Try some regression modeling

library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.4.2
## ── Attaching packages ───────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.2.0       ✔ purrr   0.3.2  
## ✔ tibble  2.1.1       ✔ dplyr   0.8.0.1
## ✔ tidyr   0.8.3       ✔ stringr 1.4.0  
## ✔ readr   1.3.1       ✔ forcats 0.4.0
## Warning: package 'tibble' was built under R version 3.4.4
## Warning: package 'tidyr' was built under R version 3.4.4
## Warning: package 'readr' was built under R version 3.4.4
## Warning: package 'purrr' was built under R version 3.4.4
## Warning: package 'dplyr' was built under R version 3.4.4
## Warning: package 'stringr' was built under R version 3.4.4
## Warning: package 'forcats' was built under R version 3.4.4
## ── Conflicts ──────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## Evictions data
evic<-read.csv("/Users/heatherkitada/Downloads/cities.csv",
               header=TRUE, 
               stringsAsFactors = FALSE)

# ONC data
oncDF<-read.csv("/Users/heatherkitada/Downloads/oneNightCount.csv", 
                header=TRUE, 
                stringsAsFactors = FALSE)

oncG<-oncDF%>%
  gather(City, Count, -c(Location,YEAR))

unique(oncG$City)
##  [1] "SEATTLE"         "KENT"            "NORTH.END"      
##  [4] "EAST.SIDE"       "SW.KING.CO"      "WHITE.CNTR"     
##  [7] "FEDERAL.WAY"     "RENTON"          "NIGHT.OWL.BUSES"
## [10] "AUBURN"          "VASHON.ISLAND"   "TOTAL"
evic_onc<-evic%>%
  filter(name %in% c("Auburn", "Federal Way",
                     "Kent", "Renton", 
                     "Seattle", "Vashon", 
                     "White Center"))



nameToONC<-data.frame(name=c("Auburn", "Federal Way",
                             "Kent", "Renton", 
                             "Seattle", "Vashon", 
                             "White Center"),
                      City=c("AUBURN", "FEDERAL.WAY", 
                             "KENT", "RENTON", 
                             "SEATTLE", "VASHON.ISLAND", 
                             "WHITE.CNTR"))

evicCity<-evic_onc%>%
  left_join(nameToONC, by="name")%>%
  left_join(oncG)%>%
  mutate(homeless_rate=Count/population)%>%
  filter(Location=="TOTAL")
## Warning: Column `name` joining character vector and factor, coercing into
## character vector
## Joining, by = "City"
## Warning: Column `City` joining factor and character vector, coercing into
## character vector
head(evicCity)
##     GEOID year   name parent.location population poverty.rate
## 1 5303180 2000 Auburn      Washington      40314        12.77
## 2 5303180 2000 Auburn      Washington      40314        12.77
## 3 5303180 2000 Auburn      Washington      40314        12.77
## 4 5303180 2000 Auburn      Washington      40314        12.77
## 5 5303180 2000 Auburn      Washington      40314        12.77
## 6 5303180 2000 Auburn      Washington      40314        12.77
##   renter.occupied.households pct.renter.occupied median.gross.rent
## 1                    8427.06                45.8               639
## 2                    8427.06                45.8               639
## 3                    8427.06                45.8               639
## 4                    8427.06                45.8               639
## 5                    8427.06                45.8               639
## 6                    8427.06                45.8               639
##   median.household.income median.property.value rent.burden pct.white
## 1                   39208                153400          26     79.92
## 2                   39208                153400          26     79.92
## 3                   39208                153400          26     79.92
## 4                   39208                153400          26     79.92
## 5                   39208                153400          26     79.92
## 6                   39208                153400          26     79.92
##   pct.af.am pct.hispanic pct.am.ind pct.asian pct.nh.pi pct.multiple
## 1      2.37         7.49       2.36      3.45      0.49         3.79
## 2      2.37         7.49       2.36      3.45      0.49         3.79
## 3      2.37         7.49       2.36      3.45      0.49         3.79
## 4      2.37         7.49       2.36      3.45      0.49         3.79
## 5      2.37         7.49       2.36      3.45      0.49         3.79
## 6      2.37         7.49       2.36      3.45      0.49         3.79
##   pct.other eviction.filings evictions eviction.rate eviction.filing.rate
## 1      0.13           295.43    192.79          2.29                 3.51
## 2      0.13           295.43    192.79          2.29                 3.51
## 3      0.13           295.43    192.79          2.29                 3.51
## 4      0.13           295.43    192.79          2.29                 3.51
## 5      0.13           295.43    192.79          2.29                 3.51
## 6      0.13           295.43    192.79          2.29                 3.51
##   low.flag imputed subbed   City Location YEAR Count homeless_rate
## 1        1       0      0 AUBURN    TOTAL 2016   110   0.002728581
## 2        1       0      0 AUBURN    TOTAL 2015   132   0.003274297
## 3        1       0      0 AUBURN    TOTAL 2014    97   0.002406112
## 4        1       0      0 AUBURN    TOTAL 2013    57   0.001413901
## 5        1       0      0 AUBURN    TOTAL 2012    44   0.001091432
## 6        1       0      0 AUBURN    TOTAL 2011    45   0.001116238
### NOW that we have combine the ONC and Evication Labs data we can play with it!
# we can start by filtering on a given year and then doing regressions 
# might consider instead of Count using homeless_rate as the response 

this.year<-2016

thisDat<-evicCity%>%
  filter(year==this.year)

mod<-lm(homeless_rate~median.household.income+eviction.rate, data=thisDat)
summary(mod)
## 
## Call:
## lm(formula = homeless_rate ~ median.household.income + eviction.rate, 
##     data = thisDat)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -1.833e-03 -5.216e-04  1.819e-05  4.622e-04  1.933e-03 
## 
## Coefficients:
##                           Estimate Std. Error t value Pr(>|t|)    
## (Intercept)              7.213e-03  9.844e-04   7.328 9.94e-10 ***
## median.household.income -5.822e-08  1.418e-08  -4.107 0.000132 ***
## eviction.rate           -2.413e-03  2.928e-04  -8.243 3.09e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.0008106 on 56 degrees of freedom
##   (11 observations deleted due to missingness)
## Multiple R-squared:  0.5497, Adjusted R-squared:  0.5336 
## F-statistic: 34.18 on 2 and 56 DF,  p-value: 1.986e-10