This can be applied as a Gaussian random
mu = 0
var = 1/4
y = 365
n = y-1
sd = sqrt(var)
x = (100-100)/sqrt(n)
pnorm(x, mean = 0, sd = sd, lower.tail = FALSE)
## [1] 0.5
x <- (110-100)/sqrt(n)
pnorm(x, mean = 0, sd = sd, lower.tail = FALSE)
## [1] 0.1472537
x <- (120-100)/sqrt(n)
pnorm(x, mean = 0, sd = sd, lower.tail = FALSE)
## [1] 0.01801584
For binomial distribution, \(P(X=k) = {n \choose k} p^k q^{n-k}\), where \(q=1-p\).
The moment generating function is \(M_X(t)=(q+pe^t)^n\).
First moment: \(M'_X(t) = n(q+pe^t)^{n-1}pe^t\). The expected value is the first moment evaluated at \(t=0\): \[ \begin{split} E(X)=M'_X(0) &= n(q+pe^0)^{n-1}pe^0\\ &= n(q+p)^{n-1}p\\ &= np(1-p+p)^{n-1}\\ &= np1^{n-1}\\ &=np \end{split} \] Second moment: \(M''_X(t) = n(n-1)(q+pe^t)^{n-2}p^2 e^{2t}+n(q+pe^t)^{n-1}pe^t\). Evaluate the second moment at \(t=0\): \[ \begin{split} E(X^2)=M''_X(0) &= n(n-1)(q+pe^0)^{n-2}p^2 e^0+n(q+pe^0)^{n-1}pe^0\\ &= n(n-1)(1-p+p)^{n-2}p^2+n(1-p+p)^{n-1}p\\ &= n(n-1)p^2+np \end{split} \] Variance: \(V(X)=E(X^2)-E(X)^2\): \[ \begin{split} V(X) &= n(n-1)p^2+np-n^2p^2 \\ &= np((n-1)p+1-np) \\ &= np(np-p+1-np) \\ &= np(1-p) \\ &= npq \end{split} \] Then we got: \(E(X)=np\) and \(V(X)=npq\).
Reference: http://math.arizona.edu/~tgk/464_10/chap4_9_29.pdf.
For exponential distribution, \(f(x)=\lambda e^{-\lambda x}\). The moment generating function is \(M_X(t)=\frac{\lambda}{\lambda-t}, t<\lambda\). Using WolframAlpha, we get \(M'_X(t) = \frac{\lambda}{(\lambda-t)^2}\) and \(M''_X(t) = \frac{2\lambda}{(\lambda-t)^3}\). Expected value: \[ \begin{split} E(X)=M'_X(0) &= \frac{\lambda}{(\lambda-0)^2} \\ &= \frac{\lambda}{\lambda^2}\\ &= \frac{1}{\lambda} \end{split} \] Variance: \[ \begin{split} V(X) = E(X^2)-E(X)^2 &= M''_X(0)-M'_X(0)^2 \\ &=\frac{2\lambda}{(\lambda-0)^3} - \frac{1}{\lambda^2}\\ &=\frac{2\lambda}{\lambda^3} - \frac{1}{\lambda^2}\\ &=\frac{2}{\lambda^2} - \frac{1}{\lambda^2}\\ &=\frac{1}{\lambda^2} \end{split} \]