#Loading the dataset that has been reset into a long version
data.test4 <- read.csv("/Volumes/TOSHIBA EXT/Dropbox/ADULT STUDY/adult_study011615.csv")
#Creating a new variable that is the mean of all LIFE SATISFACTION questions
data.test4$LS <- apply(data.test4[, c("LS1","LS2", "LS3", "LS4", "LS5")], 1, mean, na.rm = TRUE)
library(reshape2); library(car)
## Warning: package 'car' was built under R version 3.1.2
data <- data.test4[,c("ID", "GROUP", "wave", "LS")]
data <- dcast(data, ID + GROUP ~ wave, mean, value.var = "LS")
data[,3:5] <- apply(data[,3:5],2,function(x) recode(x, "NaN = NA") )
data2 <- as.data.frame(mapply(c,data[,1:4], data[,c(1:3,5)]))
data2$wave <- rep(1:2, each=89)
names(data2) <- c("ID", "GROUP", "BASELINE", "LS", "WAVE")
Drop the cases where participants did not complete the intervention completely
#data2 <- data2[-c(which(data2$GROUP ==2)),]
Intention to treat model (ITT) where we keep the cases who dropped out and did not complete the study (http://en.wikipedia.org/wiki/Intention-to-treat_analysis).
data2[which(data2$GROUP ==2), "GROUP"] <- 1
For lme to work GROUP and ID need to be seen as factors
data2$GROUP <-as.factor(data2$GROUP)
data2$ID <-as.factor(data2$ID)
Load the psych package
library(psych)
##
## Attaching package: 'psych'
##
## The following object is masked from 'package:car':
##
## logit
Describe the LIFE SATISFACTION variable by the GROUP variable
describeBy(data2[,3:4], group = data2$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew kurtosis
## BASELINE 1 86 4.46 1.29 4.6 4.51 1.19 1.6 7 5.4 -0.3 -0.46
## LS 2 59 4.68 1.39 5.0 4.78 0.89 1.0 7 6.0 -0.8 0.19
## se
## BASELINE 0.14
## LS 0.18
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 88 4.63 1.37 4.9 4.69 1.33 1.6 6.8 5.2 -0.41
## LS 2 54 5.33 0.91 5.6 5.45 0.59 2.2 6.6 4.4 -1.48
## kurtosis se
## BASELINE -0.69 0.15
## LS 2.34 0.12
Create a plot that visualizes LIFE SATISFACTION variable by the GROUP variable
library(ggplot2)
##
## Attaching package: 'ggplot2'
##
## The following object is masked from 'package:psych':
##
## %+%
Take a look at the residuals
residual <- lm(LS ~ BASELINE, data=data2)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data2$LS))
sel2 <- which(!is.na(data2$BASELINE))
data2$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, LS, data=data2, geom="boxplot")
## Warning: Removed 65 rows containing non-finite values (stat_boxplot).
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data2, geom="boxplot")
## Warning: Removed 69 rows containing non-finite values (stat_boxplot).
# Load the nlme package
library(nlme)
Two way repeated measures Graphing the Two-Way Interaction.
with(data2, boxplot(LS ~ WAVE + GROUP))
with(data2, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModel <- lme(LS ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data2, method = "ML", na.action = "na.omit")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModel)
## Linear mixed-effects model fit by maximum likelihood
## Data: data2
## AIC BIC logLik
## 285.3 304.1 -135.6
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.7556 0.5452
##
## Fixed effects: LS ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 1.8977 0.4445 66 4.269 0.0001
## GROUP1 0.8493 0.3954 66 2.148 0.0354
## WAVE 0.0861 0.1633 38 0.527 0.6010
## BASELINE 0.5622 0.0813 66 6.918 0.0000
## GROUP1:WAVE -0.1411 0.2381 38 -0.592 0.5571
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.337
## WAVE -0.458 0.569
## BASELINE -0.799 -0.087 -0.055
## GROUP1:WAVE 0.320 -0.832 -0.686 0.031
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -3.416279 -0.327527 0.002786 0.285883 1.985580
##
## Number of Observations: 109
## Number of Groups: 69
Table with P-values
| Value | Std.Error | DF | t-value | p-value | |
|---|---|---|---|---|---|
| (Intercept) | 1.8977 | 0.4445 | 66.0000 | 4.2691 | 0.0001 |
| GROUP1 | 0.8493 | 0.3954 | 66.0000 | 2.1479 | 0.0354 |
| WAVE | 0.0861 | 0.1633 | 38.0000 | 0.5274 | 0.6010 |
| BASELINE | 0.5622 | 0.0813 | 66.0000 | 6.9182 | 0.0000 |
| GROUP1:WAVE | -0.1411 | 0.2381 | 38.0000 | -0.5924 | 0.5571 |
``` Table with confidence intervals
| est. | lower | upper | |
|---|---|---|---|
| (Intercept) | 1.8977 | 1.0308 | 2.7646 |
| GROUP1 | 0.8493 | 0.0781 | 1.6204 |
| WAVE | 0.0861 | -0.2369 | 0.4092 |
| BASELINE | 0.5622 | 0.4037 | 0.7207 |
| GROUP1:WAVE | -0.1411 | -0.6119 | 0.3298 |