Repeated Measures MLQ (all Purpose Questions)

#Loading the dataset that has been reset into a long version
data.test4 <- read.csv("/Volumes/TOSHIBA EXT/Dropbox/ADULT STUDY/adult_study011615.csv")
# Load the psych package
library(psych)

Creating a new variable that is the mean of all purpose meanmlq questions

data.test4$meanmlq <- apply(data.test4[, c("MLQ1" ,"MLQ4", "MLQ5", "MLQ6", "MLQ9")], 1, mean, na.rm = TRUE)


library(reshape2); library(car)
## Warning: package 'car' was built under R version 3.1.2
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:psych':
## 
##     logit
data <- data.test4[,c("ID", "GROUP", "wave", "meanmlq")]
data <- dcast(data, ID + GROUP ~ wave, mean, value.var = "meanmlq")
data[,3:5] <- apply(data[,3:5],2,function(x) recode(x, "NaN = NA") )

Create new data set with ID Group baseline meanmlq and wave so that we have Baseline, time 1 and 2 to compare to

data2 <- as.data.frame(mapply(c,data[,1:4], data[,c(1:3,5)]))
data2$wave <- rep(1:2, each=89)
names(data2) <- c("ID", "GROUP", "BASELINE", "meanmlq", "WAVE")

Drop the cases where participants did not complete the intervention completely

#data2 <- data2[-c(which(data2$GROUP ==2)),]

Intention to treat model (ITT) where we keep the cases who dropped out and did not complete the study (http://en.wikipedia.org/wiki/Intention-to-treat_analysis).

data2[which(data2$GROUP ==2), "GROUP"] <- 1

For lme to work GROUP and ID need to be seen as factors

data2$GROUP <-as.factor(data2$GROUP)
data2$ID <-as.factor(data2$ID)

Describe the meanmlq variable by the GROUP variable

describeBy(data2[,3:4], group = data2$GROUP)
## group: 0
##          vars  n mean   sd median trimmed  mad min max range  skew
## BASELINE    1 86 4.32 0.72    4.4    4.34 0.89 2.6 5.8   3.2 -0.21
## meanmlq     2 59 4.51 0.72    4.6    4.51 0.59 3.0 5.8   2.8 -0.07
##          kurtosis   se
## BASELINE    -0.28 0.08
## meanmlq     -0.51 0.09
## -------------------------------------------------------- 
## group: 1
##          vars  n mean   sd median trimmed  mad min max range  skew
## BASELINE    1 88 4.25 0.93    4.2    4.26 0.89 2.2 5.8   3.6 -0.04
## meanmlq     2 54 4.91 0.69    5.0    4.95 0.59 3.0 6.0   3.0 -0.50
##          kurtosis   se
## BASELINE    -0.69 0.10
## meanmlq     -0.34 0.09

Create a plot that visualizes meanmlq variable by the GROUP variable

library(ggplot2)
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked from 'package:psych':
## 
##     %+%

Take a look at the residuals

residual <- lm(meanmlq ~ BASELINE, data=data2)$residual

Plot the residuals to see that they are random

plot(density(residual))# A density plot

plot of chunk unnamed-chunk-10

qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)

plot of chunk unnamed-chunk-10 Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.

data2$residual <- NA
sel1 <- which(!is.na(data2$meanmlq)) 
sel2 <- which(!is.na(data2$BASELINE))
data2$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanmlq, data=data2, geom="boxplot")
## Warning: Removed 65 rows containing non-finite values (stat_boxplot).

plot of chunk unnamed-chunk-11 Plot of the difference between intervention and control groups.

qplot(GROUP, residual, data=data2, geom="boxplot")
## Warning: Removed 69 rows containing non-finite values (stat_boxplot).

plot of chunk unnamed-chunk-12 Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanmlq and the Residuals

# Load the nlme package
library(nlme)
with(data2, boxplot(meanmlq ~ WAVE + GROUP))

plot of chunk unnamed-chunk-13

with(data2, boxplot(residual ~ WAVE + GROUP))

plot of chunk unnamed-chunk-13

Linear Mixed-Effects Model

Comparing Basline to Wave 2 and 3 by Group.

fullModel <- lme(meanmlq ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data2, method = "ML", na.action = "na.omit")
Results

Explanation of significance:

We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.

summary(fullModel)
## Linear mixed-effects model fit by maximum likelihood
##  Data: data2 
##     AIC   BIC logLik
##   176.4 195.3 -81.21
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept) Residual
## StdDev:      0.3895   0.3742
## 
## Fixed effects: meanmlq ~ GROUP * WAVE + BASELINE 
##               Value Std.Error DF t-value p-value
## (Intercept)  1.7817    0.3768 66   4.728  0.0000
## GROUP1       0.7796    0.2538 66   3.072  0.0031
## WAVE         0.1315    0.1097 38   1.198  0.2382
## BASELINE     0.5646    0.0779 66   7.246  0.0000
## GROUP1:WAVE -0.2377    0.1605 38  -1.481  0.1469
##  Correlation: 
##             (Intr) GROUP1 WAVE   BASELI
## GROUP1      -0.289                     
## WAVE        -0.363  0.595              
## BASELINE    -0.890 -0.024 -0.042       
## GROUP1:WAVE  0.225 -0.875 -0.685  0.054
## 
## Standardized Within-Group Residuals:
##      Min       Q1      Med       Q3      Max 
## -3.18865 -0.39792  0.06977  0.43677  1.90553 
## 
## Number of Observations: 109
## Number of Groups: 69

Table with P-values

Value Std.Error DF t-value p-value
(Intercept) 1.7817 0.3768 66.0000 4.7282 0.0000
GROUP1 0.7796 0.2538 66.0000 3.0716 0.0031
WAVE 0.1315 0.1097 38.0000 1.1984 0.2382
BASELINE 0.5646 0.0779 66.0000 7.2456 0.0000
GROUP1:WAVE -0.2377 0.1605 38.0000 -1.4809 0.1469

``` Table with confidence intervals

est. lower upper
(Intercept) 1.7817 1.0468 2.5165
GROUP1 0.7796 0.2846 1.2745
WAVE 0.1315 -0.0855 0.3484
BASELINE 0.5646 0.4126 0.7165
GROUP1:WAVE -0.2377 -0.5551 0.0797