In 2004, the state of North Carolina released a large data set containing information on births recorded in this state. This data set is useful to researchers studying the relation between habits and practices of expectant mothers and the birth of their children. We will work with a random sample of observations from this data set.
Load the nc data set into our workspace.
download.file("http://www.openintro.org/stat/data/nc.RData", destfile = "nc.RData")
load("nc.RData")
We have observations on 13 different variables, some categorical and some numerical. The meaning of each variable is as follows.
| variable | description |
|---|---|
fage |
father’s age in years. |
mage |
mother’s age in years. |
mature |
maturity status of mother. |
weeks |
length of pregnancy in weeks. |
premie |
whether the birth was classified as premature (premie) or full-term. |
visits |
number of hospital visits during pregnancy. |
marital |
whether mother is married or not married at birth. |
gained |
weight gained by mother during pregnancy in pounds. |
weight |
weight of the baby at birth in pounds. |
lowbirthweight |
whether baby was classified as low birthweight (low) or not (not low). |
gender |
gender of the baby, female or male. |
habit |
status of the mother as a nonsmoker or a smoker. |
whitemom |
whether mom is white or not white. |
nrow(nc)
## [1] 1000
Answer: The case is the birth details of the North Carolina baby. Our sample has 1000 cases.
As a first step in the analysis, we should consider summaries of the data. This can be done using the summary command:
summary(nc)
## fage mage mature weeks
## Min. :14.00 Min. :13 mature mom :133 Min. :20.00
## 1st Qu.:25.00 1st Qu.:22 younger mom:867 1st Qu.:37.00
## Median :30.00 Median :27 Median :39.00
## Mean :30.26 Mean :27 Mean :38.33
## 3rd Qu.:35.00 3rd Qu.:32 3rd Qu.:40.00
## Max. :55.00 Max. :50 Max. :45.00
## NA's :171 NA's :2
## premie visits marital gained
## full term:846 Min. : 0.0 married :386 Min. : 0.00
## premie :152 1st Qu.:10.0 not married:613 1st Qu.:20.00
## NA's : 2 Median :12.0 NA's : 1 Median :30.00
## Mean :12.1 Mean :30.33
## 3rd Qu.:15.0 3rd Qu.:38.00
## Max. :30.0 Max. :85.00
## NA's :9 NA's :27
## weight lowbirthweight gender habit
## Min. : 1.000 low :111 female:503 nonsmoker:873
## 1st Qu.: 6.380 not low:889 male :497 smoker :126
## Median : 7.310 NA's : 1
## Mean : 7.101
## 3rd Qu.: 8.060
## Max. :11.750
##
## whitemom
## not white:284
## white :714
## NA's : 2
##
##
##
##
As you review the variable summaries, consider which variables are categorical and which are numerical. For numerical variables, are there outliers? If you aren’t sure or want to take a closer look at the data, make a graph.
Consider the possible relationship between a mother’s smoking habit and the weight of her baby. Plotting the data is a useful first step because it helps us quickly visualize trends, identify strong associations, and develop research questions.
hist(nc$fage)
hist(nc$mage)
hist(nc$weeks)
hist(nc$gained)
hist(nc$weight)
habit and weight. What does the plot highlight about the relationship between these two variables?boxplot(weight~habit,data=nc,ylab="Weight")
Answer: The plot highlight the difference of baby weights of smoker and nonsmoker. From the plot, the median baby weight of nonsmoker is higher than smoker.
The box plots show how the medians of the two distributions compare, but we can also compare the means of the distributions using the following function to split the weight variable into the habit groups, then take the mean of each using the mean function.
by(nc$weight, nc$habit, mean)
## nc$habit: nonsmoker
## [1] 7.144273
## --------------------------------------------------------
## nc$habit: smoker
## [1] 6.82873
There is an observed difference, but is this difference statistically significant? In order to answer this question we will conduct a hypothesis test .
by command above but replacing mean with length.by(nc$weight, nc$habit, length)
## nc$habit: nonsmoker
## [1] 873
## --------------------------------------------------------
## nc$habit: smoker
## [1] 126
Answer: Data come from a simple random sample, the observation are independent, both within and between samples. In addition, nonsmoker has 873 cases, and smoker has 126 cases, and both data set over 30 observations.
Answer: \(H_0\): There is no difference in average birth weight of newborns from mothers who did and did not smoke. \(H_A\): There is some difference in average birth weight of newborns from mothers who did and did not smoke.
Next, we introduce a new function, inference, that we will use for conducting hypothesis tests and constructing confidence intervals.
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## H0: mu_nonsmoker - mu_smoker = 0
## HA: mu_nonsmoker - mu_smoker != 0
## Standard error = 0.134
## Test statistic: Z = 2.359
## p-value = 0.0184
Let’s pause for a moment to go through the arguments of this custom function. The first argument is y, which is the response variable that we are interested in: nc$weight. The second argument is the explanatory variable, x, which is the variable that splits the data into two groups, smokers and non-smokers: nc$habit. The third argument, est, is the parameter we’re interested in: "mean" (other options are "median", or "proportion".) Next we decide on the type of inference we want: a hypothesis test ("ht") or a confidence interval ("ci"). When performing a hypothesis test, we also need to supply the null value, which in this case is 0, since the null hypothesis sets the two population means equal to each other. The alternative hypothesis can be "less", "greater", or "twosided". Lastly, the method of inference can be "theoretical" or "simulation" based.
type argument to "ci" to construct and record a confidence interval for the difference between the weights of babies born to smoking and non-smoking mothers.inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## Observed difference between means (nonsmoker-smoker) = 0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( 0.0534 , 0.5777 )
By default the function reports an interval for (\(\mu_{nonsmoker} - \mu_{smoker}\)) . We can easily change this order by using the order argument:
inference(y = nc$weight, x = nc$habit, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical",
order = c("smoker","nonsmoker"))
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_smoker = 126, mean_smoker = 6.8287, sd_smoker = 1.3862
## n_nonsmoker = 873, mean_nonsmoker = 7.1443, sd_nonsmoker = 1.5187
## Observed difference between means (smoker-nonsmoker) = -0.3155
##
## Standard error = 0.1338
## 95 % Confidence interval = ( -0.5777 , -0.0534 )
weeks) and interpret it in context. Note that since you’re doing inference on a single population parameter, there is no explanatory variable, so you can omit the x variable from the function.inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical",
order = c("smoker","nonsmoker"))
## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 95 % Confidence interval = ( 38.1528 , 38.5165 )
Answer: We are 95% confidence that length of pregnancies falls between 38.15 weeks and 38.52 weeks.
conflevel = 0.90.inference(y = nc$weeks, est = "mean", type = "ci", null = 0,
alternative = "twosided", method = "theoretical",
order = c("smoker","nonsmoker"),conflevel = 0.90)
## Single mean
## Summary statistics:
## mean = 38.3347 ; sd = 2.9316 ; n = 998
## Standard error = 0.0928
## 90 % Confidence interval = ( 38.182 , 38.4873 )
Answer: We are 90% confidence that length of pregnancies falls between 38.18 weeks and 38.49 weeks.
inference(y = nc$weight, x=nc$mature, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_mature mom = 133, mean_mature mom = 7.1256, sd_mature mom = 1.6591
## n_younger mom = 867, mean_younger mom = 7.0972, sd_younger mom = 1.4855
## Observed difference between means (mature mom-younger mom) = 0.0283
##
## H0: mu_mature mom - mu_younger mom = 0
## HA: mu_mature mom - mu_younger mom != 0
## Standard error = 0.152
## Test statistic: Z = 0.186
## p-value = 0.8526
Answer: We can’t reject the null hypothesis and there is no difference in birth weight of babies born to younger and mature mothers
by(nc$mage,nc$mature,range)
## nc$mature: mature mom
## [1] 35 50
## --------------------------------------------------------
## nc$mature: younger mom
## [1] 13 34
Answer: We use by() to compare the range of the mature mom and younger mon. We can see the cut off age is 34.
inference function, report the statistical results, and also provide an explanation in plain language.My question is: Is any difference of the weight of baby for white mother and non-white mother?
\(H_0\): There is no difference in average birth weight of newborns from mothers who is white or non-white. \(H_A\): There is some differences in average birth weight of newborns from mothers who is white or non-white.
inference(y = nc$weight, x=nc$whitemom, est = "mean", type = "ht", null = 0,
alternative = "twosided", method = "theoretical")
## Response variable: numerical, Explanatory variable: categorical
## Difference between two means
## Summary statistics:
## n_not white = 284, mean_not white = 6.7195, sd_not white = 1.6207
## n_white = 714, mean_white = 7.2505, sd_white = 1.4333
## Observed difference between means (not white-white) = -0.5309
##
## H0: mu_not white - mu_white = 0
## HA: mu_not white - mu_white != 0
## Standard error = 0.11
## Test statistic: Z = -4.821
## p-value = 0
P value is 0. We can reject null hypothsis and there is some differences in average birth weight of newborns from mothers who is white or non-white.