x <- 100
num_of_days <- 365
n <- num_of_days - 1
init_mean <- 0
y_1 <- 100
meanY <- init_mean + y_1
Var_X <- 0.25 * n
stdev <- sqrt(Var_X)
pnorm(x, meanY, stdev, lower.tail = F)
## [1] 0.5
pnorm(110, meanY, stdev, lower.tail = F)
## [1] 0.1472537
pnorm(120, meanY, stdev, lower.tail = F)
## [1] 0.01801584
The binomial exponential function is given as: \((_n^k)p^k(1-p^{n-k})\)
Moment generating function(\(M_X\)): \(M_X(t)=\sum ^n_{j=1}(^n_k)p^k(1−p)^{n−k}e{tj}= (1−p+pe^t)n\)
=> \(M_X′(t)=npe^t(1−p+pe^t)^{n−1}\)
\(\mu_1=g′(0)=npe^0(1−p+pe^0){n−1}=np\)
=> \(M_X′′(t)=npe^t(1−p+pe^t)^{n−1}(1−p+npe^t)\) => \(\mu_2=M_X′′(0)=npe^0(1−p+pe^0)^{n−1}(1−p+npe^0)=np(1−p+np)\)
The expected value: \(\mu=\mu_1=np\) For the variance (\(\mu\)): \(\mu_2−μ^2_1=np(1−p+np)−np^2\)
Therefore, \(\mu = np(1−p)\)
The exponential distribution function is given as: \(f(x)= \lambda e^{−\lambda x}\)
so, \(M_X(t)=E(e^{tx})=\int ^∞_0e^{tx}f(x)dx\)
=> \(M_X(t)=E(e^{tx})=\int ^∞_0e^{tx}λe^{−λx}dx\)
=> \(M_X(t) = \lambda \int^∞_0e^{tx}e^{−λx}dx\)
=> \(M_X(t) = \lambda \int^∞_0e^{(t−λ)x}dx\)
=> \(M_X(t)=\lambda \int ^∞_0e^{(t−λ)x}dx\)
Therefore, the moment generating function is: \(M_X(t)=\frac {\lambda}{t−λ}\)
=> \(M_X'(0) = E(x)= \frac {\lambda}{(1-\lambda)^2} = \frac{1}{\lambda}\): The first moment
\(M_X''(0) = E(x)^2= \frac {-2\lambda}{(1-\lambda)^3} = \frac{1}{\lambda}\) : The second moment
=> \(V(X)=E(X^2)−E(X)^2=\frac{−2\lambda}{(t−λ)}^3−\frac{1}{\lambda^2}=\frac{1}{\lambda^2}\)
Therefore, the variance (V(X)) of the exponential distribution: \(V(X)=\frac{1}{\lambda^2}\)