Repeated Measures for LET6 I have lots of reasons for living. (6) APPROACHING SIGNIFICANCE.
========================================================
#Loading the dataset that has been reset into a long version
data.test4 <- read.csv("/Volumes/TOSHIBA EXT/Dropbox/ADULT STUDY/adult_study011615.csv")
#Creating a new variable that is the mean of all positive purpose LET questions
library(reshape2); library(car)
## Warning: package 'car' was built under R version 3.1.2
data <- data.test4[,c("ID", "GROUP", "wave", "LET6")]
data <- dcast(data, ID + GROUP ~ wave, mean, value.var = "LET6")
data[,3:5] <- apply(data[,3:5],2,function(x) recode(x, "NaN = NA") )
data2 <- as.data.frame(mapply(c,data[,1:4], data[,c(1:3,5)]))
data2$wave <- rep(1:2, each=89)
names(data2) <- c("ID", "GROUP", "BASELINE", "LET6", "WAVE")
Drop the cases where participants did not complete the intervention completely
#data2 <- data2[-c(which(data2$GROUP ==2)),]
Intention to treat model (ITT) where we keep the cases who dropped out and did not complete the study (http://en.wikipedia.org/wiki/Intention-to-treat_analysis).
data2[which(data2$GROUP ==2), "GROUP"] <- 1
For lme to work GROUP and ID need to be seen as factors
data2$GROUP <-as.factor(data2$GROUP)
data2$ID <-as.factor(data2$ID)
Load the psych package
library(psych)
##
## Attaching package: 'psych'
##
## The following object is masked from 'package:car':
##
## logit
Describe the LET variable by the GROUP variable
describeBy(data2[,3:4], group = data2$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew kurtosis
## BASELINE 1 86 4.44 0.85 5 4.60 0 2 5 3 -1.42 1.10
## LET6 2 59 4.52 0.78 5 4.66 0 2 5 3 -1.57 1.78
## se
## BASELINE 0.09
## LET6 0.10
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew kurtosis
## BASELINE 1 88 4.39 0.78 5 4.53 0 2 5 3 -1.35 1.67
## LET6 2 54 4.70 0.74 5 4.89 0 1 5 4 -3.01 10.08
## se
## BASELINE 0.08
## LET6 0.10
Create a plot that visualizes LET variable by the GROUP variable
library(ggplot2)
##
## Attaching package: 'ggplot2'
##
## The following object is masked from 'package:psych':
##
## %+%
Take a look at the residuals
residual <- lm(LET6 ~ BASELINE, data=data2)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data2$LET6))
sel2 <- which(!is.na(data2$BASELINE))
data2$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, LET6, data=data2, geom="boxplot")
## Warning: Removed 65 rows containing non-finite values (stat_boxplot).
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data2, geom="boxplot")
## Warning: Removed 69 rows containing non-finite values (stat_boxplot).
# Load the nlme package
library(nlme)
Two way repeated measures Graphing the Two-Way Interaction.
with(data2, boxplot(LET6 ~ WAVE + GROUP))
with(data2, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModel <- lme(LET6 ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data2, method = "ML", na.action = "na.omit")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Assesses whether the effects gets bigger between time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModel)
## Linear mixed-effects model fit by maximum likelihood
## Data: data2
## AIC BIC logLik
## 163.2 182 -74.59
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.2456 0.419
##
## Fixed effects: LET6 ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 0.9822 0.3485 66 2.818 0.0064
## GROUP1 0.4760 0.2635 66 1.806 0.0754
## WAVE -0.0236 0.1180 38 -0.200 0.8426
## BASELINE 0.7897 0.0674 66 11.725 0.0000
## GROUP1:WAVE -0.1887 0.1733 38 -1.089 0.2830
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.333
## WAVE -0.449 0.623
## BASELINE -0.859 -0.016 -0.025
## GROUP1:WAVE 0.290 -0.919 -0.682 0.036
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.8653 -0.3783 0.1199 0.1762 2.0866
##
## Number of Observations: 109
## Number of Groups: 69
Table with P-values
| Value | Std.Error | DF | t-value | p-value | |
|---|---|---|---|---|---|
| (Intercept) | 0.9822 | 0.3485 | 66.0000 | 2.8184 | 0.0064 |
| GROUP1 | 0.4760 | 0.2635 | 66.0000 | 1.8064 | 0.0754 |
| WAVE | -0.0236 | 0.1180 | 38.0000 | -0.1999 | 0.8426 |
| BASELINE | 0.7897 | 0.0674 | 66.0000 | 11.7253 | 0.0000 |
| GROUP1:WAVE | -0.1887 | 0.1733 | 38.0000 | -1.0890 | 0.2830 |
``` Table with confidence intervals
| est. | lower | upper | |
|---|---|---|---|
| (Intercept) | 0.9822 | 0.3025 | 1.6618 |
| GROUP1 | 0.4760 | -0.0379 | 0.9899 |
| WAVE | -0.0236 | -0.2570 | 0.2098 |
| BASELINE | 0.7897 | 0.6584 | 0.9211 |
| GROUP1:WAVE | -0.1887 | -0.5314 | 0.1540 |