GRIT - All Items from Angela Duckworth

#Loading the dataset that has been reset into a long version
data.test4 <- read.csv("/Volumes/TOSHIBA EXT/Dropbox/ADULT STUDY/adult_study011615.csv")
# Load the psych package
library(psych)

Creating a new variable that is the mean of all positive purpose meanGRIT questions

items <- grep("GRIT[0-9]*", names(data.test4), value=TRUE)
scaleKey <- c(-1,-1,-1,-1,1,1,1,1)
data.test4[,items] <- apply(data.test4[,items], 2, as.numeric)
data.test4$meanGRIT <- scoreItems(scaleKey, items = data.test4[, items], delete = FALSE)$score
library(reshape2); library(car)
## Warning: package 'car' was built under R version 3.1.2
## 
## Attaching package: 'car'
## 
## The following object is masked from 'package:psych':
## 
##     logit
data <- data.test4[,c("ID", "GROUP", "wave", "meanGRIT")]
data <- dcast(data, ID + GROUP ~ wave, mean, value.var = "meanGRIT")
data[,3:5] <- apply(data[,3:5],2,function(x) recode(x, "NaN = NA") )

Create new data set with ID Group baseline meanGRIT and wave so that we have Baseline, time 1 and 2 to compare to

data2 <- as.data.frame(mapply(c,data[,1:4], data[,c(1:3,5)]))
data2$wave <- rep(1:2, each=89)
names(data2) <- c("ID", "GROUP", "BASELINE", "meanGRIT", "WAVE")

Drop the cases where participants did not complete the intervention completely

#data2 <- data2[-c(which(data2$GROUP ==2)),]

Intention to treat model (ITT) where we keep the cases who dropped out and did not complete the study (http://en.wikipedia.org/wiki/Intention-to-treat_analysis).

data2[which(data2$GROUP ==2), "GROUP"] <- 1

For lme to work GROUP and ID need to be seen as factors

data2$GROUP <-as.factor(data2$GROUP)
data2$ID <-as.factor(data2$ID)

Describe the meanGRIT variable by the GROUP variable

describeBy(data2[,3:4], group = data2$GROUP)
## group: 0
##          vars  n mean   sd median trimmed  mad  min max range  skew
## BASELINE    1 86 3.59 0.75   3.62    3.61 0.93 2.00   5  3.00 -0.24
## meanGRIT    2 59 3.72 0.73   3.62    3.74 0.74 1.88   5  3.12 -0.25
##          kurtosis   se
## BASELINE    -0.71 0.08
## meanGRIT    -0.52 0.09
## -------------------------------------------------------- 
## group: 1
##          vars  n mean   sd median trimmed  mad  min  max range  skew
## BASELINE    1 88 3.37 0.90   3.25    3.42 0.93 1.00 4.88  3.88 -0.46
## meanGRIT    2 54 3.62 0.66   3.75    3.65 0.74 1.25 4.88  3.62 -0.72
##          kurtosis   se
## BASELINE    -0.13 0.10
## meanGRIT     1.35 0.09

Create a plot that visualizes meanGRIT variable by the GROUP variable

library(ggplot2)
## 
## Attaching package: 'ggplot2'
## 
## The following object is masked from 'package:psych':
## 
##     %+%

Take a look at the residuals

residual <- lm(meanGRIT ~ BASELINE, data=data2)$residual

Plot the residuals to see that they are random

plot(density(residual))# A density plot

plot of chunk unnamed-chunk-10

qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)

plot of chunk unnamed-chunk-10 Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.

data2$residual <- NA
sel1 <- which(!is.na(data2$meanGRIT)) 
sel2 <- which(!is.na(data2$BASELINE))
data2$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanGRIT, data=data2, geom="boxplot")
## Warning: Removed 65 rows containing non-finite values (stat_boxplot).

plot of chunk unnamed-chunk-11 Plot of the difference between intervention and control groups.

qplot(GROUP, residual, data=data2, geom="boxplot")
## Warning: Removed 69 rows containing non-finite values (stat_boxplot).

plot of chunk unnamed-chunk-12 Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanGRIT and the Residuals

# Load the nlme package
library(nlme)
with(data2, boxplot(meanGRIT ~ WAVE + GROUP))

plot of chunk unnamed-chunk-13

with(data2, boxplot(residual ~ WAVE + GROUP))

plot of chunk unnamed-chunk-13

Linear Mixed-Effects Model

Comparing Basline to Wave 2 and 3 by Group.

fullModel <- lme(meanGRIT ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data2, method = "ML", na.action = "na.omit")
Results

Explanation of significance:

We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.

summary(fullModel)
## Linear mixed-effects model fit by maximum likelihood
##  Data: data2 
##     AIC   BIC logLik
##   124.8 143.7 -55.41
## 
## Random effects:
##  Formula: ~1 | ID
##         (Intercept) Residual
## StdDev:      0.2563   0.3254
## 
## Fixed effects: meanGRIT ~ GROUP * WAVE + BASELINE 
##               Value Std.Error DF t-value p-value
## (Intercept)  1.1440   0.24863 66   4.601  0.0000
## GROUP1       0.0534   0.21189 66   0.252  0.8020
## WAVE        -0.0649   0.09340 38  -0.695  0.4915
## BASELINE     0.7200   0.05652 66  12.740  0.0000
## GROUP1:WAVE  0.0438   0.13679 38   0.320  0.7504
##  Correlation: 
##             (Intr) GROUP1 WAVE   BASELI
## GROUP1      -0.456                     
## WAVE        -0.494  0.607              
## BASELINE    -0.818  0.082 -0.031       
## GROUP1:WAVE  0.350 -0.898 -0.682  0.005
## 
## Standardized Within-Group Residuals:
##      Min       Q1      Med       Q3      Max 
## -2.04700 -0.49141  0.02433  0.50910  2.50433 
## 
## Number of Observations: 109
## Number of Groups: 69

Table with P-values

Value Std.Error DF t-value p-value
(Intercept) 1.1440 0.2486 66.0000 4.6013 0.0000
GROUP1 0.0534 0.2119 66.0000 0.2518 0.8020
WAVE -0.0649 0.0934 38.0000 -0.6947 0.4915
BASELINE 0.7200 0.0565 66.0000 12.7395 0.0000
GROUP1:WAVE 0.0438 0.1368 38.0000 0.3204 0.7504

``` Table with confidence intervals

est. lower upper
(Intercept) 1.1440 0.6591 1.6289
GROUP1 0.0534 -0.3599 0.4666
WAVE -0.0649 -0.2496 0.1198
BASELINE 0.7200 0.6098 0.8302
GROUP1:WAVE 0.0438 -0.2267 0.3143