LET- Life Engagement Test (Scheier et al., 2006)

Repeated Measures for Life Engagement, w/ only the positive questions

#Loading the dataset that has been reset into a long version
data.test4 <- read.csv("/Volumes/TOSHIBA EXT/Dropbox/ADULT STUDY/adult_study011615.csv")
# Load the psych package
library(psych)

Creating a new variable that is the mean of all positive purpose meanLET questions

items <- c("LET1", "LET2", "LET3", "LET4", "LET5", "LET6")
scaleKey <- c(1, 1, 1,1,1,1)
data.test4$meanLET  <- scoreItems(scaleKey, items=data.test4[,items], delete=FALSE)$score
## Warning: NaNs produced
library(reshape2); library(car)
## Warning: package 'car' was built under R version 3.1.2
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:psych':
## 
##     logit
data <- data.test4[,c("ID", "GROUP", "wave", "meanLET")]
data <- dcast(data, ID + GROUP ~ wave, mean, value.var = "meanLET")
data[,3:5] <- apply(data[,3:5],2,function(x) recode(x, "NaN = NA") )

Create new data set with ID Group baseline meanLET and wave so that we have Baseline, time 1 and 2 to compare to

data2 <- as.data.frame(mapply(c,data[,1:4], data[,c(1:3,5)]))
data2$wave <- rep(1:2, each=89)
names(data2) <- c("ID", "GROUP", "BASELINE", "meanLET", "WAVE")

Drop the cases where participants did not complete the intervention completely

#data2 <- data2[-c(which(data2$GROUP ==2)),]

Intention to treat model (ITT) where we keep the cases who dropped out and did not complete the study (http://en.wikipedia.org/wiki/Intention-to-treat_analysis).

data2[which(data2$GROUP ==2), "GROUP"] <- 1

For lme to work GROUP and ID need to be seen as factors

data2$GROUP <-as.factor(data2$GROUP)
data2$ID <-as.factor(data2$ID)

Describe the meanLET variable by the GROUP variable

describeBy(data2[,3:4], group = data2$GROUP)
## group: 0
##          vars  n mean   sd median trimmed  mad  min  max range  skew
## BASELINE    1 86 3.21 0.41   3.17    3.21 0.49 2.17 4.17  2.00 -0.07
## meanLET     2 59 3.07 0.30   3.00    3.04 0.25 2.67 4.00  1.33  1.08
##          kurtosis   se
## BASELINE    -0.24 0.04
## meanLET      1.39 0.04
## -------------------------------------------------------- 
## group: 1
##          vars  n mean  sd median trimmed  mad  min max range skew kurtosis
## BASELINE    1 88 3.20 0.4   3.17    3.19 0.49 2.33   4  1.67 0.28    -0.41
## meanLET     2 54 3.07 0.3   3.00    3.04 0.25 2.50   4  1.50 1.06     1.24
##            se
## BASELINE 0.04
## meanLET  0.04

Create a plot that visualizes meanLET variable by the GROUP variable

library(ggplot2)
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked from 'package:psych':
## 
##     %+%

Take a look at the residuals

residual <- lm(meanLET ~ BASELINE, data=data2)$residual

Plot the residuals to see that they are random

plot(density(residual))# A density plot

plot of chunk unnamed-chunk-10

qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)

plot of chunk unnamed-chunk-10 Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.

data2$residual <- NA
sel1 <- which(!is.na(data2$meanLET)) 
sel2 <- which(!is.na(data2$BASELINE))
data2$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanLET, data=data2, geom="boxplot")
## Warning: Removed 65 rows containing non-finite values (stat_boxplot).

plot of chunk unnamed-chunk-11 Plot of the difference between intervention and control groups.

qplot(GROUP, residual, data=data2, geom="boxplot")
## Warning: Removed 69 rows containing non-finite values (stat_boxplot).

plot of chunk unnamed-chunk-12 Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanLET and the Residuals

# Load the nlme package
library(nlme)
with(data2, boxplot(meanLET ~ WAVE + GROUP))

plot of chunk unnamed-chunk-13

with(data2, boxplot(residual ~ WAVE + GROUP))

plot of chunk unnamed-chunk-13

Linear Mixed-Effects Model

Comparing Basline to Wave 2 and 3 by Group.

fullModel <- lme(meanLET ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data2, method = "ML", na.action = "na.omit")
Results

Explanation of significance:

We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.

summary(fullModel)
## Linear mixed-effects model fit by maximum likelihood
##  Data: data2 
##    AIC   BIC logLik
##   36.7 55.54 -11.35
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept) Residual
## StdDev:     0.06798     0.26
## 
## Fixed effects: meanLET ~ GROUP * WAVE + BASELINE 
##               Value Std.Error DF t-value p-value
## (Intercept)  1.9569   0.24880 66   7.865  0.0000
## GROUP1       0.3495   0.15755 66   2.218  0.0300
## WAVE         0.1195   0.07121 38   1.678  0.1015
## BASELINE     0.3030   0.07250 66   4.179  0.0001
## GROUP1:WAVE -0.2497   0.10485 38  -2.381  0.0224
##  Correlation: 
##             (Intr) GROUP1 WAVE   BASELI
## GROUP1      -0.237                     
## WAVE        -0.383  0.635              
## BASELINE    -0.904 -0.057 -0.020       
## GROUP1:WAVE  0.237 -0.939 -0.680  0.040
## 
## Standardized Within-Group Residuals:
##     Min      Q1     Med      Q3     Max 
## -1.8117 -0.5706 -0.1252  0.4203  2.6001 
## 
## Number of Observations: 109
## Number of Groups: 69

Table with P-values

Value Std.Error DF t-value p-value
(Intercept) 1.9569 0.2488 66.0000 7.8653 0.0000
GROUP1 0.3495 0.1576 66.0000 2.2182 0.0300
WAVE 0.1195 0.0712 38.0000 1.6783 0.1015
BASELINE 0.3030 0.0725 66.0000 4.1795 0.0001
GROUP1:WAVE -0.2497 0.1048 38.0000 -2.3815 0.0224

``` Table with confidence intervals

est. lower upper
(Intercept) 1.9569 1.4716 2.4421
GROUP1 0.3495 0.0422 0.6568
WAVE 0.1195 -0.0213 0.2603
BASELINE 0.3030 0.1616 0.4444
GROUP1:WAVE -0.2497 -0.4570 -0.0424