#Loading the dataset that has been reset into a long version
data.test4 <- read.csv("/Volumes/TOSHIBA EXT/Dropbox/ADULT STUDY/adult_study011615.csv")
#Creating a new variable that is the mean of all positive purpose HAPPI questions
library(reshape2); library(car)
## Warning: package 'car' was built under R version 3.1.2
data <- data.test4[,c("ID", "GROUP", "wave", "PERMA17")]
data <- dcast(data, ID + GROUP ~ wave, mean, value.var = "PERMA17")
data[,3:5] <- apply(data[,3:5],2,function(x) recode(x, "NaN = NA") )
data2 <- as.data.frame(mapply(c,data[,1:4], data[,c(1:3,5)]))
data2$wave <- rep(1:2, each=89)
names(data2) <- c("ID", "GROUP", "BASELINE", "PERMA17", "WAVE")
Drop the cases where participants did not complete the intervention completely
#data2 <- data2[-c(which(data2$GROUP ==2)),]
Intention to treat model (ITT) where we keep the cases who dropped out and did not complete the study (http://en.wikipedia.org/wiki/Intention-to-treat_analysis).
data2[which(data2$GROUP ==2), "GROUP"] <- 1
For lme to work GROUP and ID need to be seen as factors
data2$GROUP <-as.factor(data2$GROUP)
data2$ID <-as.factor(data2$ID)
Load the psych package
library(psych)
##
## Attaching package: 'psych'
##
## The following object is masked from 'package:car':
##
## logit
Describe the HAPPI variable by the GROUP variable
describeBy(data2[,3:4], group = data2$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 6.81 1.83 7 6.97 1.48 2 10 8 -0.75
## PERMA17 2 59 7.05 2.08 8 7.35 1.48 0 10 10 -1.41
## kurtosis se
## BASELINE -0.02 0.20
## PERMA17 1.96 0.27
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 88 6.70 2.02 7 6.92 1.48 2 10 8 -0.93
## PERMA17 2 54 7.72 1.50 8 7.93 1.48 3 10 7 -1.38
## kurtosis se
## BASELINE 0.13 0.22
## PERMA17 2.23 0.20
Create a plot that visualizes HAPPI variable by the GROUP variable
library(ggplot2)
##
## Attaching package: 'ggplot2'
##
## The following object is masked from 'package:psych':
##
## %+%
Take a look at the residuals
residual <- lm(PERMA17 ~ BASELINE, data=data2)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data2$PERMA17))
sel2 <- which(!is.na(data2$BASELINE))
data2$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, PERMA17, data=data2, geom="boxplot")
## Warning: Removed 65 rows containing non-finite values (stat_boxplot).
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data2, geom="boxplot")
## Warning: Removed 69 rows containing non-finite values (stat_boxplot).
# Load the nlme package
library(nlme)
Two way repeated measures Graphing the Two-Way Interaction.
with(data2, boxplot(PERMA17 ~ WAVE + GROUP))
with(data2, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModel <- lme(PERMA17 ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data2, method = "ML", na.action = "na.omit")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Assesses whether the effects gets bigger between time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModel)
## Linear mixed-effects model fit by maximum likelihood
## Data: data2
## AIC BIC logLik
## 391.6 410.4 -188.8
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 1.179 0.9204
##
## Fixed effects: PERMA17 ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 2.8248 0.7709 66 3.664 0.0005
## GROUP1 0.9699 0.6521 66 1.487 0.1417
## WAVE 0.0371 0.2739 38 0.136 0.8929
## BASELINE 0.5751 0.0924 66 6.222 0.0000
## GROUP1:WAVE -0.0986 0.3998 38 -0.247 0.8065
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.373
## WAVE -0.469 0.576
## BASELINE -0.819 -0.020 -0.022
## GROUP1:WAVE 0.320 -0.846 -0.685 0.017
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.8321 -0.3654 0.1024 0.4057 1.8754
##
## Number of Observations: 109
## Number of Groups: 69
Table with P-values
| Value | Std.Error | DF | t-value | p-value | |
|---|---|---|---|---|---|
| (Intercept) | 2.8248 | 0.7709 | 66.0000 | 3.6642 | 0.0005 |
| GROUP1 | 0.9699 | 0.6521 | 66.0000 | 1.4873 | 0.1417 |
| WAVE | 0.0371 | 0.2739 | 38.0000 | 0.1355 | 0.8929 |
| BASELINE | 0.5751 | 0.0924 | 66.0000 | 6.2215 | 0.0000 |
| GROUP1:WAVE | -0.0986 | 0.3998 | 38.0000 | -0.2467 | 0.8065 |
``` Table with confidence intervals
| est. | lower | upper | |
|---|---|---|---|
| (Intercept) | 2.8248 | 1.3213 | 4.3282 |
| GROUP1 | 0.9699 | -0.3019 | 2.2417 |
| WAVE | 0.0371 | -0.5045 | 0.5787 |
| BASELINE | 0.5751 | 0.3948 | 0.7554 |
| GROUP1:WAVE | -0.0986 | -0.8892 | 0.6920 |