributions compare, but we can also compare the means of the distributions using the following function to split the weight variable into the habit groups, then take the mean of each using the mean function.
## nc$habit: nonsmoker
## [1] 7.144273
## --------------------------------------------------------
## nc$habit: smoker
## [1] 6.82873
There is an observed difference, but is this difference statistically significant? In order to answer this question we will conduct a hypothesis test .
by command above but replacing mean with length. The observations are independent because we have a random sample. Non-smoker and smoker has samples greater than 30 and less than 10% of the population. We affirm that each variable is normal distributed since it is less skewed.## nc$habit: nonsmoker
## [1] 873
## --------------------------------------------------------
## nc$habit: smoker
## [1] 126
Next, we introduce a new function, inference, that we will use for conducting hypothesis tests and constructing confidence intervals.
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## H0: mu_nonsmoker - mu_smoker = 0
## HA: mu_nonsmoker - mu_smoker != 0
## Standard error = 0.134
## Test statistic: Z = 2.359
## p-value = 0.0184
The p-value is small(<5%), we reject the null hypoyhsis. There is a convincing evidence that the average of babies’ weight of non smoking women is different to the average of babies’ weight of smoking women.
Let’s pause for a moment to go through the arguments of this custom function. The first argument is y, which is the response variable that we are interested in: nc$weight. The second argument is the explanatory variable, x, which is the variable that splits the data into two groups, smokers and non-smokers: nc$habit. The third argument, est, is the parameter we’re interested in: "mean" (other options are "median", or "proportion".) Next we decide on the type of inference we want: a hypothesis test ("ht") or a confidence interval ("ci"). When performing a hypothesis test, we also need to supply the null value, which in this case is 0, since the null hypothesis sets the two population means equal to each other. The alternative hypothesis can be "less", "greater", or "twosided". Lastly, the method of inference can be "theoretical" or "simulation" based.
type argument to "ci" to construct and record a confidence interval for the difference between the weights of babies born to smoking and non-smoking mothers.inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( 0.0534 , 0.5777 )
By default the function reports an interval for (\(\mu_{nonsmoker} - \mu_{smoker}\)) . We can easily change this order by using the order argument:
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical",
order = c("smoker","nonsmoker"))## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## Observed difference between means (smoker-nonsmoker) = -0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( -0.5777 , -0.0534 )
weeks) and interpret it in context. Note that since you’re doing inference on a single population parameter, there is no explanatory variable, so you can omit the x variable from the function.inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 95 % Confidence interval = ( 38.1528 , 38.5165 )
We are 95% confident that on average, a North Carolina woman has a pregnancy that last between ( 38.1528 , 38.5165 ) weeks
conflevel = 0.90.inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical",
conflevel = 0.90)## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 90 % Confidence interval = ( 38.182 , 38.4873 )
inference(y = nc$gained, x = nc$mature, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_mature mom = 129, mean_mature mom = 28.7907, sd_mature mom = 13.4824
## n_younger mom = 844, mean_younger mom = 30.5604, sd_younger mom = 14.3469
## Observed difference between means (mature mom-younger mom) = -1.7697
##
## H0: mu_mature mom - mu_younger mom = 0
## HA: mu_mature mom - mu_younger mom != 0
## Standard error = 1.286
## Test statistic: Z = -1.376
## p-value = 0.1686
The p-value is large(>5%). We failed to reject the null hypothesis. There is no difference on the averages weight gained during pregnancy between mature women and younger women in North Carolina.
## [1] 35
## [1] 34
The age cutoff between younger(\(\le34\)) and mature mothers(\(>34\)) is 34. I compare the min of mature mothers and the max of younger mothers
inference function, report the statistical results, and also provide an explanation in plain language.Let’s look at variables visites and premis. Is the average of visites for women with full time pregnacies is different from the average of visites for women with premies?
The boxplot suggests that mothers with full term pregnancies have made more visites than women with premies.
Hypothesis \(H_0:\) The average of visites by mothers whith full term births is not different from the average of visites by mothers whith premie births. \(H_A:\)The average of visites by mothers whith full term births is different from the average of visites by mothers whith premie births.
inference(y = nc$visits, x = nc$premie, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_full term = 840, mean_full term = 12.3524, sd_full term = 3.7515
## n_premie = 150, mean_premie = 10.74, sd_premie = 4.7323
## Observed difference between means (full term-premie) = 1.6124
##
## H0: mu_full term - mu_premie = 0
## HA: mu_full term - mu_premie != 0
## Standard error = 0.407
## Test statistic: Z = 3.957
## p-value = 0
The p-value is null. We reject the null hypothesis. There is a convincing evidence that the average of visites by women with full time pregnacies is different from the average of visites by women with premies.