Packages

library(tidyverse)
── Attaching packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 1.2.1 ──
✔ ggplot2 3.2.0     ✔ purrr   0.3.2
✔ tibble  2.1.3     ✔ dplyr   0.8.3
✔ tidyr   1.0.0     ✔ stringr 1.4.0
✔ readr   1.3.1     ✔ forcats 0.4.0
── Conflicts ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()

First try

(
  mtprop <-
    meta::metaprop(
      event = num,
      n = denom,
      studlab = study,
      byvar = droplevels(tgroup),
      data = df
    )
)
                  proportion           95%-CI %W(fixed) %W(random) byvar
Manos, 1999           0.3947 [0.3638; 0.4262]        --         --     1
Bergeron, 2000        0.4324 [0.3387; 0.5298]        --         --     1
Lytwyn, 2000          0.4035 [0.2756; 0.5418]        --         --     1
Shlay, 2000           0.3128 [0.2485; 0.3830]        --         --     1
Morin, 2001           0.2917 [0.2452; 0.3416]        --         --     1
Rebello, 2001         0.4133 [0.3008; 0.5330]        --         --     3
Solomon, 2001         0.5676 [0.5470; 0.5879]        --         --     1
Zielinski, 2001       0.3474 [0.2837; 0.4155]        --         --     3
Kulasingam, 2002      0.5111 [0.4498; 0.5722]        --         --     1
Pretorius, 2002       0.3224 [0.2928; 0.3532]        --         --     1
Cuzick, 2003          0.2602 [0.1852; 0.3470]        --         --     3
Guyot, 2003           0.5217 [0.3059; 0.7318]        --         --     3
Lonky, 2003           0.4604 [0.4007; 0.5210]        --         --     1
Wensveen, 2003        0.4527 [0.3708; 0.5365]        --         --     1
Bruner, 2004          0.2688 [0.1821; 0.3708]        --         --     2
Rowe, 2004            0.4400 [0.3804; 0.5009]        --         --     1
Andersson, 2005       0.4423 [0.3047; 0.5867]        --         --     1
Dalla Palma, 2005     0.6987 [0.6202; 0.7695]        --         --     1
Giovannelli, 2005     0.2283 [0.1472; 0.3275]        --         --     1
Kendall, 2005         0.3410 [0.3302; 0.3520]        --         --     1
Nieh, 2005            0.7424 [0.6199; 0.8422]        --         --     1
Bergeron, 2006        0.4441 [0.4215; 0.4669]        --         --     1
Kelly, 2006           0.7255 [0.5826; 0.8411]        --         --     2
Kiatpongsan, 2006     0.3889 [0.2879; 0.4974]        --         --     1
Ko, 2006              0.4010 [0.3810; 0.4213]        --         --     2
Monsonego, 2006       0.4789 [0.3588; 0.6008]        --         --     1
Moss, 2006            0.4564 [0.4402; 0.4727]        --         --     3
Selvaggi, 2006        0.3958 [0.3586; 0.4339]        --         --     2
Wright, 2006          0.3409 [0.3149; 0.3675]        --         --     2
Cuschieri, 2007       0.6053 [0.5319; 0.6753]        --         --     3
Ronco, 2007           0.3144 [0.2814; 0.3488]        --         --     1
You, 2007             0.4629 [0.4340; 0.4919]        --         --     2

Number of studies combined: k = 32

                     proportion           95%-CI  z p-value
Fixed effect model       0.4072 [0.4013; 0.4132] --      --
Random effects model     0.4269 [0.3842; 0.4706] --      --

Quantifying heterogeneity:
tau^2 = 0.2318; H = 6.44; I^2 = 97.6%

Quantifying residual heterogeneity:
H = 4.81 [4.33; 5.35]; I^2 = 95.7% [94.7%; 96.5%]

Test of heterogeneity:
      Q d.f.  p-value             Test
 740.38   31 < 0.0001 Likelihood-Ratio

Results for subgroups (fixed effect model):
                                 k proportion           95%-CI      Q  tau^2   I^2
byvar = ASCUS                   20     0.3979 [0.3905; 0.4054] 562.93 0.2371 97.3%
byvar = ASC-US                   6     0.4003 [0.3875; 0.4132]  63.59 0.2535 98.0%
byvar = BORDERLINE DYSKARYOSIS   6     0.4516 [0.4367; 0.4665]  45.10 0.1961 91.0%

Test for subgroup differences (fixed effect model):
                    Q d.f.  p-value
Between groups  41.96    2 < 0.0001
Within groups  671.62   29 < 0.0001

Results for subgroups (random effects model):
                                 k proportion           95%-CI      Q  tau^2   I^2
byvar = ASCUS                   20     0.4285 [0.3745; 0.4843] 562.93 0.2371 97.3%
byvar = ASC-US                   6     0.4223 [0.3241; 0.5272]  63.59 0.2535 98.0%
byvar = BORDERLINE DYSKARYOSIS   6     0.4265 [0.3347; 0.5236]  45.10 0.1961 91.0%

Test for subgroup differences (random effects model):
                    Q d.f. p-value
Between groups   0.01    2  0.9946

Details on meta-analytical method:
- Random intercept logistic regression model
- Maximum-likelihood estimator for tau^2
- Logit transformation
- Clopper-Pearson confidence interval for individual studies

Second try

(meta <- meta::metaprop(event = event.e,
             n = n.e, studlab = paste(author, year),
             byvar = cut(year, 3),
             data = Olkin95[1:20,]))
                  proportion           95%-CI %W(fixed) %W(random) byvar
Fletcher 1959         0.0833 [0.0021; 0.3848]        --         --     1
Dewar 1963            0.1905 [0.0545; 0.4191]        --         --     1
Lippschutz 1965       0.1395 [0.0530; 0.2793]        --         --     1
European 1 1969       0.2410 [0.1538; 0.3473]        --         --     2
European 2 1971       0.1850 [0.1469; 0.2282]        --         --     2
Heikinheimo 1971      0.1005 [0.0640; 0.1481]        --         --     2
Italian 1971          0.1159 [0.0712; 0.1750]        --         --     2
Australian 1 1973     0.0985 [0.0653; 0.1410]        --         --     3
Frankfurt 2 1973      0.1275 [0.0696; 0.2081]        --         --     3
Gormsen 1973          0.1429 [0.0178; 0.4281]        --         --     3
NHLBI SMIT 1974       0.1321 [0.0548; 0.2534]        --         --     3
Brochier 1975         0.0333 [0.0041; 0.1153]        --         --     3
Euro Collab 1975      0.1686 [0.1159; 0.2331]        --         --     3
Frank 1975            0.1091 [0.0411; 0.2225]        --         --     3
Valere 1975           0.2245 [0.1177; 0.3662]        --         --     3
Klein 1976            0.2857 [0.0839; 0.5810]        --         --     3
UK-Collab 1976        0.1258 [0.0906; 0.1686]        --         --     3
Austrian 1977         0.1051 [0.0751; 0.1420]        --         --     3
Australian 2 1977     0.2033 [0.1361; 0.2852]        --         --     3
Lasierra 1977         0.0769 [0.0019; 0.3603]        --         --     3

Number of studies combined: k = 20

                     proportion           95%-CI  z p-value
Fixed effect model       0.1375 [0.1245; 0.1516] --      --
Random effects model     0.1371 [0.1160; 0.1614] --      --

Quantifying heterogeneity:
tau^2 = 0.0835; H = 1.47; I^2 = 53.5%

Quantifying residual heterogeneity:
H = 1.49 [1.14; 1.94]; I^2 = 54.8% [23.1%; 73.4%]

Test of heterogeneity:
     Q d.f. p-value             Test
 43.12   19  0.0012 Likelihood-Ratio

Results for subgroups (fixed effect model):
                      k proportion           95%-CI     Q  tau^2   I^2
byvar = (1959,1965]   3     0.1447 [0.0820; 0.2428]  0.71      0  0.0%
byvar = (1965,1971]   4     0.1549 [0.1320; 0.1810] 13.68 0.1137 72.7%
byvar = (1971,1977]  13     0.1278 [0.1122; 0.1452] 23.25 0.0669 45.4%

Test for subgroup differences (fixed effect model):
                   Q d.f. p-value
Between groups  3.43    2  0.1799
Within groups  37.63   17  0.0028

Results for subgroups (random effects model):
                      k proportion           95%-CI     Q  tau^2   I^2
byvar = (1959,1965]   3     0.1447 [0.0820; 0.2428]  0.71      0  0.0%
byvar = (1965,1971]   4     0.1514 [0.1076; 0.2088] 13.68 0.1137 72.7%
byvar = (1971,1977]  13     0.1304 [0.1069; 0.1583] 23.25 0.0669 45.4%

Test for subgroup differences (random effects model):
                    Q d.f. p-value
Between groups   0.61    2  0.7358

Details on meta-analytical method:
- Random intercept logistic regression model
- Maximum-likelihood estimator for tau^2
- Logit transformation
- Clopper-Pearson confidence interval for individual studies

LS0tCnRpdGxlOiAiUHJldmFsZW5jZSBSYXRpbyBNZXRhLWFuYWx5c2lzIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgojIFBhY2thZ2VzCmBgYHtyfQpsaWJyYXJ5KHRpZHl2ZXJzZSkKbGlicmFyeShtZXRhKQpgYGAKCiMgRmlyc3QgdHJ5CmBgYHtyfQpkZiA8LSBzdHJ1Y3R1cmUobGlzdChzdHVkeSA9IGMoIk1hbm9zLCAxOTk5IiwgIkJlcmdlcm9uLCAyMDAwIiwgIkx5dHd5biwgMjAwMCIsIAoiU2hsYXksIDIwMDAiLCAiTW9yaW4sIDIwMDEiLCAiUmViZWxsbywgMjAwMSIsICJTb2xvbW9uLCAyMDAxIiwgCiJaaWVsaW5za2ksIDIwMDEiLCAiS3VsYXNpbmdhbSwgMjAwMiIsICJQcmV0b3JpdXMsIDIwMDIiLCAiQ3V6aWNrLCAyMDAzIiwgCiJHdXlvdCwgMjAwMyIsICJMb25reSwgMjAwMyIsICJXZW5zdmVlbiwgMjAwMyIsICJCcnVuZXIsIDIwMDQiLCAKIlJvd2UsIDIwMDQiLCAiQW5kZXJzc29uLCAyMDA1IiwgIkRhbGxhIFBhbG1hLCAyMDA1IiwgIkdpb3Zhbm5lbGxpLCAyMDA1IiwgCiJLZW5kYWxsLCAyMDA1IiwgIk5pZWgsIDIwMDUiLCAiQmVyZ2Vyb24sIDIwMDYiLCAiS2VsbHksIDIwMDYiLCAKIktpYXRwb25nc2FuLCAyMDA2IiwgIktvLCAyMDA2IiwgIk1vbnNvbmVnbywgMjAwNiIsICJNb3NzLCAyMDA2IiwgCiJTZWx2YWdnaSwgMjAwNiIsICJXcmlnaHQsIDIwMDYiLCAiQ3VzY2hpZXJpLCAyMDA3IiwgIlJvbmNvLCAyMDA3IiwgCiJZb3UsIDIwMDciKSwgYXV0aG9yID0gYygiTWFub3MiLCAiQmVyZ2Vyb24iLCAiTHl0d3luIiwgIlNobGF5IiwgCiJNb3JpbiIsICJSZWJlbGxvIiwgIlNvbG9tb24iLCAiWmllbGluc2tpIiwgIkt1bGFzaW5nYW0iLCAiUHJldG9yaXVzIiwgCiJDdXppY2siLCAiR3V5b3QiLCAiTG9ua3kiLCAiV2Vuc3ZlZW4iLCAiQnJ1bmVyIiwgIlJvd2UiLCAiQW5kZXJzc29uIiwgCiJQYWxtYSIsICJHaW92YW5uZWxsaSIsICJLZW5kYWxsIiwgIk5pZWgiLCAiQmVyZ2Vyb24iLCAiS2VsbHkiLCAKIktpYXRwb25nc2FuIiwgIktvIiwgIk1vbnNvbmVnbyIsICJNb3NzIiwgIlNlbHZhZ2dpIiwgIldyaWdodCIsIAoiQ3VzY2hpZXJpIiwgIlJvbmNvIiwgIllvdSIpLCB5ZWFyID0gYygxOTk5TCwgMjAwMEwsIDIwMDBMLCAyMDAwTCwgCjIwMDFMLCAyMDAxTCwgMjAwMUwsIDIwMDFMLCAyMDAyTCwgMjAwMkwsIDIwMDNMLCAyMDAzTCwgMjAwM0wsIAoyMDAzTCwgMjAwNEwsIDIwMDRMLCAyMDA1TCwgMjAwNUwsIDIwMDVMLCAyMDA1TCwgMjAwNUwsIDIwMDZMLCAKMjAwNkwsIDIwMDZMLCAyMDA2TCwgMjAwNkwsIDIwMDZMLCAyMDA2TCwgMjAwNkwsIDIwMDdMLCAyMDA3TCwgCjIwMDdMKSwgdGdyb3VwID0gc3RydWN0dXJlKGMoMUwsIDFMLCAxTCwgMUwsIDFMLCA5TCwgMUwsIDlMLCAKMUwsIDFMLCA5TCwgOUwsIDFMLCAxTCwgNkwsIDFMLCAxTCwgMUwsIDFMLCAxTCwgMUwsIDFMLCA2TCwgMUwsIAo2TCwgMUwsIDlMLCA2TCwgNkwsIDlMLCAxTCwgNkwpLCAuTGFiZWwgPSBjKCJBU0NVUyIsICJMU0lMIiwgCiJBU0NVUyBvciBTSUwiLCAiQVNDLVIiLCAiQVNDLVIvVVMiLCAiQVNDLVVTIiwgIkFTQy1IIiwgIkFHQy9BR1VTIiwgCiJCT1JERVJMSU5FIERZU0tBUllPU0lTIiksIGNsYXNzID0gImZhY3RvciIpLCBudW0gPSBjKDM4NCwgNDgsIAoyMywgNjEsIDEwNSwgMzEsIDEzMDYsIDc0LCAxMzgsIDMwNiwgMzIsIDEyLCAxMjgsIDY3LCAyNSwgMTIxLCAKMjMsIDEwOSwgMjEsIDI1MDEsIDQ5LCA4MzUsIDM3LCAzNSwgOTMwLCAzNCwgMTY4MCwgMjY2LCA0MzgsIAoxMTUsIDIzOCwgNTQyKSwgZGVub20gPSBjKDk3MywgMTExLCA1NywgMTk1LCAzNjAsIDc1LCAyMzAxLCAyMTMsIAoyNzAsIDk0OSwgMTIzLCAyMywgMjc4LCAxNDgsIDkzLCAyNzUsIDUyLCAxNTYsIDkyLCA3MzM0LCA2NiwgCjE4ODAsIDUxLCA5MCwgMjMxOSwgNzEsIDM2ODEsIDY3MiwgMTI4NSwgMTkwLCA3NTcsIDExNzEpLCBmcmFjID0gYygwLjM5NDY5OTk5MDc0OTM1OSwgCjAuNDMyMzk5OTg4MTc0NDM4LCAwLjQwMzQ5OTk5MDcwMTY3NSwgMC4zMTI3OTk5OTAxNzcxNTUsIDAuMjkxNzAwMDA1NTMxMzExLCAKMC40MTMzMDAwMDc1ODE3MTEsIDAuNTY3NjAwMDExODI1NTYyLCAwLjM0NzQwMDAwOTYzMjExMSwgMC41MTEwOTk5OTQxODI1ODcsIAowLjMyMjQwMDAwMzY3MTY0NiwgMC4yNjAxOTk5OTM4NDg4MDEsIDAuNTIxNzAwMDI0NjA0Nzk3LCAwLjQ2MDM5OTk4NTMxMzQxNiwgCjAuNDUyNjk5OTg5MDgwNDI5LCAwLjI2ODc5OTk5MDQxNTU3MywgMC40Mzk5OTk5OTc2MTU4MTQsIDAuNDQyMjk5OTkxODQ2MDg1LCAKMC42OTg3MDAwMTA3NzY1MiwgMC4yMjgzMDAwMDUxOTc1MjUsIDAuMzQwOTk5OTkwNzAxNjc1LCAwLjc0MjM5OTk5MDU1ODYyNCwgCjAuNDQ0MDk5OTkyNTEzNjU3LCAwLjcyNTQ5OTk4NzYwMjIzNCwgMC4zODg5MDAwMTE3Nzc4NzgsIDAuNDAwOTk5OTkzMDg1ODYxLCAKMC40Nzg4OTk5ODU1NTE4MzQsIDAuNDU2NDAwMDA3MDA5NTA2LCAwLjM5NTc5OTk5NDQ2ODY4OSwgMC4zNDA4NTYwNDU0ODQ1NDMsIAowLjYwNTMwMDAwOTI1MDY0MSwgMC4zMTQzOTk5ODc0NTkxODMsIDAuNDYyOTAwMDEyNzMxNTUyKSwgc2UgPSBjKDAuMDE1Njk5OTk5NDA2OTMzOCwgCjAuMDQ2OTk5OTk4MzkwNjc0NiwgMC4wNjQ5OTk5OTc2MTU4MTQyLCAwLjAzMzE5OTk5OTQ4MTQzOTYsIDAuMDI0MDAwMDAwMjA4NjE2MywgCjAuMDU2ODk5OTk4MzM3MDMwNCwgMC4wMTAzMDAwMDAxOTgxODU0LCAwLjAzMjYwMDAwMDUwMDY3OSwgMC4wMzA0MDAwMDA1MTI1OTk5LCAKMC4wMTUyMDAwMDAyNTYzLCAwLjAzOTU5OTk5OTc4NTQyMzMsIDAuMTA0MTk5OTk4MDgwNzMsIDAuMDI5ODk5OTk5NDk5MzIxLCAKMC4wNDA4OTk5OTk0Mzk3MTYzLCAwLjA0NjAwMDAwMDA4OTQwNywgMC4wMjk4OTk5OTk0OTkzMjEsIDAuMDY4ODk5OTk2NTc4NjkzNCwgCjAuMDM2Njk5OTk5MTIzODExNywgMC4wNDM4MDAwMDAxMDEzMjc5LCAwLjAwNTQ5OTk5OTk3MDE5NzY4LCAKMC4wNTM4MDAwMDE3NDA0NTU2LCAwLjAxMTUwMDAwMDAyMjM1MTcsIDAuMDYyNSwgMC4wNTEzOTk5OTgzNjY4MzI3LCAKMC4wMTAyMDAwMDAzNjgwNTg3LCAwLjA1OTMwMDAwMTcxMDY1MzMsIDAuMDA4MjAwMDAwMDQwMjMzMTQsIAowLjAxODg5OTk5OTU1ODkyNTYsIDAuMDEzMjIyODE5MTk0MTk3NywgMC4wMzU1MDAwMDExNjIyOTA2LCAwLjAxNjg5OTk5OTIzMTEwMDEsIAowLjAxNDYwMDAwMDM0NDIxNjgpLCB1cCA9IGMoMC40MjYxNjIxODMyODQ3NiwgMC41Mjk4NDM2ODgwMTExNjksIAowLjU0MTc4NjYxMTA4MDE3LCAwLjM4Mjk1MjU3MDkxNTIyMiwgMC4zNDE1ODk2NTk0NTI0MzgsIDAuNTMyOTcyODcyMjU3MjMzLCAKMC41ODc5NDE3NjU3ODUyMTcsIDAuNDE1NDkyOTUxODY5OTY1LCAwLjU3MjE3ODYwMjIxODYyOCwgMC4zNTMyMjY0ODI4NjgxOTUsIAowLjM0Njk3OTUyODY2NTU0MywgMC43MzE4MDM4MzQ0MzgzMjQsIDAuNTIwOTc1MzUxMzMzNjE4LCAwLjUzNjUyNTAxMTA2MjYyMiwgCjAuMzcwNzU4MzU0NjYzODQ5LCAwLjUwMDg2NTI4MDYyODIwNCwgMC41ODY3MjQ0NjAxMjQ5NjksIDAuNzY5NDk5ODk3OTU2ODQ4LCAKMC4zMjc1MTA0MTY1MDc3MjEsIDAuMzUxOTkzNDcxMzg0MDQ4LCAwLjg0MjIzMzU5ODIzMjI2OSwgMC40NjY5NDc1MjU3Mzk2NywgCjAuODQxMDcyNzM4MTcwNjI0LCAwLjQ5NzQ0MjkwMTEzNDQ5MSwgMC40MjEzMTI4Mzg3OTI4MDEsIDAuNjAwNzg0ODM4MTk5NjE1LCAKMC40NzI2NTM2MjczOTU2MywgMC40MzM5NDI5MTQwMDkwOTQsIDAuMzY3NTAyNzE5MTYzODk1LCAwLjY3NTI1NzU2MzU5MTAwMywgCjAuMzQ4ODA4NjQ2MjAyMDg3LCAwLjQ5MTkwMDk1MDY3MDI0MiksIGxvID0gYygwLjM2Mzc4ODc4MzU1MDI2MiwgCjAuMzM4NzE3MzExNjIwNzEyLCAwLjI3NTYxMjcxMTkwNjQzMywgMC4yNDg0ODQ5NTQyMzc5MzgsIDAuMjQ1MjA4NzU1MTM1NTM2LCAKMC4zMDA3NTM2MjMyNDcxNDcsIDAuNTQ3MDQ0NTE1NjA5NzQxLCAwLjI4MzY1NzMxMjM5MzE4OCwgMC40NDk3OTcwOTM4NjgyNTYsIAowLjI5Mjc2OTQzMjA2Nzg3MSwgMC4xODUyNDkwNzUyOTM1NDEsIDAuMzA1ODc4MDEzMzcyNDIxLCAwLjQwMDc0MDM1NTI1MzIyLCAKMC4zNzA4MTE4Nzk2MzQ4NTcsIDAuMTgyMTE3NTk2MjY4NjU0LCAwLjM4MDQ0MTcyNTI1NDA1OSwgMC4zMDQ2OTU2MzYwMzQwMTIsIAowLjYyMDIxMTQyMjQ0MzM5LCAwLjE0NzE5MjgwNjAwNTQ3OCwgMC4zMzAxNjE5MjkxMzA1NTQsIDAuNjE5OTM4NzMxMTkzNTQyLCAKMC40MjE1MjQ4NTI1MTQyNjcsIDAuNTgyNTUyNDkyNjE4NTYxLCAwLjI4Nzg2MjMwMDg3MjgwMywgMC4zODEwMDc0MzI5Mzc2MjIsIAowLjM1ODc3OTE5MTk3MDgyNSwgMC40NDAyMTExMTcyNjc2MDksIDAuMzU4NjQyNzU2OTM4OTM0LCAwLjMxNDkzOTU4ODMwODMzNCwgCjAuNTMxOTMwMDI5MzkyMjQyLCAwLjI4MTQ0Mjg4MDYzMDQ5MywgMC40MzM5OTA1OTc3MjQ5MTUpKSwgZGF0YWxhYmVsID0gIiIsIHRpbWUuc3RhbXAgPSAiMTUgSmFuIDIwMTQgMTQ6MDgiLCAuTmFtZXMgPSBjKCJzdHVkeSIsIAoiYXV0aG9yIiwgInllYXIiLCAidGdyb3VwIiwgIm51bSIsICJkZW5vbSIsICJmcmFjIiwgInNlIiwgInVwIiwgCiJsbyIpLCBmb3JtYXRzID0gYygiJTIwcyIsICIlMTRzIiwgIiU4LjBnIiwgIiUyMi4wZyIsICIlOS4wZyIsIAoiJTkuMGciLCAiJTkuMGciLCAiJTkuMGciLCAiJTkuMGciLCAiJTkuMGciKSwgdHlwZXMgPSBjKDIwTCwgCjE0TCwgMjUyTCwgMjUxTCwgMjU0TCwgMjU0TCwgMjU0TCwgMjU0TCwgMjU0TCwgMjU0TCksIHZhbC5sYWJlbHMgPSBjKCIiLCAKIiIsICIiLCAidGdyb3VwIiwgIiIsICIiLCAiIiwgIiIsICIiLCAiIiksIHZhci5sYWJlbHMgPSBjKCIiLCAKIiIsICIiLCAiIiwgIiIsICIiLCAiIiwgIiIsICJVcHBlciBsaW1pdCIsICJMb3dlciBsaW1pdCIpLCByb3cubmFtZXMgPSBjKCIxIiwgCiIyIiwgIjMiLCAiNCIsICI1IiwgIjYiLCAiNyIsICI4IiwgIjkiLCAiMTAiLCAiMTEiLCAiMTIiLCAiMTMiLCAKIjE0IiwgIjE1IiwgIjE2IiwgIjE3IiwgIjE4IiwgIjE5IiwgIjIwIiwgIjIxIiwgIjIyIiwgIjIzIiwgIjI0IiwgCiIyNSIsICIyNiIsICIyNyIsICIyOCIsICIyOSIsICIzMCIsICIzMSIsICIzMiIpLCB2ZXJzaW9uID0gMTJMLCBsYWJlbC50YWJsZSA9IHN0cnVjdHVyZShsaXN0KAogICAgdGdyb3VwID0gc3RydWN0dXJlKGMoMUwsIDJMLCAzTCwgMTFMLCAxMkwsIDEzTCwgMTRMLCAxNUwsIAogICAgMTZMKSwgLk5hbWVzID0gYygiQVNDVVMiLCAiTFNJTCIsICJBU0NVUyBvciBTSUwiLCAiQVNDLVIiLCAKICAgICJBU0MtUi9VUyIsICJBU0MtVVMiLCAiQVNDLUgiLCAiQUdDL0FHVVMiLCAiQk9SREVSTElORSBEWVNLQVJZT1NJUyIKICAgICkpKSwgLk5hbWVzID0gInRncm91cCIpLCBjbGFzcyA9ICJkYXRhLmZyYW1lIikKYGBgCgpgYGB7cn0KaGVhZChkZikKYGBgCgpgYGB7cn0KZGYgPC0gZGYgJT4lIAogIHNlbGVjdChzdHVkeTpkZW5vbSkKYGBgCgoKYGBge3J9CigKICBtdHByb3AgPC0KICAgIG1ldGE6Om1ldGFwcm9wKAogICAgICBldmVudCA9IG51bSwKICAgICAgbiA9IGRlbm9tLAogICAgICBzdHVkbGFiID0gc3R1ZHksCiAgICAgIGJ5dmFyID0gZHJvcGxldmVscyh0Z3JvdXApLAogICAgICBkYXRhID0gZGYKICAgICkKKQpgYGAKYGBge3J9Cm1ldGE6OmZvcmVzdChtdHByb3ApCmBgYAoKCiMgU2Vjb25kIHRyeQpgYGB7cn0KZGF0YShPbGtpbjk1KQpPbGtpbjk1ICU+JSAKICBzZWxlY3QoYXV0aG9yOm4uZSkKCmBgYAoKYGBge3J9CihtZXRhIDwtIG1ldGE6Om1ldGFwcm9wKGV2ZW50ID0gZXZlbnQuZSwKICAgICAgICAgICAgIG4gPSBuLmUsIHN0dWRsYWIgPSBwYXN0ZShhdXRob3IsIHllYXIpLAogICAgICAgICAgICAgYnl2YXIgPSBjdXQoeWVhciwgMyksCiAgICAgICAgICAgICBkYXRhID0gT2xraW45NVsxOjIwLF0pKQoKYGBgCgpgYGB7cn0KZm9yZXN0KG1ldGEsIGNvbWIuZml4ZWQgPSBGQUxTRSwgCiAgIGJ5bGFiID0gIlllYXJzIHN1Ymdyb3VwIiwgCiAgIGhldGxhYiA9ICIiLCBwcmludC50YXUyID0gRkFMU0UsCiAgIGxheW91dCA9ICJSZXZNYW4iLAogICBjb2wuc3F1YXJlID0gImJsYWNrIiwKICAgY29sLnNxdWFyZS5saW5lcyA9ICJibGFjayIpCmBgYAoK