download.file("http://www.openintro.org/stat/data/ames.RData", destfile = "ames.RData")
load("ames.RData")
population <- ames$Gr.Liv.Area
samp <- sample(population, 60)
Exercise 1
hist(samp, breaks = 12)

mean(samp)
## [1] 1540.217
sd(samp)
## [1] 474.9579
Confidence Intervals
sample_mean <- mean(samp)
se <- sd(samp) / sqrt(60)
lower <- sample_mean - 1.96 * se
upper <- sample_mean + 1.96 * se
c(lower, upper)
## [1] 1420.036 1660.398
mean(population)
## [1] 1499.69
For Loop
samp_mean <- rep(NA, 50)
samp_sd <- rep(NA, 50)
n <- 60
for(i in 1:50){
samp <- sample(population, n)
samp_mean[i] <- mean(samp)
samp_sd[i] <- sd(samp)
}
lower_vector <- samp_mean - 1.96 * samp_sd / sqrt(n)
upper_vector <- samp_mean + 1.96 * samp_sd / sqrt(n)
c(lower_vector[1], upper_vector[1])
## [1] 1390.692 1700.274
On Your Own
plot_ci(lower_vector, upper_vector, mean(population))

samp_mean <- rep(NA, 50)
samp_sd <- rep(NA, 50)
n <- 60
for(i in 1:50){
samp <- sample(population, n)
samp_mean[i] <- mean(samp)
samp_sd[i] <- sd(samp)
}
qnorm(.95, 0,1)
## [1] 1.644854
lower_vector <- samp_mean - 1.645 * samp_sd / sqrt(n)
upper_vector <- samp_mean + 1.645 * samp_sd / sqrt(n)
c(lower_vector[1], upper_vector[1])
## [1] 1362.548 1553.452
plot_ci(lower_vector, upper_vector, mean(population))
